衬底处理装置及方法与流程

文档序号:32156005发布日期:2022-11-11 23:12阅读:94来源:国知局
衬底处理装置及方法与流程

1.本发明总体上涉及衬底处理装置及方法。更具体但非排他地,本发明涉及化学沉积反应器或蚀刻反应器。


背景技术:

2.在不承认本文描述的任何技术代表现有技术的情况下,本节示出了有用的背景信息。
3.在化学沉积反应器或蚀刻反应器中,可以通过装载机器人经由闸阀从侧面执行将衬底装载到反应室中的操作。然而,该装载方法和本领域中使用的所有相关联的衬底处理方法对工具设计造成了一定的空间限制。具体地,这些限制可以在反应器的可能设计中观察到。这些限制经常体现在将衬底接收表面配置在反应器内的合适水平处以在发生充分反应的同时为装载机器人提供足够空间以进行操作的挑战中。


技术实现要素:

4.本发明的特定实施例的目的是提供一种被优化以解决实践中遇到的空间限制或者至少提供现有技术的替代方案的改进的衬底处理设备。
5.根据本发明的第一示例方面,提供了衬底处理装置,包括:
6.反应室,具有密封反应室的内部体积以用于衬底处理的上部和下部,下部能够与上部间隔开以在它们之间形成衬底装载间隙;
7.衬底支撑系统,包括支撑台和至少一个支撑元件,至少一个支撑元件能够相对于支撑台竖直移动并延伸穿过支撑台以在反应室内接收衬底,装置进一步包括:
8.止动器,在衬底装载水平处停止至少一个支撑元件的向下移动。
9.在特定实施例中,装置被配置为使下部与支撑台一起移动。
10.在特定实施例中,装置被配置为使至少一个支撑元件与支撑台一起向下移动,直到至少一个支撑元件被止动器(或止动元件)停止。
11.在特定实施例中,装置被配置为在至少一个支撑元件已被止动器停止之后进一步向下移动支撑台。
12.在特定实施例中,装置包括支撑止动器的固定附接部件。
13.在特定实施例中,固定附接部件从反应室排气管线延伸。
14.在特定实施例中,装置被配置为将至少一个支撑元件与支撑台一起向上提升到衬底处理位置。
15.在特定实施例中,支撑台被配置为将衬底升高到反应室的上部的底表面之上。
16.在特定实施例中,该提升发生在至少一个支撑元件已接收衬底之后。
17.在特定实施例中,支撑台被附接到反应室并且支撑台和反应室的下部(例如,反应室碗状部)被配置为作为一个封装件而上下移动,至少一个支撑元件和支撑台被配置为一起上升到衬底装载水平之上,并且至少一个支撑元件被配置为被止动器停止而停留在装载
水平上,同时支撑台与下部被一起下降到装载水平之下。
18.在特定实施例中,装置包括至少部分地围绕反应室的外室。在特定实施例中,外室是真空室。
19.在特定实施例中,至少一个支撑元件的顶表面停留在衬底处理位置,衬底处理位置高于闸阀的装载开口的最高点,闸阀的装载开口由用于装载衬底的衬底装载装置所使用。
20.在特定实施例中,闸阀被附接到外室的壁。
21.在特定实施例中,至少一个支撑元件是具有增大顶部的销的结构。
22.在特定实施例中,装置被配置为通过连续的自限制性表面反应在反应室内处理至少一个衬底。
23.根据本发明的第二示例方面,提供了衬底处理装置,包括:
24.反应室,具有密封反应室的内部体积以用于衬底处理的上部和下部,下部能够从上部间隔开以在它们之间形成衬底装载间隙;以及
25.衬底支撑系统,包括支撑台,所述支撑台被适配于将衬底提升到反应室的上部的底表面之上。
26.根据本发明的第三示例方面,提供了用于将衬底装载到反应室中的方法,包括:
27.将反应室的下部与反应室的上部间隔开以在它们之间形成衬底装载间隙;
28.降低包括支撑台和至少一个支撑元件的衬底支撑系统,其中至少一个支撑元件能够相对于支撑台竖直移动并延伸穿过支撑台;以及
29.在衬底装载水平处,通过止动器停止至少一个支撑元件的向下移动。
30.在特定实施例中,方法包括:
31.在至少一个支撑元件已被止动器止动之后(其中至少一个支撑元件保持在衬底装载水平处)进一步向下移动支撑台。
32.根据本发明的第四示例方面,提供了用于将衬底装载到反应室中的方法,包括:
33.将反应室的下部与反应室的上部分隔开以在它们之间形成衬底装载间隙;
34.将支撑台上的衬底提升到反应室的上部的底表面之上,并且通过上部和下部密封反应室的内部体积以用于衬底处理。
35.前面已经说明了不同的非约束示例方面和实施例。上述实施例仅用于解释可以在本发明的实现中使用的选定方面或步骤。可以仅参考某些示例方面来呈现一些实施例。具体地,在第一方面的上下文中描述的实施例适用于每个其他方面。应当理解,相应的实施例也适用于其他示例方面。可以形成实施例的任何适当组合。
附图说明
36.现在将参照附图,仅通过示例的方式,描述本发明,其中:
37.图1示出了根据特定实施例的衬底处理阶段中的衬底处理装置的示意性截面;
38.图2示出了根据特定实施例的在衬底装载阶段期间的图1的衬底处理装置,其中反应室的下部处于中间位置;
39.图3示出了根据特定实施例的在衬底装载阶段期间的图1的衬底处理装置,其中反应室的下部处于最低位置;
40.图4示出了根据特定实施例的用于图1的装置的升降器布置的示意性截面;以及
41.图5示出了显示根据特定实施例的销和升降器附接点位置的俯视图。
具体实施方式
42.在以下描述中,使用原子层沉积(ald)技术和原子层蚀刻(ale)技术作为示例。
43.ald生长机制的基本知识对于本领域技术人员而言是已知的。ald是一种特殊的化学沉积方法,基于在至少一个衬底上顺序引入至少两个反应性前驱体物质。基本的ald沉积周期由四个顺序步骤组成:脉冲a、清洗a、脉冲b和清洗b。脉冲a由第一前驱体蒸汽组成,而脉冲b由另一前驱体蒸汽组成。在清洗a和清洗b期间,非活性气体和真空泵通常用于从反应空间中清洗气态反应副产物和残留反应物分子。沉积顺序包括至少一个沉积循环。重复沉积循环,直到沉积顺序产生了具有所需厚度的薄膜或涂层。沉积循环也可以更简单,也可以更复杂。例如,循环可以包括由清洗步骤分隔的三个或更多个反应物蒸汽脉冲,或者可以省略某些清洗步骤。或者,对于等离子体辅助ald(例如,peald(等离子体增强的原子层沉积))或者光子辅助ald,可以通过为表面反应提供所需的附加能量来辅助沉积步骤中的一个或多个步骤,该附加能量分别通过等离子体或光子馈入提供。或者可以用能量替代反应性前驱体之一,导致单前驱体ald工艺。因此,取决于每个特定情况,脉冲和清洗顺序可以不同。沉积循环形成由逻辑单元或微处理器控制的定时沉积顺序。由ald生长的薄膜致密,无针孔,且厚度均匀。
44.至于衬底处理步骤,该至少一个衬底通常暴露于反应容器(或室)中的在时间上分离的前驱体脉冲,以通过顺序的自饱和(或自限制)表面反应在衬底表面上沉积材料。在本技术的上下文中,术语ald包括所有适用的基于ald的技术和任何等同或密切相关的技术,例如以下ald子类型:mld(分子层沉积)、等离子体辅助ald(例如,peald(等离子体增强的原子层沉积)以及光子辅助或者光子增强的原子层沉积(也称为闪光增强的ald或光ald)。
45.然而,本发明不限于ald技术,而是其可以在多种衬底处理装置中采用,例如在化学气相沉积(cvd)反应器中,或者在蚀刻反应器中,诸如在原子层蚀刻(ale)反应器中。
46.ale蚀刻机制的基础是技术人员已知的。ale是使用自限制的顺序的反应步骤从表面去除材料层的技术。典型的ale蚀刻周期包括形成反应层的修饰步骤和仅去除反应层的去除步骤。去除步骤可以包括使用等离子体物质(特别是离子)来进行层去除。
47.在ald和ale技术的上下文中,自限制性表面反应意味着当表面反应位点被完全耗尽时,表面反应层上的表面反应将停止并自饱和。
48.图1示出了根据特定实施例的衬底处理阶段中的衬底处理装置100的示意性截面。衬底处理装置100可以是例如ald反应器或ale反应器。装置100包括反应室20和至少部分地围绕反应室20的外室10(或真空室)。中间体积15(或中间空间)形成在反应室20与外室10之间。在特定实施例中,中间体积15形成在反应室20外侧上的外室10内,使得中间体积15由外室壁和反应室壁两者限定并且因此形成在它们之间。
49.装置100进一步包括反应室20内的衬底支撑部件(或衬底支撑系统)30。在特定实施例中,衬底支撑部件30被形成为支撑台(或衬底支撑台)31。在特定实施例中,衬底支撑部件30包括支撑台31和底盖32。在特定实施例中,衬底支撑部件30包括中空内部体积35。体积35可以由支撑台31和底盖32限定或在支撑台31与底盖32之间。
50.在特定实施例中,反应室20包括密封反应室20的内部体积以用于衬底处理的上部20a和下部20b。此外,上部20a包括底表面20c。
51.衬底11由衬底支撑部件30或其支撑台31支撑并在真空状态下进行处理,例如在反应室20内通过ald或ale进行处理。因此,衬底被暴露于顺序的自限制表面反应。反应室内的流动几何特性由箭头12示出。前驱体蒸气(在特定实施例中包括等离子体物质)从顶部接近衬底11表面并且从反应室20的底部离开反应室20进入排气管线13。
52.衬底支撑部件30(或其底部或盖32)由连接(支撑)部件25从下方(或从侧面(未示出))支撑并且附接到下部20b。在特定实施例中,部件25形成从中空内部体积35通向中间体积15的通道。这使得在不将来自支撑台31的布线暴露于例如反应物、等离子体或前驱体蒸气的情况下,例如使其能够从体积35馈通到体积15(并且从体积15经由适当的外室馈通至真空外部)。
53.在特定实施例中,衬底支撑部件30进一步包括至少一个可竖直移动的支撑元件(或可竖直移动的支撑元件组)70,其延伸穿过衬底支撑部件30或穿过支撑台31,但是在某些其他实施例中,元件70被适配于在衬底支撑部件30的侧面处工作。元件70可以在布置于衬底支撑部件30中的壳体80中竖直移动。在特定实施例中,衬底支撑部件30包括一个或多个止动器90。在特定实施例中,一个或多个止动器被附接到附接部件60。在特定实施例中,附接部件60是从排气管线13延伸的静止部件。如接下来将借助图2和图3示出,(多个)止动器90在衬底装载水平处停止元件70的向下移动。
54.在特定实施例中,衬底处理装置100包括闸阀50或能够通过装载装置(诸如装载机器人)在真空状态下侧向装载至少一个衬底的另一装置。在特定实施例中,闸阀50被附接到外室10的壁。衬底装载水平由箭头55描绘。
55.在特定实施例中,装置100包括排气管线13中的部件65(在反应室20的外侧和/或中间体积15的内侧上)以允许通过竖直移动延长和缩短排气管线13。在特定实施例中,所述部件65是真空波纹管。在特定实施例中,部件65被配置在排气管线13面向中间体积15的部分中(在外室10中)。
56.为了将衬底或晶片装载到反应室20中,反应室20的下部20b(下文中:反应室碗状部20b)通过下降移动与上部20a分隔开以在它们之间形成衬底装载间隙。当向下移动时,元件70(在特定实施例中为配备有增大的销顶部的支撑销)随着支撑台31/反应室碗状部20b组合移动短距离,但每个销70的下端大约在行程的中间撞击止动器90的固体表面而停止销的移动并导致销顶部保持在装载机器人的装载高度上。在特定实施例中,止动器90的固体表面被固定在附接部件60。在特定实施例中,附接部件60被固定在排气管线13b的静态部件(如在图3中示出)。在特定实施例中,排气管线的静态部件被固定在外室10。
57.支撑台/反应室碗状部组合的向下移动由附接到所述组合的升降器的下降移动而引起。在特定实施例中,下降移动由在图4中示出的升降器53引起,升降器53包括力传递元件(或杆)51,力传递元件(或杆)51延伸穿过外室馈通52并且在附接点22处附接到部件20b或其边缘。在特定实施例中,装置包括与升降器53和附接点22适配的多个力传递元件51。附接点22可以均匀地布置在碗状部20b的外围上。因此,可以实现如在图5中示出的布置为具有对称配置的附接(或提升)点(例如三个点)的升降器。类似地,元件70可以均匀地分布在支撑台31上。图5示出了三个元件,它们在特定实施例中是销顶部,被布置为稍微等距,距离
大约是以120度的间隔。
58.元件70的下降移动仅通过重力而跟随支撑台/反应室碗状部组合的移动。在备选实施例中,下降移动的致动由致动器或弹簧(未示出)引起或协助。在元件70的移动已被停止之后,支撑台/反应室碗状部组合进一步向下移动,直到到达如图3描绘的较低(或最低)位置。以这种方式,可以获得用于装载机器人41的更多空间(图3),并且,作为示例,衬底11的装载可以仅通过装载机器人41经由闸阀50沿所述衬底装载水平55的水平移动(或可选地通过水平移动和下降移动)来执行。
59.一旦衬底11已被放置在元件70上并且装载机械臂经由闸阀50缩回,销顶部保持在装载高度(或水平)上,直到支撑台(或基座板)31在其上升的途中到达衬底11。衬底11开始与支撑台/反应室碗状部组合一起向上移动。在特定实施例中,在向上移动结束时,衬底位于高于由装载机器人41使用的闸阀50的开口的顶表面的位置(如在图1中示出)处。在特定实施例中,在向上移动结束时,衬底位于高于反应室20的上部20a的底表面20c的位置处。在特定实施例中,晶片的表面上没有移动部件或接触表面。因此可能影响衬底11的颗粒的可能来源被减少,并且作为结果可以获得较低数量的额外颗粒。元件70与支撑台/反应室碗状部组合一起随着该组合的升高而升高。
60.在不限制专利权利要求的范围和解释的情况下,下面列出本文公开的一个或多个示例实施例的某些技术效果。技术效果是能够在无需用于晶片支撑销的单独致动器的情况下进行晶片装载。另一技术效果是提供用于装载的足够空间。
61.通过本发明的特定实现和实施例的非限制性示例的方式,前述描述提供了发明人当前设想的用于执行本发明的最佳模式的全面且信息丰富的描述。然而,本领域技术人员清楚的是,本发明不限于上面呈现的实施例的细节,而是可以在不偏离本发明特性的情况下,在其他实施例中使用等同手段实现。
62.此外,本发明的上述实施例的一些特征可以在不相应使用其他特征的情况下发挥优势。因此,前述描述应被视为仅说明本发明的原理,而不限于此。因此,本发明的范围仅由所附专利权利要求限制。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1