一种表面耐磨和具有杀菌功能的碳基材料及其制备方法与流程

文档序号:31873314发布日期:2022-10-21 20:20阅读:77来源:国知局
一种表面耐磨和具有杀菌功能的碳基材料及其制备方法与流程

1.本发明涉及一种表面改性碳基材料,具体涉及一种表面镀制掺m(m为cu和/或ag)类金刚石复合涂层的碳基材料,还涉及其制备方法,属于生物医用材料制备技术领域。


背景技术:

2.碳材料具有很好的生物相容性,其中碳纤维、热解碳、碳纳米管及其复合材料等在心脏瓣膜、骨骼、生长支架、肿瘤药物、生物传感器等方面得到应用。特别是以碳纤维及其织物等为增强体的碳基材料具有质量轻、化学稳定性好、机械性能与人体骨相近、抗疲劳性好、可设计性强、具有一定的塑性等特点,被视为制备人工植入物的理想材料。然而,碳基材料在临床应用中也存在着一些不足。该材料表面因磨损脱落的颗粒会被周围巨噬细胞或淋巴细胞所吸收,虽然不会损害周边组织的功能,但还是会引起组织的炎症反应,且一些较大的剥落颗粒会随体液流动,在体表沉积,形成“黑肤效应”,影响美观。碳基材料虽为惰性材料,但其多孔的特性,容易在使用过程携带细菌进入人体组织导致炎症的风险。因此,提高碳基材料的表面耐磨性和抗菌能力,有利于其在生物医用领域进一步推广应用。


技术实现要素:

3.针对现有技术存在的不足,本发明的第一个目的是在于提供一种表面耐磨和具有杀菌功能的碳基材料,该表面改性碳基材料通过在碳基材料表面镀制掺m(m为cu和/或ag)类金刚石复合涂层,能够有效降低碳基材料表面摩擦系数,提高其耐磨性,可以有效改善碳基材料在植入人体后由于摩擦掉粉导致的人体不良反应,同时能够提高碳基材料的生物相容性,且掺入cu和/或ag元素可以提高碳基材料表面涂层的抗菌性。
4.本发明的另一个目的是在于提供一种表面改性碳基材料的制备方法,该方法通过非平衡中频磁控溅射法和直流弧光pecvd相结合的方法来制备掺m(m为cu和/或ag)类金刚石复合涂层,方法操作简单,容易精确控制,有利于工业化生产。
5.为了实现上述技术目的,本发明提供了一种表面耐磨和具有杀菌功能的碳基材料,其是在碳基材料基底表面镀有掺m类金刚石复合涂层;m为cu和/或ag;所述掺m类金刚石复合涂层由多个周期膜层组成;所述周期膜层由硅过渡膜层和掺m类金刚石膜层叠加构成。
6.本发明通过在碳基材料表面镀制的掺m(m为cu和/或ag)类金刚石复合涂层,掺m类金刚石复合涂层与碳基材料之间结合较好,能够有效降低碳基材料表面摩擦系数,提高碳基材料的耐磨性能,改善碳基材料在植入人体后由于摩擦掉粉导致的人体不良反应,同时掺m类金刚石复合涂层赋予了碳基材料表面良好的生物相容性,同时掺入cu和ag金属元素的掺入可以提高复合涂层的抗菌性,减少植入者受感染的风险。
7.本发明的掺m类金刚石复合涂层由多个硅过渡膜层和掺m类金刚石膜层叠加构成的周期膜层组成,其包含的掺m类金刚石膜层中掺入的cu和/或ag元素作为杀菌功能元素引入,且cu和/或ag元素与si过渡层中的原子结合更加紧密,而si过渡层主要是用于增强掺m类金刚石膜层与碳基材料基体的结合力,降低了整个类金刚石涂层的内应力,从而将硅过
渡膜层和掺m类金刚石膜层叠加镀制,可以获得抗磨损性以及附着力较好的掺m类金刚石复合涂层。
8.作为一个优选的方案,所述掺m类金刚石复合涂层由2~12个周期膜层组成。如果周期膜层太少则难以达到提高碳基材料表面耐磨性能和硬度的目的,如果周期膜层过多则会降低复合涂层与碳基材料基体之间的结合能力,造成涂层更易剥落。
9.作为一个优选的方案,所述掺m类金刚石复合涂层中每个周期膜层的厚度为0.2~4μm,每个硅过渡层的厚度为0.1~2μm。硅过渡层厚度过低或掺m类金刚石膜层厚度过高会影响掺m类金刚石膜层与碳基材料基体之间的结合能力,而硅过渡层厚度过厚或掺m类金刚石膜层的厚度过低会影响其耐磨性能。
10.作为一个优选的方案,所述掺m类金刚石复合涂层中m质量百分比含量为0.5~20%。适当增加m元素的掺杂量可以改善掺m类金刚石复合涂层与碳基材料的结合力,但是掺杂m(cu和/或ag)元素比例过高对人体有害,会造成m元素中毒,掺杂m元素过低则不具有杀菌性能,且无法有效提升基体的生物相容性以及机械性能。
11.本发明还提供了一种表面耐磨和具有杀菌功能的碳基材料的制备方法,该方法是对碳基材料进行表面清洁处理后,在其表面交替镀制硅过渡膜层和掺m类金刚石膜层。
12.作为一个优选的方案,所述表面清洁处理过程为:依次采用水和乙醇对碳基材料基体进行超声洗涤,超声洗涤的温度为20~32℃,时间均为10~30min,洗涤完成后进行烘干。经过有超声辅助溶剂洗涤,能够有效去除碳基材料表面的污渍,有利于提高后续镀制的膜层与基体之间的结合能力。水优选为纯化水,如去离子水,乙醇优选为无水乙醇。
13.作为一个优选的方案,所述硅过渡膜层通过非平衡中频磁控溅射法镀制,镀制硅过渡膜层的条件为:ar气流量为60~100sccm,si靶功率0.5~3kw,真空度为1.0
×
10-1
~4.0
×
10-1
pa,离子源功率为0.5~2kw,工件负偏压电压为50~400v,镀膜时间为10~80min。非平衡磁控溅射制备硅膜层过程中能够控制温度低于200℃,形成的镀膜层更为致密有利于提高镀制的膜层与基体之间的结合。
14.作为一个优选的方案,所述掺m类金刚石膜层通过非平衡中频磁控溅射与直流弧光pecvd相结合方法镀制,镀制掺硅类金刚石膜层的条件为:ar气流量为20~100sccm,气体碳源流量为10~100sccm,真空度为1.0
×
10-1
~4.0
×
10-1
pa,离子源功率为0.5~3kw,cu和/或ag靶功率为0.1~1.0kw,cu和/或ag靶纯度不低于99.9wt%,工件负偏压电压为50~600v,镀膜时间为30~540min。本发明通过采用非平衡中频磁控溅射与直流弧光pecvd相结合方法镀制掺m类金刚石膜层,可以在不改变类金刚石膜层制备工艺参数的条件下更好的控制掺入m元素的含量,稳定的将m元素的含量控制在提升膜层性能最有效的区间0.5~20%。优选的气体碳源如乙炔。
15.本发明的碳基材料基体例如常见的碳纤维增强热解碳和/或碳化硅复合材料。
16.本发明的表面改性碳基材料的具体制备方法:
17.1、对碳基材料进行清洗,清洗步骤:先后采用纯化水和乙醇对碳基材料进行超声清洗,清洗温度均为20~32℃,清洗时间均为20~30min,清洗完后进行烘干待用。
18.2、制备掺m(cu和/或ag)类金刚石复合涂层;将清洗后的碳基材料置于非平衡中频磁控溅射以及直流弧光pecvd相结合的镀膜设备中,抽真空至工作真空度,具体镀膜过程如下:
19.a.离子清洗工件:向真空室内通入ar气,气体流量为50~120sccm,真空度为4.0
×
10-1
~7.0
×
10-1
pa,工件负偏压电压为400~800v,清洗时间为10~30min。
20.b.清洗离子源:ar气流量为60~100sccm,真空度为3.0
×
10-1
~6.0
×
10-1
pa,离子源功率为0.5~2kw,工件负偏压电压为400~800v,清洗时间为15~40min。
21.c.制备si过渡膜层:ar气流量为60~100sccm,si靶功率为0.5~3kw,真空度为1.0
×
10-1
~4.0
×
10-1
pa,离子源功率为0.5~2kw,工件负偏压电压为50~400v,镀膜时间为10~80min。
22.d.制备掺m(cu和/或ag)类金刚石涂层:ar气流量为20~100sccm,乙炔气体流量为10~100sccm,真空度为1.0
×
10-1
~4.0
×
10-1
pa,离子源功率为0.5~3kw,m靶功率为0.1~1kw,cu和/或ag靶纯度不低于99.9wt%,工件负偏压电压为50~600v,镀膜时间为30~540min。
23.e.根据步骤c和d的工艺交替制备si过渡膜层以及掺m类金刚石膜层,完成si过渡膜层/掺m类金刚石膜层周期涂层镀膜完成后,待炉内温度下降至室温,取出碳基材料。
24.本发明制备掺m类金刚石复合涂层采用设备是由广东汇成真空科技股份有限公司的hcsh-dlc650设备,或东莞市华南新材料研究有限公司的pvd850-dlc设备,或青岛优百宇真空设备股份有限公司的dlc-800设备,该设备是由非平衡中频磁控溅射以及直流弧光pecvd技术相结合的镀膜设备。
25.相对现有技术,本发明技术方案带来的有益技术效果:
26.本发明在碳基材料表面通过非平衡中频磁控溅射法制备si过渡膜层,后续采用非平衡中频磁控溅射与直流弧光pecvd相结合的方法在硅过渡膜层表面上制备掺m(cu和/或ag)类金刚石膜层。磁控溅射和pecvd相结合的方法制备掺m(cu和/或ag)类金刚石膜层,可以在不改变类金刚石涂层工艺参数的条件下更好的控制掺入cu和/或ag元素的含量,稳定的将cu和/或ag元素的含量控制在提升膜层性能最有效的区间0.5~20%。
27.本发明的碳基材料表面的掺m(cu和/或ag)类金刚石复合涂层是由si过渡膜层与掺m(cu和/或ag)类金刚石膜层周期交叠而成,在类金刚石膜层中掺入的cu和/或ag元素与si过渡膜层中的原子结合更加紧密,降低了整个类金刚石膜层的内应力,极大地提高了掺m(cu和/或ag)类金刚石膜层与碳基材料之间的结合力,复合涂层与基体的结合临界载荷可以达到10n以上。
28.本发明的碳基材料通过在其表面镀制掺m(cu和/或ag)类金刚石复合涂层,可以有效增强碳基材料表面摩擦性能和生物相容性,掺m(cu和/或ag)类金刚石复合涂层的摩擦系数降低到0.04~0.12,且掺m(cu和/或ag)类金刚石涂层可以有效地避免摩擦掉粉导致的人体不良反应,同时能够提高碳基材料的生物相容性,且掺入cu和/或ag元素可以提高碳基材料表面涂层的抗菌性。
29.本发明的碳基材料制备方法通过非平衡中频磁控溅射法和直流弧光pecvd相结合的方法来制备掺m(cu和/或ag)类金刚石复合涂层,方法操作简单,容易精确控制,有利于工业化生产。
附图说明
30.图1为表面镀制掺cu类金刚石复合涂层的碳基材料的结构示意图。
31.图2为表面镀制掺ag类金刚石复合涂层的碳基材料的微观形貌sem图。
32.图3为表面镀制掺cu类金刚石复合涂层的碳基材料的微观形貌sem图。
具体实施方式
33.为了使本发明更加的清楚明白,下面将结合具体的实施例来详细介绍本发明内容,此处所描述的具体实施例只用于进一步详细解释本发明内容,而并不限定本发明权利要求的保护范围。
34.性能检测:以下实施例中通过纳米压痕和纳米划痕法测试涂层的力学性能;采用球盘式摩擦测试仪测量膜层摩擦系数,采用内皮细胞增殖实验和大肠杆菌存活实验来检验涂层对基体生物相容性的改善。
35.以下实施例中采用现有典型的碳纤维/基体碳作为基体材料,来进行例举说明。
36.实施例1
37.在碳基材料基体表面制备掺cu类金刚石复合涂层,按照以下步骤操作:
38.a.对密度为1.5g/cm3的碳/碳复合材料为基体进行清洗,清洗步骤:将碳基材料基体先后采用纯化水和乙醇进行超声清洗,清洗温度均为28℃,清洗时间均为20min,清洗完后进行烘干待用。
39.b.将清洗后的碳基材料基体置于非平衡中频磁控溅射以及直流弧光pecvd相结合的镀膜设备中,抽真空至工作真空度。
40.c.清除炉内杂质气体:向真空室内通入ar气,气体流量为100sccm,真空度为5.0
×
10-1
pa,工件负偏压电压为800v,除气时间为20min。
41.d.离子源清洗工件:ar气流量为80sccm,真空度为4.0
×
10-1
pa,离子源功率为1kw,工件负偏压电压为800v,清洗时间为30min。
42.e.制备si过渡膜层:ar气流量为60sccm,真空度为2.0
×
10-1
pa,si靶功率为1kw,离子源功率为0.9kw,工件负偏压电压为150v,镀膜时间为10min。
43.f.制备掺cu类金刚石膜层:ar气流量为60sccm,乙炔气体流量为80sccm,真空度为2.0
×
10-1
pa,离子源功率为1kw,cu靶功率为0.5kw,cu靶纯度为99.9wt%,工件负偏压电压为400v,镀膜时间为60min。
44.g.按照步骤e和f的工艺交替制备si过渡层以及掺cu类金刚石膜层,得到si过渡膜层/掺cu类金刚石膜层周期涂层总层数为6层,整体涂层cu含量为1.4%,每层si过渡层的厚度为0.15μm,每层掺cu类金刚石膜层的厚度为0.3μm。
45.本实施例制备得到的掺cu类金刚石涂层与碳基材料基体结合力高,其值为13n,减少了碳基材料的磨损率,摩擦系数为0.10,磨损率为4.2
×
46.10-7
mm3/n
·
m。有效提高了碳基材料基体的抗菌性,对比无涂层的碳基材料基体,本实施例的中制备有掺cu类金刚石涂层的碳基材料基体的细菌存活实验中大肠杆菌存活率由100%降低至85%,内皮细胞增殖实验中内皮细胞增殖率由70%提升至80%。
47.实施例2
48.在碳基材料基体表面制备掺ag类金刚石涂层,按照以下步骤操作:
49.a.对密度为1.5g/cm3的碳/碳复合材料基体进行清洗,清洗步骤:将碳基基体先后采用纯化水和乙醇进行超声清洗,清洗温度均为28℃,清洗时间均为20min,清洗完后进行
烘干待用。
50.b.将清洗后的碳基基体置于非平衡中频磁控溅射以及直流弧光pecvd相结合的镀膜设备中,抽真空至工作真空度。
51.c.清除炉内杂质气体:向真空室内通入ar气,气体流量为100sccm,真空度为5.0
×
10-1
pa,工件负偏压电压为800v,除气时间为20min。
52.d.离子源清洗工件:ar气流量为80sccm,真空度为4.0
×
10-1
pa,离子源功率为1kw,工件负偏压电压为800v,清洗时间为30min。
53.e.制备si过渡膜层:ar气流量为60sccm,真空度为2.0
×
10-1
pa,si靶功率1.5kw,离子源功率为1kw,工件负偏压电压为150v,镀膜时间为10min。
54.f.制备掺ag类金刚石膜层:ar气流量为60sccm,乙炔气体流量为80sccm,真空度为2.0
×
10-1
pa,离子源功率为1.5kw,ag靶功率为0.3kw,ag靶纯度为99.9wt%,工件负偏压电压为600v,镀膜时间为60min。
55.g.按照步骤e和f的工艺交替制备si过渡膜层以及掺ag类金刚石膜层,得到si过渡膜层/掺ag类金刚石膜层周期涂层总层数为4层,整体涂层ag含量为1.2%,每层si过渡膜层的厚度0.15μm,每层掺ag类金刚石膜层的厚度为0.22μm。
56.本实施例制备得到的掺ag类金刚石涂层与碳基材料基体结合力高,其值为11n,减少了碳基材料的磨损率,摩擦系数为0.09,磨损率为3.4
×
57.10-7
mm3/n
·
m。有效提高了碳基基体的抗菌性,对比无涂层的碳基材料基体,本实施例中制备有掺ag类金刚石复合涂层的碳基材料基体的细菌存活实验中大肠杆菌存活率由100%降低至80%,内皮细胞增殖实验中内皮细胞增殖率由70%提升至79%。
58.实施例3
59.在碳基材料基体表面制备掺cu类金刚石复合涂层,按照以下步骤操作:
60.a.对密度为1.5g/cm3的碳/碳复合材料为基体进行清洗,清洗步骤:将碳基基体先后采用纯化水和乙醇进行超声清洗,清洗温度均为28℃,清洗时间均为20min,清洗完后进行烘干待用。
61.b.将清洗后的碳基材料基体置于非平衡中频磁控溅射以及直流弧光pecvd相结合的镀膜设备中,抽真空至工作真空度。
62.c.清除炉内杂质气体:向真空室内通入ar气,气体流量为100sccm,真空度为5.0
×
10-1
pa,工件负偏压电压为800v,除气时间为20min。
63.d.离子源清洗工件:ar气流量为80sccm,真空度为4.0
×
10-1
pa,离子源功率为1kw,工件负偏压电压为800v,清洗时间为30min。
64.e.制备si过渡膜层:ar气流量为60sccm,真空度为2.0
×
10-1
pa,si靶功率为1kw,离子源功率为0.9kw,工件负偏压电压为150v,镀膜时间为10min。
65.f.制备掺cu类金刚石膜层:ar气流量为60sccm,乙炔气体流量为100sccm,真空度为2.0
×
10-1
pa,离子源功率为1kw,cu靶功率为0.4kw,cu靶纯度为99.9wt%,工件负偏压电压为400v,镀膜时间为60min。
66.g.按照步骤e和f的工艺交替制备si过渡膜层以及掺cu类金刚石膜层,得到si过渡膜层/掺cu类金刚石膜层周期涂层总层数为10层,整体涂层cu含量为1%,每层si过渡膜层的厚度为0.15μm,每层掺cu类金刚石膜层的厚度为0.32μm。
67.本实施例制备得到的掺cu类金刚石涂膜层与碳基材料基体结合力高,其值为14n,减少了碳基材料的磨损率,摩擦系数为0.04,磨损率为1.3
×
10-7
mm3/n
·
m。有效提高了碳基材料基体的抗菌性,对比无涂层的碳基材料基体,本实施例的中制备有掺si类金刚石涂层的碳基材料基体的细菌存活实验中大肠杆菌存活率由100%降低至83%,内皮细胞增殖实验中内皮细胞增殖率由70%提升至82%。
68.实施例4
69.在碳基材料基体表面制备掺ag类金刚石涂层,按照以下步骤操作:
70.a.对密度为1.5g/cm3的碳/碳复合材料基体进行清洗,清洗步骤:将碳基基体先后采用纯化水和乙醇进行超声清洗,清洗温度均为28℃,清洗时间均为20min,清洗完后进行烘干待用。
71.b.将清洗后的碳基基体置于非平衡中频磁控溅射以及直流弧光pecvd相结合的镀膜设备中,抽真空至工作真空度。
72.c.清除炉内杂质气体:向真空室内通入ar气,气体流量为100sccm,真空度为5.0
×
10-1
pa,工件负偏压电压为800v,除气时间为20min。
73.d.离子源清洗工件:ar气流量为80sccm,真空度为4.0
×
10-1
pa,离子源功率为1kw,工件负偏压电压为800v,清洗时间为30min。
74.e.制备si过渡膜层:ar气流量为60sccm,真空度为2.0
×
10-1
pa,si靶功率为1.5kw,离子源功率为1kw,工件负偏压电压为150v,镀膜时间为10min。
75.f.制备掺ag类金刚石膜层:ar气流量为60sccm,乙炔气体流量为100sccm,真空度为2.0
×
10-1
pa,离子源功率为1.5kw,ag靶功率为0.4kw,工件负偏压电压为600v,镀膜时间为60min。
76.g.按照步骤e和f的工艺交替制备si过渡膜层以及掺ag类金刚石膜层,得到si过渡膜层/掺ag类金刚石膜层周期涂层总层数为6层,整体涂层ag含量为0.8%,每层si过渡膜层的厚度为0.15μm,每层掺ag类金刚石膜层的厚度为0.29μm。
77.本实施例制备得到的掺ag类金刚石涂层与碳基材料基体结合力高,其值为19n,减少了碳基材料的磨损率,摩擦系数为0.07,磨损率为2.6
×
78.10-7
mm3/n
·
m。有效提高了碳基材料基体的抗菌性,对比无涂层的碳基材料基体,本实施例中制备有掺ag类金刚石复合涂层的碳基材料基体的细菌存活实验中大肠杆菌存活率由100%降低至76%,内皮细胞增殖实验中内皮细胞增殖率由70%提升至81%。
79.对比例1
80.本对比实施例与实施例1的唯一区别在于:没有制备si过渡膜层,直接在碳基材料基体表面制备相同总厚度的掺cu类金刚石复合涂层。
81.本对比实施例制备得到的无si过渡膜层的掺cu类金刚石复合涂层直接从碳基材料基体上剥落,结合力差。
82.对比例2
83.本对比实施例与实施例1的唯一区别在于:类金刚石膜层中未掺入cu元素。
84.本对比实施例制备得到的si过渡膜层/未掺cu的类金刚石复合涂层与碳基材料基体结合力较低,其值为7n,摩擦系数0.15,磨损率9.2
×
10-7
mm3/n
·
m。本对比实例的中制备有涂层的碳基材料的细菌存活实验中大肠杆菌存活率由100%降低至92%,内皮细胞增殖
实验中内皮细胞增殖率由70%提升至75%。
85.表1性能测试结果对比
[0086][0087]
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1