一种耐磨损弹簧气孔套处理工艺的制作方法

文档序号:30529365发布日期:2022-06-25 09:29阅读:157来源:国知局

1.本发明属于弹簧气孔套领域,更具体的说涉及一种耐磨损弹簧气孔套处理工艺。


背景技术:

2.在轮胎硫化过程中,需要确保合模后,硫化模具中内橡胶原料中的气体顺利排出,所以,在硫化模具上设置有很多排气孔,连通模腔和硫化模具外部空间。为了确保排气孔正常排气的同时,成型轮胎的原料不会由排气孔溢出,同时也不会堵塞排气孔,现有技术中,一般的是在排气孔内装置弹簧气孔套,弹簧气孔套自身具有与排气孔轴线平行的排气通道,利于模具中气体排出,同时也有效的避免了原料的溢出。
3.弹簧气孔套是芯轴和套设在芯轴上的弹簧一起套设在套壳内,在工作中,芯轴会因弹簧弹力作用,在套壳内往复运动,与弹簧一起来回与套壳内表面进行摩擦,长时间工作后,弹簧和芯轴还有套壳内表面间会出现严重磨损,影响弹簧气孔套的正常工作和性能,甚至会影响轮胎模具,影藏轮胎模具成型的轮胎品质。


技术实现要素:

4.本发明的目的在于提供一种耐磨损弹簧气孔套处理工艺,通过在弹簧气孔套的套壳、芯轴和弹簧进行镀ta—c处理,使得弹簧气孔套具有较高的耐磨性能,提高弹簧气孔套性能,延长弹簧气孔套的使用寿命。
5.本发明技术方案一种耐磨损弹簧气孔套处理工艺,分别对套壳、芯轴和弹簧进行镀ta—c处理,操作步骤如下:
6.(1)待镀膜件安装:将清洗后的待镀膜件置于真空腔内,并将待镀膜件在真空腔内的旋转支座上固定安装,关闭真空腔;
7.(2)对真空腔进行持续抽真空处理:待真空腔内气压为2.0*10-2
pa时,启动旋转支座,并打开真空腔内加热装置,对真空腔进行加热,加热温度控制在120℃,以获得气压为1.0*10-3
pa的真空腔,并关闭加热装置;然后启动水冷装置,由真空腔外壁对真空腔进行强制冷却,确保真空腔内温度不高于100℃;
8.(3)对待镀膜件进行清洗:首先向真空腔内通入50sccm氩气,获得真空腔内气压为0.5pa,关闭cr挡板,设置偏压为-220v,设置cr靶弧流为50a,开启电源,清洗5—30min;
9.(4)沉积第一cr过渡层:控制ar气流量为70sccm,真空腔内气压为0.5pa,打开cr靶挡板,设置偏压为-950v,设置cr靶弧流为70a,此时,开启电源,引燃cr靶,沉积5—50min;
10.(5)沉积第二cr过渡层:控制ar气流量为80sccm,真空腔内气压为0.4pa,打开cr靶挡板,设置偏压为-220v,设置cr靶弧流为80a,此时,开启电源,引燃cr靶,沉积5—50min;
11.(6)沉积cr/c混合层:控制ar气流量为50sccm,真空腔内气压为0.4pa,打开cr靶挡板,设置偏压为-70v,设置cr靶弧流为70a,同时开启石墨靶,石墨靶采用脉冲弧,直流端设置为50a,脉冲平均电流设置为30a,脉冲峰值电流为250a,此时,开启电源,同时引燃cr靶和石墨靶,沉积cr/c混合层,沉积10—60min;
12.(7)沉积ta—c层:控制ar气流量为50sccm,真空腔内气压为0.01—0.5pa,关闭cr靶挡板,设置偏压为-50—-150v,设置石墨靶采用脉冲弧,直流端设置为50a,脉冲平均电流设置为30a,脉冲峰值电流为250a,此时,开启电源,引燃石墨靶,沉积a—c混合层,沉积40—80min。
13.本发明技术方案的一种耐磨损弹簧气孔套处理工艺的有益效果是:通过在弹簧气孔套的套壳、芯轴和弹簧进行镀ta—c处理,使得弹簧气孔套具有较高的耐磨性能,提高弹簧气孔套性能,延长弹簧气孔套的使用寿命。
具体实施方式
14.为便于本领域技术人员理解本发明技术方案,现结合说明书具体实施例对本发明技术方案做进一步的说明。
15.弹簧气孔套,包括具有轴孔的套壳、芯轴和弹簧,弹簧套设于芯轴外部并均套设于轴孔内,芯轴的外侧面与套壳的内侧面间形成排气通道。工作时,模具内的原料推动芯轴向轴孔内移动,在轮胎成型后,将轮胎取出模具后,芯轴又在弹簧的弹力作用下向外复位,这样在弹簧气孔套中,芯轴往复运动,芯轴、弹簧与轴孔之间不停摩擦,严重影响弹簧气孔套的性能和使用寿命。为解决这一问题,现提出在套壳、芯轴和弹簧进行镀ta—c处理,在套壳内表面、芯轴和弹簧上形成一层耐磨性能好的膜层,以提高弹簧气孔套的耐磨性能,用以延长弹簧气孔套的使用寿命和性能。
16.本发明技术方案一种耐磨损弹簧气孔套处理工艺,分别对套壳、芯轴和弹簧进行镀ta—c处理,操作步骤如下:
17.(1)待镀膜件安装:首先将经过超声波清洗后的套壳、芯轴或弹簧置于真空腔内,并将待镀膜件在真空腔内的旋转支座上固定安装,确保镀膜均匀。然后关闭真空腔。
18.(2)对真空腔进行持续抽真空处理:待真空腔内气压为2.0*10-2
pa时,启动旋转支座,并打开真空腔内加热装置,对真空腔进行加热,加热温度控制在120℃,以获得气压为1.0*10-3
pa的真空腔,并关闭加热装置。通过加热装置,去除真空腔内的水气,使得真空腔内实现快速抽真空。同时,通过加热还能够对套壳、芯轴或弹簧进行预热,使得后续过渡层在待处理件上表面直接沉积时,附着力好,进一步提高耐磨层的耐磨性能。抽真空结束后,启动水冷装置,由真空腔外壁对真空腔进行强制冷却,确保真空腔内温度不高于100℃,实现低温沉积,不改变套壳、芯轴或弹簧自身原不锈钢材料的特性。
19.(3)对待镀膜件进行清洗:因前面对工件进行超声波清洗,仅仅能够清洗去除工件表面的宏观垃圾或颗粒,不能去除工件表面的氧化层等。这里采用等离子体轰击清洗,去除工件表面的氧化表层,为后续第一过渡层的沉积做准备,提高过渡层的附着能力。清洗过程为:首先向真空腔内通入50sccm氩气,获得真空腔内气压为0.5pa,关闭cr挡板,设置偏压为-220v,设置cr靶弧流为50a,开启电源,清洗5—30min,最佳的是清洗20min,能确保将工件表面的氧化层等去除,还不会对工件自身有伤害。本技术放中,引燃cr靶后,真空腔内的氩气原子将会被离化为氩离子,带正电,在工件偏压作用下轰击工件表面,带走工件表面的氧化层,获得光滑洁净无氧化层等污染的工件。
20.(4)沉积第一cr过渡层:控制ar气流量为70sccm,真空腔内气压为0.5pa,打开cr靶挡板,设置偏压为-950v,设置cr靶弧流为70a,此时,开启启溅射电源和偏压电源,引燃cr
靶,沉积5—50min。最佳的是沉积时间为30min。引燃cr靶后,真空腔内的cr将会被离化为cr
+
,在工件偏压作用下轰击工件表面,在高能cr
+
的作用下,工件表面一层原子会被轰击而出,继而被离化,被离化的离子在偏压作用下后沉积到工件表面,形成第一过渡层。第一过渡层的沉积,增加了工件表面对薄膜的附着力。
21.(5)沉积第二cr过渡层:控制ar气流量为80sccm,真空腔内气压为0.4pa,打开cr靶挡板,设置偏压为-220v,设置cr靶弧流为80a,此时,开启电源,引燃cr靶,沉积5—50min。最佳沉积时间为15min。引燃cr靶后,真空腔内的cr将会被离化为cr
+
,在工件偏压作用下,沉积至工件表面,形成第二cr过渡层。由于第二cr过渡层是直接沉积在工件表面,附着在第一cr过渡层上,有效的降低了第一cr过渡层的内应力,提高了第一cr过渡层与工件表面的附着力度。
22.(6)沉积cr/c混合层:控制ar气流量为50sccm,真空腔内气压为0.4pa,打开cr靶挡板,设置偏压为-70v,设置cr靶弧流为70a,同时开启石墨靶,石墨靶采用脉冲弧,直流端设置为50a,脉冲平均电流设置为30a,脉冲峰值电流为250a,此时,开启电源,同时引燃cr靶和石墨靶,沉积cr/c混合层,沉积10—60min。最佳沉积时间为30min。cr/c混合层起到cr层至ta—c层的过渡。cr/c混合层能够有效的将cr层中内应力释放,提高ta—c层的结合能力。
23.(7)沉积ta—c层:控制ar气流量为50sccm,真空腔内气压为0.01—0.5pa,关闭cr靶挡板,设置偏压为-50—-150v,设置石墨靶采用脉冲弧,直流端设置为50a,脉冲平均电流设置为30a,脉冲峰值电流为250a,此时,开启电源,引燃石墨靶,沉积a—c混合层,沉积40—80min。
24.实施例一
25.步骤(1)至(6)与前述相同,仅仅步骤(7)采用如下方案:
26.(7)沉积ta—c层:控制ar气流量为50sccm,关闭cr靶挡板,设置偏压为-100v,设置石墨靶采用脉冲弧,直流端设置为50a,脉冲平均电流设置为30a,脉冲峰值电流为250a,然后分别控制真空腔内气压为0.02pa、0.05pa、0.1pa和0.4pa,分别对经过步骤(6)的工件分别进行沉积。此时,开启电源,引燃石墨靶,沉积a—c混合层,沉积50min。
27.实施例二
28.步骤(1)至(6)与前述相同,仅仅步骤(7)采用如下方案:
29.(7)沉积ta—c层:控制ar气流量为50sccm,真空腔内气压为0.1pa,关闭cr靶挡板,设置石墨靶采用脉冲弧,直流端设置为50a,脉冲平均电流设置为30a,脉冲峰值电流为250a,然后分别控制偏压为-55v、-80v、-105v和-140v,分别对经过步骤(6)的工件分别进行沉积。开启电源,引燃石墨靶,沉积a—c混合层,沉积50min。
30.实施例三
31.步骤(1)至(6)与前述相同,仅仅步骤(7)采用如下方案:
32.(7)沉积ta—c层:控制ar气流量为50sccm,真空腔内气压为0.1pa,关闭cr靶挡板,设置偏压为-100v,设置石墨靶采用脉冲弧,直流端设置为50a,脉冲平均电流设置为30a,脉冲峰值电流为250a,此时,开启电源,引燃石墨靶,沉积a—c混合层,沉积50min。
33.实施例四
34.步骤(1)至(6)与前述相同,仅仅步骤(7)采用如下方案:
35.(7)沉积ta—c层:控制ar气流量为50sccm,真空腔内气压为0.15pa,关闭cr靶挡
板,设置偏压为-90v,设置石墨靶采用脉冲弧,直流端设置为50a,脉冲平均电流设置为30a,脉冲峰值电流为250a,此时,开启电源,引燃石墨靶,沉积a—c混合层,沉积50min。
36.实施例五
37.步骤(1)至(6)与前述相同,仅仅步骤(7)采用如下方案:
38.(7)沉积ta—c层:控制ar气流量为50sccm,真空腔内气压为0.08pa,关闭cr靶挡板,设置偏压为-110v,设置石墨靶采用脉冲弧,直流端设置为50a,脉冲平均电流设置为30a,脉冲峰值电流为250a,此时,开启电源,引燃石墨靶,沉积a—c混合层,沉积50min。
39.依据原子力显微镜的纳米硬度测试方法对实施例一至实施例五中或的所有的工件进行硬度测试,经过比较显示,实施例二中在偏压为-105v、真空腔内气压为0.1pa的条件下,获得的工件表面涂层硬度最佳。
40.本发明技术方案在上面结合实施例对发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种非实质性改进,或未经改进将发明的构思和技术方案直接应用于其它场合的,均在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1