一种立方氮化硼复合纳米聚晶的制备方法

文档序号:25522380发布日期:2021-06-18 20:10阅读:184来源:国知局
一种立方氮化硼复合纳米聚晶的制备方法

本发明属于功能超硬材料制备的技术领域。主要涉及一种立方氮化硼与过渡金属化合物复合纳米聚晶材料的制备方法。



背景技术:

立方氮化硼是集高硬度、高热导、宽禁带、宽透光性、良好化学惰性于一体的优异功能材料,广泛应用于机械加工、国防、地质勘探、航空航天等领域。相对于金刚石,立方氮化硼具备更高的抗氧化温度,更适合开展高速切割,并且可以加工金刚石不能加工的铁基材料,是超硬材料家族中不可替代的重要基础材料。同时,立方氮化硼优异的力、热稳定性,非常适合于作为大功率电子器件的基础材料。

一般情况下,将微/毫米尺度的立方氮化硼颗粒二次烧结成聚晶立方氮化硼(pcbn)是制备立方氮化硼制品,实现其应用的主要方式。但是由于强共价键的存在,难以烧结出致密的纯pcbn,导致其硬度降低。烧结过程中,添加金属粘接剂是获取高致密pcbn的有效手段。常用的金属粘接剂有ni、co、ti等金属。此外,金属在pcbn晶粒间可以形成电子通道,有效改善材料的电学性质。但是大量金属的加入,也导致pcbn的力学性质大幅度下降,其硬度低于超硬材料的40gpa,无法满足高强度的机械加工。虽然少量金属粘接剂的加入,可以保持其超硬特性,但是金属间无法联通来形成电子通道,难以显著提升其电学性质。因此在提升电学性质的同时,保持pcbn的超硬特性,是开发适用性更广泛的新型超硬功能材料的关键。

相对于微米尺度的pcbn(硬度40-60gpa),纳米聚晶立方氮化硼(n-pcbn)由于高晶界密度,其硬度可达到80gpa,高于微米尺度的pcbn。并且,材料断裂时,n-pcbn的高晶界密度,导致裂痕沿晶断裂的几率增加,n-pcbn具备更好的韧性。但是n-pcbn同样存在烧结致密困难,且电学性质差的特点。因此,利用n-pcbn作为基础材料,通过金属粘接剂与n-pcbn复合是实现优异电学性质超硬材料潜在手段。然而,纯金属粘接剂的力学性质较n-pcbn相差巨大,对保持复合材料的超硬特性极为不利。相对于纯金属,过渡金属轻元素化合物由于同时具备金属键、离子键和共价键,不仅表现出类似于金属的导电性质,同时其硬度远高于金属,是作为第二相复合材料的最佳候选材料。然而,目前并没有纳米聚晶立方氮化硼与过渡金属轻元素化合物复合材料的报道。主要原因在于:1、制备纳米聚晶较为困难,传统合成方法容易导致晶粒长大,且难以烧结致密;2、立方氮化硼和过渡金属轻元素化合物均具备强共价键,两种材料相互复合较为困难,会导致块体材料存在内应力,降低力学性质。因此实现有效复合纳米聚晶立方氮化硼与过渡金属轻元素化合物具有重要意义。

鉴于此,本发明旨在制备优异电学性质和韧性的超硬功能材料,促进极端条件下使用的特殊材料的发展。为了实现纳米聚晶的制备,本发明选择了高温高压方法,利用两次高温高压达到高致密的n-pcbn复合材料的制备。同时为了使立方氮化硼与过渡金属轻元素有效复合,将利用纳米金属粉末与纳米立方氮化硼为起始原料,在高温高压下,克服立方氮化硼的高反应能垒,通过金属与立方氮化硼反应生成过渡金属硼化物和氮化物,实现立方氮化硼与过渡金属化合物的有效粘结,最终制备出优异电学性质的高韧性超硬材料。采用本发明提出的工艺方法,操作简单、应用范围广泛、填补了相应的技术空白,对超硬材料的功能化,以及极端条件下使用的功能材料具有重要意义。



技术实现要素:

本发明要解决的技术问题是,克服背景技术存在的不足,利用高温高压技术,经过两次高温高压烧结,实现聚晶材料的高致密化。且通过高压抑制立方氮化硼晶粒的长大,确保粒径在纳米尺度,合成出纳米聚晶。再利用高温促使立方氮化硼与过渡金属反应,生成过渡金属轻元素化合物,使立方氮化硼与过渡金属化合物较好复合。该方法用国产六面顶压机预烧结成块体材料,随后利用walker型六八压机,提高压力和烧结温度,获得全致密的纳米聚晶块材。

本发明的具体技术方案如下所述:

一种立方氮化硼复合纳米聚晶的制备方法,以纳米立方氮化硼和纳米过渡金属粉末为原料混合,压成直径2mm、高度1.5mm的圆柱状,在5gpa、1000℃下保温保压10min,然后冷却卸压,将样品取出,完成预压;再将预压后的样品二次烧结,实验条件为,压力18gpa、温度1400℃至1800℃,保温保压15min,然后冷却卸压,将样品取出,获得纳米聚晶复合材料。

所述的纳米立方氮化硼优选粒径尺寸为20~150nm的立方氮化硼粉末,所述的纳米过渡金属粉优选粒径尺寸约为30~100nm的ti粉。

本发明预压实验条件5gpa压力可以在国产cs-ⅲ*614000型六面顶压机上完成。本发明二次烧结实验条件18gpa压力可以在walker型六八压机上完成。

实验结果表明,ti含量、高温高压预压、烧结温度是影响复合纳米聚晶的硬度性质的关键。通过实施例1、2可以看出,在高温高压下,ti和立方氮化硼发生了反应,生成了tin和tib,成功形成了立方氮化硼和过渡金属轻元素化合物的纳米聚晶复合材料。有效合成纳米聚晶立方氮化硼和过渡金属轻元素化合物复合材料的温压条件是:压力大于15gpa,温度高于1400℃。根据实施例3,发现起始原料ti(过渡金属化合物)的含量是影响硬度最为关键的因素,随着ti(过渡金属化合物)含量从1%增加到10%,材料的硬度从75gpa降低到41.8gpa,但是硬度值依然高于40gpa,为超硬材料。表明,保持超硬特性的ti含量范围为0%-10%。根据比较例4,利用10%ti含量的起始原料,在无高温高压预压的情况下,直接利用18gpa进行不同温度下的高温高压实验,可以发现样品的硬度均小于有高温高压预压烧结的样品,硬度值小于40gpa,不是超硬材料。因此高温高压预烧结是获得致密化聚晶的有效方法。并且根据比较例4,发现实验温度是影响复合材料硬度的另一关键因素,随着合成温度的增加样品的硬度逐渐降低。因此通过合成温度的调控可以有效调控此类材料的硬度性质。

通过10%ti含量的复合材料(硬度41.8gpa)的压痕断裂韧性测试和电阻率测试,可得断裂韧性为10.5mpa·m0.5,电阻率为4.635×10-2ω·m,断裂韧性相对于未复合过渡金属轻元素化合物的单晶立方氮化硼(2.8mpa·m0.5)提升2.75倍。相对于无法测出电阻率(超量程)的纳米聚晶立方氮化硼,过渡金属化合物在立方氮化硼晶界处形成了电子通道,有效改善了其电学性质。

本发明选择广泛应用于工业中的超硬材料立方氮化硼,通过高温高压反应,实现立方氮化硼与过渡金属化合物复合纳米聚晶材料的制备,并且复合材料的韧性、硬度和电学性质,可以通过起始原料比例,以及实验条件来进行调控。本发明不仅对制备纳米聚晶立方氮化硼复合材料有意义,而且对其它超硬复合材料有参考价值,在超硬材料功能化方面具有重要意义。

综上,本发明具有以下有益效果:

1、本发明在不使用催化剂的条件下,制备出立方氮化硼与过渡金属化合物复合纳米聚晶材料。

2、本发明填补了复合超硬纳米聚晶材料高温高压制备的技术空白。

3、本发明操作简单,过程环保,适于极端新材料的开发生产。

附图说明

图1是实施例1中高温高压制备纳米聚晶立方氮化硼的x光衍射图。

图2是实施例1中高温高压制备纳米聚晶立方氮化硼的sem图。

图3是实施例2中利用不同ti含量制备立方氮化硼与过渡金属化合物复合纳米聚晶材料的x光衍射图。

图4是实施例2中不同ti含量的立方氮化硼与过渡金属化合物复合纳米聚晶材料的sem图。

图5是实施例3中不同ti含量样品的维氏硬度测试图。

图6是比较例4中不同温度合成的ti含量为10%样品的维氏硬度测试图。

具体实施方式

实施例1

以纳米级立方氮化硼(20~150nm)为起始原料,压成圆柱状(直径2mm,高度1.5mm),利用六面顶液压机在压力为5gpa,温度为1000℃,保温10min,然后冷却卸压,预压完成。将预压完成的样品,利用walker压机二次烧结,压力为18gpa,温度为1600℃,保温15min,然后冷却卸压。具体x光衍射图见图1;sem图见图2。由图1、2可以看出合成出的样品为纳米聚晶立方氮化硼,粒径尺寸为50nm,样品致密性良好,无气孔。

实施例2

以纳米级立方氮化硼(20~150nm)和纳米ti粉(30~100nm)为起始原料,分别按照ti摩尔比1%和10%与纳米立方氮化硼混合,混合物压成圆柱状(直径2mm,高度1.5mm),利用六面顶液压机在压力为5gpa,温度为1000℃,保温10min,然后冷却卸压,预压完成。将预压完成的样品,利用walker压机二次加压烧结,压力为18gpa,温度为1400℃至1600℃,保温15min,然后冷却卸压。样品的x光见图3,可以发现,1%ti含量的样品中有微量的tib生成,而ti含量增加到10%时,除了立方氮化硼的衍射峰以外,还存在tin和tib的衍射峰。表明极为稳定的立方氮化硼,在高温高压的极端条件下与ti发生了反应,形成了立方氮化硼与过渡金属轻元素化合物的复合材料。对样品进行sem测试,数据结果见图4。可以发现随着ti比例含量的增加,样品的粒径从100nm~200nm减小到100nm以下。表明,ti与立方氮化硼的反应不仅抑制了立方氮化硼粒径的长大,同时还生成了纳米尺度的过渡金属轻元素化合物。并且样品致密性良好,无孔隙,为纳米聚晶材料。因此在压力大于15gpa,温度大于1400℃的条件下,成功制备出了立方氮化硼与过渡金属轻元素化合物的纳米聚晶复合材料。

实施例3

利用维氏硬度仪,对实施例1和2中不同起始ti含量的样品进行硬度测试,硬度结果见图5,可以发现,1%ti含量的纳米聚晶立方氮化硼的硬度达到了75gpa,随着ti含量增加到10%,硬度降低到了41.8gpa。表明虽然加入了过渡金属复合相,但是此聚晶材料硬度超过40gpa,很好的保持了其超硬特性。因此起始原料中ti含量的范围为0至10%,继续增加ti含量,将使硬度进一步降低,导致超硬特性消失。同时对10%ti、18gpa、1600℃的样品进行压痕韧性测试,断裂韧性值为10.5mpa·m0.5,相对于未复合金属的单晶立方氮化硼(2.8mpa·m0.5),韧性提高了2.75倍。对10%ti,18gpa,1600℃条件下制备的样品,利用四探针法进行电阻率测试,可得材料的电阻率为4.635×10-2ω·m,而未复合的微米立方氮化硼和纳米聚晶立方氮化硼由于测试超量程,无法获得电阻率数据。表明过渡金属轻元素化合物在纳米立方氮化硼晶粒间形成了有效的电子通道,改善了材料的电学性质。

比较例4

为了比较高温高压预烧结的意义,对10%ti含量的样品不进行高温高压预烧结,直接利用18gpa不同温度的高压烧结。之后对不同温度制备的样品进行维氏硬度测试,硬度结果见图6。可知,未进行高温高压预烧的样品,其硬度相对于预烧的硬度(图5)降低至了36gpa,即高温高压预烧对制备高硬度的纳米聚晶材料具有重要意义。另外,实验温度是影响复合材料硬度的另一关键因素,随着合成温度的增加样品的硬度降低。并且硬度结果显示在低载荷下,1400℃与1600℃硬度结果接近,然而高载荷(9.8n)时1400℃的硬度高于1600℃。原因在于1400℃时,立方氮氮化硼与ti反应不完全,样品中立方氮化硼的含量较高,致使高载荷下立方氮化硼的高硬度效果凸显。然而温度进一步升高到1800℃,其硬度降低,原因在于随着温度的增加,样品粒径增大,晶界密度降低,阻碍位错滑移的能垒减少。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1