在零件例如钟表机构部件上沉积涂层的方法以及由此方法涂覆的零件与流程

文档序号:30089879发布日期:2022-05-18 08:28阅读:134来源:国知局
在零件例如钟表机构部件上沉积涂层的方法以及由此方法涂覆的零件与流程

1.本发明的领域涉及零件例如装饰性零件或钟表机构部件的表面处理,特别是零件的装饰性和/或保护性涂层。
2.更具体而言,本发明涉及沉积装饰性和/或保护性涂层的方法,由此可以获得具有干扰效果的着色涂层。
3.根据本发明的沉积涂层的方法特别适合用于保护和/或装饰在钟表中的装饰性零件或部件,例如板、桥式件、齿轮系、螺钉、摆锤、表盘、刻度、嵌花、视窗、指针,或钟表的机芯或外部元件的任何其它部件。
4.本发明也涉及通过这种方法涂覆的零件,例如钟表机构部件。


背景技术:

5.为了获得在各种基底上的保护层和/或装饰层,已知使用物理气相沉积(pvd)技术。
6.这些pvd方法例如用于使得在钟表生产中所用的可视元件具有清晰的美学特征。
7.例如,已知通过pvd方法在金属部件上施加涂层,根据初始表面状况使它们具有闪光或哑光的特征,并根据所用的方法具有金属灰、黑色或彩色的颜色。但是,可通过这些技术获得的颜色的调色范围仍然受限。
8.此外,也已经知道通过pvd方法沉积具有与可见光波长相当或更小的厚度的薄且透明的层,这使得沉积这些层的表面呈现来源于干扰现象的颜色,这称为干扰颜色。
9.这种方法使得可以获得从深黄色到绿色范围内的各种干扰颜色,包括紫色和蓝色的色调。但是,如前所述,颜色的主色调仍然受限,并且当要涂覆的部件不平且具有复杂的几何形状时,所得的颜色是不均匀的,这在美学上是无法令人满意的,因为涂饰的品质低。
10.也知道原子层沉积(ald)技术,其属于化学气相沉积(cvd)的一种。这种ald技术在钟表中用于钟表的装饰和防腐蚀。
11.文献“原子层沉积(ald):钟表工业的技术进展(une technology prometteuse pour l’industrie horlog
è
re)”,ssc bulletin no.81,2016年5月,特别描述了可以使用ald技术代替pvd技术,用于防腐蚀并通过在反射基底上直接沉积单个薄透明层而形成干扰颜色涂层。
12.与pvd技术相比,ald技术可以得到完全均匀的层,确保在部件整个周边上的均匀厚度,由此向具有复杂几何形状的部件的表面赋予均匀的颜色。ald技术也使得可以添加干扰颜色形式的颜色,并且通过ald得到的涂层的性能特别适合用于保护具有复杂几何形状的部件。
13.但是,所述ald技术不能进一步扩展可获得的干扰颜色的调色范围。
14.文献ch 709 669建议制备用于保护和/或装饰钟表部件的涂层,其包括通过pvd方法沉积的第一金属层,以及通过ald方法沉积在第一层顶部上的第二半透明层,所述第二半
透明层具有明显的厚度,由此可以根据半透明ald层的增加的厚度而得到在棕色、品红、蓝色、黄色、橘黄色、紫色、绿色、粉色范围内的干扰颜色。
15.与现有技术相比,文献ch 709 669建议的方案可以对于相同的干扰色调而言略微扩展干扰颜色的调色范围,可以获得较深或较浅的变化,并且改变透明度(即,l*a*b颜色空间的l*参数),这取决于在ald层之下使用闪光或灰色的金属pvd层。
16.但是,目前的涂覆方法无法得到扩展的干扰颜色的调色范围,这限制了具有干扰现象的钟表机构部件的装饰可能性。


技术实现要素:

17.在本文中,本发明的目的是提供在基底上沉积装饰性和/或保护性涂层的方法,且不具有已知的和上文描述的涂覆方法的限制。
18.根据本发明,本发明的一个目的是提供沉积装饰性和/或保护性涂层的方法,此方法可以获得在相同色调中的宽范围的干扰颜色,且具有相似的色彩变化,和特别是获得在蓝色色调中的宽范围的干扰颜色。
19.为此,本发明的目的是提供一种在基底上沉积装饰性和/或保护性涂层以形成零件的方法,所述零件例如是钟表机构部件,此方法可以向所述基底着色,所述沉积方法的特征在于其包括:
[0020]-第一个步骤:在基底上沉积第一不透明层;
[0021]-第二个步骤:通过ald(原子层沉积)方法沉积至少两个半透明层的堆叠体,其覆盖所述第一层;选择堆叠体的厚度以得到具有干扰现象的颜色。
[0022]
干扰颜色或具有干扰现象的颜色的形成是由于在被至少部分地覆盖基底表面的第一不透明层所反射的光与被通过ald方法沉积且覆盖所述不透明层的半透明层的堆叠体所反射的光之间的偏差。
[0023]
在上述现有技术的文献中,最终涂层的颜色取决于通过pvd方法在钟表机构部件上沉积的材料,pvd层有时能被通过ald方法沉积的透明层涂覆,但该透明层仅仅用于保护pvd层;而与上述文献相反,本发明方法克服了现有技术的偏见,因为涂层的最终颜色是由不透明层(优选通过pvd方法沉积)和ald层的堆叠体的组合来确定,所述ald层不是透明的,而是半透明的,其目的是改进不透明层的l*a*b*参数。
[0024]
优选,第一个步骤是在所述基底上沉积第一金属层或陶瓷层的步骤。
[0025]
优选,所述第一层是tin、ticn、ticno、tic、zrn、zrcn、zrcno、zrc、hfn、hfcn、hfcno、hfc、yn、yd、ycn、ycno、tan、tac、tacn、tacno、aln、alcn、alcno、crn、crc、crno、crcno、vn、vc、vcn、vcno、tizrn、tizrcn、tizrc、tizrcno、nbn、nbc、nbcn、nbcno、wn、wc、wcn、wcno、mon、moc、mocn或mocno的层。
[0026]
优选,所述第一层的化学性质是根据所述涂层的具有干扰现象的颜色按照cielab标准的l*参数来选择。
[0027]
优选,第一个步骤是通过pvd(物理气相沉积)方法进行。
[0028]
优选,第一层具有大于450nm的厚度(e1),优选具有500nm至1μm的厚度。
[0029]
优选,所述堆叠体中的至少两个半透明层具有不同的化学性质和/或具有不同的折射率。
[0030]
优选,所述堆叠体中的至少两个半透明层各自的厚度是根据所述涂层的具有干扰现象的颜色按照cielab标准的a*和b*参数来选择。
[0031]
优选,在第二个步骤期间沉积的所述堆叠体的至少两个半透明层是选自介电材料、半导体、金属或陶瓷材料的材料层。
[0032]
优选,在第二个步骤期间沉积的所述堆叠体的至少两个半透明层是选自以下的材料的层:al2o3、tio2、sio2、ta2o5、hfo2、zro2、zno、sno、al、ru、ir、pt、tin、tan、si3n4、wn、nbn。
[0033]
优选,在所述堆叠体的至少两个半透明层中的第一半透明层具有小于2的折射率,优选小于1.6;并且在所述堆叠体的至少两个半透明层中的第二半透明层具有大于2的折射率,优选大于2.5。
[0034]
本发明的另一个目的是一种零件,其包括基底和具有干扰作用的颜色的涂层,所述涂层用于装饰和/或保护所述零件,所述涂层包括:
[0035]-第一不透明层,其至少部分地覆盖基底的至少一个表面;
[0036]-通过ald(原子层沉积)方法沉积的至少两个半透明层的堆叠体,其覆盖所述第一层;堆叠体的厚度取决于所述涂层的具有干扰现象的颜色。
[0037]
优选,第一层是金属层或陶瓷层。
[0038]
优选,第一层是tin、ticn、ticno、tic、zrn、zrcn、zrcno、zrc、hfn、hfcn、hfcno、hfc、yn、yd、ycn、ycno、tan、tac、tacn、tacno、aln、alcn、alcno、crn、crc、crno、crcno、vn、vc、vcn、vcno、tizrn、tizrcn、tizrc、tizrcno、nbn、nbc、nbcn、nbcno、wn、wc、wcn、wcno、mon、moc、mocn,或mocno的层。
[0039]
优选,所述第一层(11)的化学性质是取决于所述涂层的具有干扰现象的颜色按照cielab标准的l*参数。
[0040]
优选,第一层是通过pvd(物理气相沉积)方法来沉积。
[0041]
优选,第一层具有大于450nm的厚度e1,优选具有500nm至1μm的厚度。
[0042]
优选,所述堆叠体中的至少两个半透明层具有不同的化学性质和/或具有不同的折射率。
[0043]
优选,所述堆叠体中的至少两个半透明层各自的厚度是取决于所述涂层的具有干扰现象的颜色按照cielab标准的a*和b*参数。
[0044]
优选,所述堆叠体中的至少两个半透明层是选自介电材料、半导体、金属或陶瓷材料的材料层。
[0045]
优选,所述堆叠体中的至少两个半透明层是选自以下的材料的层:al2o3、tio2、sio2、ta2o5、hfo2、zro2、zno、sno、al、ru、ir、pt、tin、tan、si3n4、wn、nbn。
[0046]
优选,在所述堆叠体的至少两个半透明层中的第一半透明层具有小于2的折射率,优选小于1.6;并且在所述堆叠体的至少两个半透明层中的第二半透明层具有大于2的折射率,优选大于2.5。
[0047]
优选,所述零件是钟表机构部件。
[0048]
本发明的另一个目的是钟表,其包括钟表机构部件。
[0049]
附图简述
[0050]
通过阅读以下详细描述并参考以下附图,将易于理解本发明的目的、优点和特征:
[0051]-图1示意性地显示根据本发明沉积在基底上的装饰性和/或保护性涂层的多层结
构的实例,从而形成零件例如钟表机构部件;
[0052]-图2显示根据本发明用于在基底上沉积装饰性和/或保护性涂层的多层结构的方法的一个实施方案的主要接连步骤,从而形成零件例如钟表机构部件;
[0053]-图3显示根据本发明零件的一个实施方案的实例。
具体实施方式
[0054]
在本文中,通过本发明沉积涂层的方法得到的涂层的色度性质是在cie l*a*b*颜色空间的帮助下表示,并按照标准cie 1976使用konica minolta cm-3610-a分光光度计对抛光样品进行检测,其中采用以下下参数:cie d65光源(日光6,500
°
k),倾斜10
°
,sci检测(包括镜面反射),直径为4mm的检测区域。
[0055]
cielab颜色空间(按照标准cie no.15,lso 7724/1,din 5033teil 7,astm e-1164)具有亮度l*组分,其代表材料反射光的方式,与透明性相当;a*组分是绿色/红色组分,b*组分是蓝色/黄色组分。
[0056]
图1示意性地显示零件1、例如钟表机构部件的截面图,其包括基底10,以及通过本发明沉积涂层的方法沉积在基底上的装饰性和/或保护性涂层的多层结构。
[0057]
零件1例如是钟表机构部件,例如板、桥式件、轮、螺钉、摆锤、表盘、刻度、嵌花、视窗、指针,或钟表机芯或外部元件的任何其它部件或元件,期望使其具有颜色,特别是干扰颜色。
[0058]
图3显示钟表200,其包括根据本发明的零件1。在此实施方案中,根据本发明的零件1是指针。
[0059]
基底10可以具有可变的性质,例如由金属材料制成,由塑料材料制成,或由陶瓷材料制成,或甚至由复合材料制成;和可以具有可变的颜色。通过本发明方法,可以使用具有不同性质和/或颜色的基底得到相同的最终l*a*b*干扰颜色。
[0060]
基底10具有至少一个表面,其至少部分地被通过物理气相沉积或pvd方法沉积的第一层11覆盖,第一层11本身被通过ald方法沉积的至少两个半透明层12,13的堆叠体20覆盖,由此形成多层结构。
[0061]
第一pvd层11和两个ald半透明层12,13也可以完全覆盖基底10,即基底10的所有面,或仅仅覆盖基底10的可见表面。
[0062]
第一层11具有固有颜色,并具有足够的厚度e1以使其是不透明的,并使基底10的光学干扰不再起作用。
[0063]
优选,第一层11具有等于或大于450nm的厚度e1,更优选厚度e1为500nm至1μm。因此,能确保基底10的颜色不会在光学上干扰最终涂层的l*a*b*颜色。
[0064]
第一层11可以是金属层或陶瓷层。
[0065]
优选,第一层11是基于陶瓷材料的层。与其色调被限制为黄色、灰色、白色的基于金属材料的第一层相比,使用基于陶瓷材料的第一层11可以有利地扩展第一层11的可能颜色的调色范围。因此,通过扩展第一层11的颜色的调色范围,可以通过影响干扰颜色的透明度/亮度(即,通过影响l*参数)来增加最终涂层的干扰颜色的调色范围。
[0066]
例如,第一层11是基于选自以下的陶瓷材料的层:tin、ticn、ticno、tic、zrn、zrcn、zrcno、zrc、hfn、hfcn、hfcno、hfc、yn、yd、ycn、ycno、tan、tac、tacn、tacno、aln、alcn、
alcno、crn、crc、crno、crcno、vn、vc、vcn、vcno、tizrn、tizrcn、tizrc、tizrcno、nbn、nbc、nbcn、nbcno、wn、wc、wcn、wcno、mon、moc、mocn或mocno。
[0067]
因此,由于使用这些陶瓷材料,可以得到通过pvd方法沉积的第一层11,其具有红色、橘黄色、黄色、绿色、蓝色、紫色、粉色、棕色、黑色、白色或灰色的颜色。
[0068]
有利的是,第一层11的材料的选择使得第一层11具有接近0的a*和b*坐标,由此使得第一层11具有中性色调,且没有绿色、红色、蓝色或黄色倾向。
[0069]
第一层11是被通过原子层沉积或ald方法沉积的多个半透明层12,13的堆叠体20覆盖。在图1所示的实施例中,堆叠体20包括两个半透明层12和13,由此形成在本发明涂层的多层结构中的第二层12和第三层13。
[0070]
当然,通过ald沉积的堆叠体20可以由多于两个半透明层组成。
[0071]
堆叠体20中的各个半透明层有利地具有不同的化学性质。在此情况下,第二层12和第三层13具有不同的化学性质。
[0072]
当堆叠体20包括至少三个半透明层时,堆叠体中的至少两层具有不同的化学性质。有利的是,具有不同化学性质的两层接连进行沉积。
[0073]
优选,堆叠体中的各个半透明层具有不同的折射率n。在此情况下,通过ald方法沉积的第二层12和第三层13具有不同的折射率n。
[0074]
当堆叠体20包括至少三个半透明层时,堆叠体中的至少两层具有不同的折射率n。有利的是,具有不同折射率n的两层接连进行沉积。
[0075]
优选,通过ald方法沉积的堆叠体20中的一个层,例如第二层12,是低折射率层(即小于2,优选小于1.6);而堆叠体ald的另一个层,例如第三层13,是高折射率层(即大于2,优选大于2.5)。当然,也可以考虑相反的情况。
[0076]
堆叠体20中的半透明层12和13可以是基于介电材料、半导体、金属或陶瓷材料的层。
[0077]
通过ald方法沉积的堆叠体20中的半透明层12,13各自可以例如是氧化铝al2o3,氧化钛tio2,氧化硅sio2,氧化钽ta2o5,氧化铪hfo2,氧化锆zro2,氧化锌zno,或氧化锡sno。
[0078]
每个半透明层12,13也可以是非常薄的金属层(al,ru,ir,pt)、基于氮化物(si3n4、wn、nbn、tin、tan)或碳化物的陶瓷材料层,如上文关于第一子层11所述。
[0079]
堆叠体20的厚度e2是根据期望得到的干扰颜色来选择,使得厚度e2是与所需颜色的波长相当或更小。
[0080]
一般而言,为了得到干扰颜色,ald堆叠体的厚度e2优选是50nm至200nm。
[0081]
图2显示根据本发明用于在基底10上沉积涂层的方法100的主要步骤。因此,根据本发明的沉积方法100包括第一个步骤110,其中通过物理气相沉积(pvd)方法沉积第一层11。
[0082]
例如,用于沉积第一层11的第一个步骤110是通过溅射方法进行。溅射气体是惰性的,通常是氮气。pvd沉积参数是由本领域技术人员确定以得到第一层11的满意的不透明度,并且使得基底10的光学干扰不再起作用。
[0083]
本发明的用于沉积涂层的方法100还包括通过原子层沉积或ald方法进行的第二个沉积步骤120,所述第二个步骤是在第一个步骤110之后进行,从而通过在第一pvd层11上接连堆叠来沉积各个原子层。
[0084]
ald方法是用于沉积薄原子层的方法,其属于化学气相沉积或cvd的一部分。这使得可以从气态前体沉积单原子层,这些单原子层各自被氧化以得到连续的氧化物层。
[0085]
例如,已知使用前体三甲基铝(tma、al(ch3)3)得到al2o3层,使用前体四(二甲基氨基)钛(tdmat,c8h
24
n4ti)得到tio2层。
[0086]
第二个ald沉积步骤120包括第一子步骤121,其中通过ald方法沉积上述第二层12;和第二子步骤122,其中通过ald方法沉积上述第三层13;第二层12和第三层13具有不同的化学性质,并具有不同的反射率n。
[0087]
当然,根据本发明沉积方法100的所述第二个步骤120可以包括与堆叠体20中的半透明层数目那样多的通过ald方法沉积的子步骤。
[0088]
另外,使用通过ald方法接连沉积的具有不同组成的半透明层12,13的堆叠体20,能在ald堆叠体内组合多个折射率n。这种组合有利地能改变l*a*b*颜色空间的a*和b*参数,所以能改变最终干扰颜色的色泽,但不会改变其色调。因此,本发明方法使得可以通过改变ald层的厚度以及ald层的化学性质,获得例如具有干扰现象的蓝色调的各种色泽。
[0089]
因此,归功于本发明沉积涂层的方法100,可以通过改变以下参数使得颜色的l*a*b*颜色空间相互作用且同时保持所期望的干扰现象:
[0090]-通过ald沉积的半透明层的折射率n,所述半透明层通常是如图1所示实施例中的第二层12和第三层13;
[0091]-ald半透明层的消光系数k;
[0092]-在通过ald沉积的堆叠体20内的半透明层的厚度;
[0093]-通过pvd施加的第一层11的折射率n、消光系数k和l*a*b*坐标,此层用于支撑ald半透明层,其中改变第一pvd层11的组成。
[0094]
根据第一个实施例,为了得到具有蓝色干扰颜色的涂层,其具有l*颜色参数=37.6
±
1.5,a*颜色参数=-7.5
±
0.8,并且b*颜色参数=-22.3
±
0.8,本发明方法包括:通过pvd方法沉积具有500nm厚度的第一个crc层,在第一pvd层上通过ald方法沉积具有34.8nm厚度的第二个tio2层,然后通过ald方法沉积具有39.3nm厚度的第三个al2o3层。
[0095]
根据第二个实施例,为了得到具有蓝色干扰颜色的涂层,其具有l*颜色参数=31.6
±
1.5,a*颜色参数=-7.1
±
0.8,并且b*颜色参数=-22.8
±
0.8,本发明方法包括:通过pvd方法沉积具有500nm厚度的第一个crc层,在第一pvd层上通过ald方法沉积具有41.0nm厚度的第二个tio2层,然后通过ald方法沉积具有25.0nm厚度的第三个al2o3层。
[0096]
根据第三个实施例,为了得到具有蓝色干扰颜色的涂层,其具有l*颜色参数=32.6
±
1.5,a*颜色参数=-5.7
±
0.8,并且b*颜色参数=-27
±
0.8,本发明方法包括:通过pvd方法沉积具有500nm厚度的第一个crc层,在第一pvd层上通过ald方法沉积具有10nm厚度的第二个al2o3层,然后通过ald方法沉积具有55nm厚度的第三个tio2层。
[0097]
当然,可以考虑其它材料的组合(与al2o3/tio2不同)以得到干扰颜色的各种色调。
[0098]
因此,可以使用和组合选自al2o3、tio2,sio2、ta2o5、hfo2、zro2,zno、sno的各种氧化物。
[0099]
堆叠体20也可以具有三个、四个或五个半透明层,其具有不同的折射率以进一步增加对于干扰颜色的相同色调而言的色泽的可能调色范围。但是,应当确保堆叠体20的总厚度不超过200nm,从而获得具有干扰效果的颜色。
[0100]
本发明所述涂层的各个层,更特别是第一pvd层11以及ald层的堆叠体20(通常第二层12和第三层13),可以在不偏离本发明范围的情况下在两个分开的反应器中沉积或在单个反应器中沉积。
[0101]
在上文所述的沉积步骤110、120之前,本发明方法100也可以任选地包括用于制备基底10的步骤105。
[0102]
此制备步骤105可以包括清洁基底10的步骤。按照本领域技术人员已知的方式,此清洁步骤可以例如通过化学清洁来进行,然后用自来水和软化水清洗。然后,基底10进行干燥,并可以用于进行上文所述的沉积步骤110、120。
[0103]
此制备步骤105也可以包括离子活化步骤。离子活化的参数可以由本领域技术人员确定。离子活化能确保所沉积的第一pvd层11被直接完美粘合到基底10的裸表面上。
[0104]
本发明所述的沉积装饰性和/或保护性涂层的方法具有许多优点:
[0105]-可以控制所得的干扰色度,且与基底的性质和钟表机构部件的初始颜色无关;
[0106]-涂层的沉积是在低温下进行,使得可以避免影响钟表机构部件的晶体结构;所以,本发明沉积涂层的方法可以用于宽范围的钟表机构部件;
[0107]-可以更容易地和以良好重现性将各个沉积层的厚度调节到所需值,由此得到所需的l*a*b*干扰颜色;
[0108]-每个ald层的厚度以及由此涂覆的钟表部件的最终干扰颜色是有规律的和可重现的。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1