一种通过自组装黑磷纳米片制备超滑含氢碳薄膜的方法与流程

文档序号:21651533发布日期:2020-07-29 03:05阅读:609来源:国知局
一种通过自组装黑磷纳米片制备超滑含氢碳薄膜的方法与流程

本发明涉及一种超滑氢碳薄膜的制备方法,尤其涉及一种通过自组装黑磷纳米片制备超滑含氢碳薄膜的方法,属于摩擦学技术领域领域和复合材料技术领域。



背景技术:

超滑特指摩擦系数低于0.01,处于0.001甚至更低的状态,被认为是解决摩擦磨损问题的必由之路,又称之为超低摩擦。对于运动的机械系统来说,实现超滑的工程应用,不仅降低摩擦磨损,实现节能减排和延长机械系统的使用寿命,更能促进机械系统的技术革新,尤其是微机械系统的真正工程化应用。

二维材料,如石墨烯、二硫化钼、黑磷纳米片、六方氮化硼等均在不同程度上可以实现超滑,但是,由于二维材料仅能在微观尺度上实现超滑,不能满足实际工程应用的需求。如何制备大面积的完美二维材料并实现超滑是一项技术挑战。cn201710403632.6提供了一种摩擦表面生长石墨烯的宏观超滑方法,但是其在600℃以上制备,会导致金属基底机械性能丧失,根本不能满足大多数工程金属表面制备的要求。cn201910336890.6提供了一种超滑二维复合材料及其制备方法,该方法制备的超滑二维复合材料具有优异的润滑性能,经过空气中的摩擦磨损测试后,摩擦系数达到0.02。cn201910675966.8提供了一种表面改性钢材质上制备石墨烯超滑薄膜的方法,使用电泳的方法在金属表面制备石墨烯,这种方法只能在平面样品中获得均匀厚度的薄膜,且结合力差,不利于在复杂表面制备,难以工业化应用。

黑磷纳米片作为一种新型的二维材料,近年来其摩擦性能一直备受关注。王伟等人报道了一种naoh修饰的多层黑磷纳米片,在水溶液下可以实现超滑(acsappl.mater.interfaces2018,10,43203−43210),但是如何实现其工程应用仍旧是挑战。另一方面,类金刚石仅在真空和惰性气氛下可以实现超滑,而类富勒烯碳薄膜制备条件又比较苛刻。因此,需要提供一种新的方法,使碳基薄膜在大气环境下具有稳定的超滑性能,以满足机械系统节能、降耗、延长使用寿命的润滑需求。



技术实现要素:

为解决上述问题,本发明提供了一种通过自组装黑磷纳米片制备超滑含氢碳薄膜的方法。

本发明通过自组装黑磷纳米片制备超滑含氢碳薄膜的方法,是在氢含量20~30%的含氢碳薄膜表面自组装少层黑磷纳米片,由于少层黑磷纳米片的层间弱作用力和与非晶碳网络的非公度接触,可以实现协同超滑。具体步骤如下:

(1)金属基底的清洗:将金属基底依次用水基清洗液、碳氢清洗液进行超声清洗,去除油污、锈点和污染物后用氮气吹干。金属基底为404不锈钢,轴承钢、硬质合金等。

(2)含氢碳薄膜的制备:将清洗吹干后的金属基底置入镀膜真空室,真空抽至1.0×10-3pa;先利用电弧激发气体离子源进行高强度的气体离子轰击清洗以进一步去除表面污染物;再采用磁过滤电弧技术沉积crmo结合层,然后采用阳极层离子源沉积含氢碳薄膜;完成镀膜后,将含氢碳薄膜取出,进行表面纳米滑石粉自组装。

电弧激发气体离子源进行高强度的气体离子轰击清洗参数:电流300a,气压1pa,偏压600v。

磁过滤电弧技术沉积crmo结合层的工艺:以cr、mo依次为阴极电弧靶,电流100a,偏压-20000v,氩气0.2pa,向基底注入50nm深度的双金属层,深度20分钟;此后,电流调整到200a,高功率脉冲偏压-1000v,占空比5%,交替沉积cr、mo多层结构,单层10nm,沉积厚度200nm。

采用阳极层离子源沉积含氢碳薄膜的工艺:阳极层电1200v,偏压-200v,气压3pa,时间100分钟;气压由氩气、甲烷和氢气同时提供。当氩气气压0.5pa,甲烷与氩气的气压比为1:1~1:3时,制备的碳薄膜氢含量为20~30%。

(3)少层黑磷纳米片分散液的制备:将黑磷纳米片粉末与异丙醇以0.1~0.2g/ml的比例混合,先磁力搅拌5~6小时;静置1.5~2小时;将上层悬浮液倾出后在离心分离机上3600转/分钟的速度下超声分离后,静置20-30分钟,收集分离后的溶液,即为少层黑磷纳米片分散液。

(4)黑磷纳米片自组装的含氢碳薄膜得制备:将含氢碳薄膜浸入少层黑磷纳米片分散液中,利用超声波辅助组装,时间0.8~1.2小时,即得黑磷纳米片自组装的超滑含氢碳薄膜。

利用csm摩擦实验机对黑磷纳米片自组装的超滑含氢碳薄膜进行摩擦学性能检测。将自组装黑磷纳米片自组装的超滑含氢碳薄膜安装至摩擦试验机上,分别通入不同湿度空气、干燥空气、氩气,以钢球为摩擦副,在载荷2~10n条件下进行检测。结果显示,在干燥、湿润的大气环境及惰性气氛下,本发明制备的黑磷纳米片自组装含氢碳薄膜的摩擦系数可低至0.002,完全实现了在宏观尺度大气环境下的超滑性能。

本发明与现有技术相比具有以下优点:

1、本发明再含氢碳薄膜上分散自组装了异丙醇修饰的少层黑磷纳米片。由于少层黑磷纳米片的层间弱作用力和与非晶碳网络的非公度接触协同,实现了含氢碳薄膜在较宽范围(在干燥、湿润空气、氩气)下的超滑性能;

2、黑磷纳米片分散液由液相机械剥离法制备,少层黑磷纳米片的粒径小,分散均匀;异丙醇既是分散液,同时又是插层液体,简化了工艺;

3、通过浸没沉积的方式将少层黑磷纳米片溶液自组装到含氢碳薄膜,不受电化学沉积过程中电压分布的影响,容易在复杂金属表面获得均匀的黑磷纳米片颗粒分布;

4、通过电弧激发气体离子源的高强度清洗和磁过滤电弧技术沉积crmo混合层,再通过空心阴极离子源在金属表面制备含氢碳薄膜,结合力强,易于工程化应用。

附图说明

图1为本发明所制备黑磷纳米片自组装的含氢碳薄膜在6n载荷下的摩擦系数。

具体实施方式

下面结合具体实施例对本发明黑磷纳米片自组装制备超滑含氢碳薄膜的方法即效果作进一步说明。

实施例1

(1)金属基底的清洗:将404不锈钢基底分别用水基清洗液、碳氢清洗液在超声清洗槽中清洗,去除油污、锈点和污染物,然后用氮气吹干,置入镀膜真空室准备镀膜;

(2)含氢碳薄膜的制备:将真空室背底真空抽至1.0×10-3pa;先利用电弧激发气体离子源进行高强度的气体离子轰击清洗进一步去除表面污染物:电流300a,气压1pa,偏压600v;再采用磁过滤电弧技术沉积crmo结合层:电流200a,偏压400v,氩气1pa;然后采用阳极层离子源沉积含氢碳薄膜:阳极层电压1200v,偏压200v,气压3pa(其中氩气0.5pa,甲烷与氩气的气压比1:1。),时间100分钟;完成镀膜后,将含氢碳薄膜取出,得到氢含量为20%左右的含氢碳薄膜薄膜;

(3)少层黑磷纳米片分散液的制备:称取黑磷纳米片粉末100g,与500ml异丙醇混合,置入果汁机,调整旋转速度150转每分钟,保持6小时;然后将悬浊液倒入烧杯静置2小时,接着将上层悬浮液倾倒到另一烧杯,并将悬浮液在3600转每分钟的速度下超声分离20分钟,收集分离后的溶液即为少层黑磷纳米片分散液(将沉淀在底部的固体粉末和离心管底的粉末烘干后称量,由此计算出混合溶液浓度为40g/500ml=0.08g/ml);

(4)自组装黑磷纳米片含氢碳薄膜的制备:将步骤(2)制备的含氢碳薄膜零件置入少层黑磷纳米片分散液中,利用超声波辅助组装1小时,即得黑磷纳米片自组装的超滑含氢碳薄膜;

(5)摩擦性能测试:利用csm在载荷2n,钢球为摩擦副,干燥的大气环境下测试。自组装黑鳞含氢碳薄膜的摩擦系数0.008,可以实现超滑。

实施例2

(1)金属基底的清洗:同实施例1;

(2)含氢碳薄膜的制备:将真空室背底真空抽至1.0×10-3pa;先利用电弧激发气体离子源进行高强度的气体离子轰击清洗进一步去除表面污染物:电流300a,气压1pa,偏压600v;再采用磁过滤电弧技术沉积crmo结合层:电流200a,偏压400v,氩气1pa;然后采用阳极层离子源沉积含氢碳薄膜:阳极层电压1200v,偏压200v,气压3pa(其中氩气0.5pa,甲烷与氩气的气压比1:3。),时间100分钟;完成镀膜后,将含氢碳薄膜取出,获得氢含量为30%左右的含氢碳薄膜薄膜;

(3)少层黑磷纳米片分散液的制备:称取黑磷纳米片粉末50g,与500ml异丙醇混合,置入果汁机,调整旋转速度150转每分钟,保持6小时;然后将悬浊液倒入烧杯静置2小时,接着将上层悬浮液倾倒到另一烧杯,并将悬浮液在3600转每分钟的速度下超声分离20分钟,收集分离后的溶液即为少层黑磷纳米片分散液(将沉淀在底部的固体粉末和离心管底的粉末烘干后称量,由此计算出混合溶液浓度为21g/500ml=0.042g/ml);

(4)自组装黑磷纳米片含氢碳薄膜的制备:将步骤(2)制备的含氢碳薄膜零件置入少层黑磷纳米片分散液,利用超声波辅助组装1小时,即得黑磷纳米片自组装的超滑含氢碳薄膜;

(5)摩擦性能测试:利用csm在载荷6n,钢球为摩擦副,湿度20%的大气环境下测试;自组装黑鳞含氢碳薄膜的摩擦系数为0.002,可以实现超滑。

实施例3

(1)金属基底的清洗:同实施例1;

(2)含氢碳薄膜的制备:将真空室背底真空抽至1.0×10-3pa;先利用电弧激发气体离子源进行高强度的气体离子轰击清洗进一步去除表面污染物:电流300a,气压1pa,偏压600v;再采用磁过滤电弧技术沉积crmo结合层:电流200a,偏压400v,氩气1pa;然后采用阳极层离子源沉积含氢碳薄膜:阳极层电压1200v,偏压200v,气压3pa(其中氩气0.5pa,甲烷与氩气的气压比1:2。),时间100分钟;完成镀膜后,将含氢碳薄膜取出,获得氢含量为23%左右的含氢碳薄膜薄膜;

(3)少层黑磷纳米片分散液的制备:称取黑磷纳米片粉末75g,与500ml异丙醇混合,置入果汁机,调整旋转速度150转每分钟,保持6小时;然后将悬浊液倒入烧杯静置2小时,接着将上层悬浮液倾倒到另一烧杯,并将悬浮液在3600转每分钟的速度下超声分离20分钟,收集分离后的溶液即为少层黑磷纳米片分散液(将沉淀在底部的固体粉末和离心管底的粉末烘干后称量,由此计算出混合溶液浓度为31g/500ml=0.062g/ml。);

(4)自组装黑磷纳米片含氢碳薄膜的制备:将步骤(2)制备的含氢碳薄膜零件置入少层黑磷纳米片分散液中,利用超声波辅助组装,时间1小时,即得黑磷纳米片自组装的超滑含氢碳薄膜;

(5)摩擦性能测试:利用csm在载荷7n,钢球为摩擦副,湿度20%的大气环境下测试。自组装黑磷纳米片含氢碳薄膜的得摩擦系数0.003,可以实现超滑。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1