六塔制氧方法与流程

文档序号:16259744发布日期:2018-12-14 21:24阅读:560来源:国知局

本发明涉及从空气中分离提取氧气领域,详细地讲是一种六塔制氧方法。

背景技术

众所周知,随着分子筛制氧技术的快速发展,使用分子筛制氧系统供氧已经越来越得到医院等用氧机构的认可。分子筛制氧系统与氧气瓶、液氧相比,具有使用简单、安全可靠的特点,大大降低了医院的管理与用氧成本。

目前所使用的分子筛制氧装置中小型适用于医院使用的主要是psa制氧的双塔与四塔产品,psa即pressureswingadsorption,是在分子筛的制氧过程中,以一定的压力加到分子筛吸附塔内,经过一段时间后,吸附塔内部的分子筛吸附饱和后直接对外常压排出氮气,这种工艺的问题是在排氮过程中,吸附塔中残留的氮气无法完全的排出,导致吸附塔中始终残留一部分氮气,这一部分氮气减少了吸附塔每次工时周期中的工作空间,降低了整个系统的氧气提取率。双塔是指吸附剂装在两个吸附塔内,四塔是吸附剂装在四个吸附塔内,在吸附过程中的残气二次提纯的利用率直接影响到整个系统的效率。双塔工艺中,两个吸附塔相互均压,对吸附塔中的残气做二次提纯,四塔的工艺流程中,每个吸附塔与其他三个中的两个进行了2次均压,利用率进一步提升,制氧的氧气提取率进一步提升,同时四塔工艺中可以始终保持其中的一个塔在产出氧气,这样整个系统的氧气供应比双塔工艺更加均匀。但是四塔工艺同样存在二次均压后仍有残气浪费的问题,氧气提取率只能达到40%-45%,虽然比双塔工艺的25%-35%有大幅提升,但仍有改进空间。



技术实现要素:

为了克服现有技术的不足,本发明提供一种六塔制氧方法,结构简单,可靠性高,操作方便,快速制氧,效率高。

本发明解决其技术问题所采用的技术方案是:一种六塔制氧方法,设有第一吸附塔、第二吸附塔、第三吸附塔、第四吸附塔、第五吸附塔、第六吸附塔,六个吸附塔为分子筛吸附塔,其特征在于,第一吸附塔、第二吸附塔、第三吸附塔、第四吸附塔、第五吸附塔、第六吸附塔分别通过第一吸附塔空气管道、第二吸附塔空气管道、第三吸附塔空气管道、第四吸附塔空气管道、第五吸附塔空气管道、第六吸附塔空气管道及第一吸附塔氧气管道、第二吸附塔氧气管道、第三吸附塔氧气管道、第四吸附塔氧气管道、第五吸附塔氧气管道、第六吸附塔氧气管道与气路切换装置相连接;包括如下a、b、c、d、e、f六个步骤:

1)在第a步时,

第一吸附塔在a步时的工作状态为逆均压状态,即从第一吸附塔氧气管道中充入富氧气体,此时第一吸附塔空气管道在关闭状态;

第二吸附塔在a步时的工作状态为进气放氧气状态,即从第二吸附塔空气管道中通入压缩空气,同时第二吸附塔氧气管道打开,吸附塔向外放出氧气;

第三吸附塔在a步时的工作状态为进气顺均状态,即从第二吸附塔空气管道中通入压缩空气,同时第三吸附塔氧气管道通过气路切换装置内部管路与正在真空排氮气的第六吸附塔氧气管道相连,将氧浓度较低的氧气输送到正在真空排氮气的第六吸附塔内,冲洗第六吸附塔内的氮气;

第四吸附塔在a步时的工作状态为静态稳定过程,此时其空气管道与氧气管道全部关闭,分子筛在内部低压氮气释放过程;

第五吸附塔在a步时的工作状态为反吹排氮过程,此时其空气管道与氮气管道相连接,其氧气管道通过一个细管道与成品气管道相连接,通过高浓度氧气对第五吸附塔进行冲洗以尽快排出内部的氮气;

第六吸附塔在a步时的工作状态为反吹与真空过程,此时其空气管道与真空管道相连接,其氧气管道通过气路切换装置内部管路与放氧结束的第三吸附塔连接,接入较高浓度的氧气冲洗第六吸附塔内的空间,使真空解吸更彻底;

2)然后,转入第b步时,

第一吸附塔在b步时的工作状态为进气放氧气状态,即从第一吸附塔空气管道中通入压缩空气,同时其氧气管道打开,第一吸附塔向外放出氧气;

第二吸附塔在b步时的工作状态为进气顺均状态,即从第二吸附塔空气管道中通入压缩空气,同时其氧气管道通过气路切换装置内部管路与正在真空排氮气的第五吸附塔氧气管道相连,将氧浓度较低的氧气输送到正在真空排氮气的第五吸附塔内,冲洗第五吸附塔内的氮气;

第三吸附塔在b步时的工作状态为静态稳定过程,此时其空气管道与氧气管道全部关闭,分子筛在内部低压氮气释放过程;

第四吸附塔在b步时的工作状态为反吹排氮过程,此时其空气管道与氮气管道相连接,其氧气管道通过一个细管道与成品气管道相连接,通过高浓度氧气对第四吸附塔进行冲洗以尽快排出内部的氮气;

第五吸附塔在b步时的工作状态为反吹与真空过程,此时其空气管道与真空管道相连接,其氧气管道通过气路切换装置内部管路与放氧结束的第二吸附塔连接,接入较高浓度的氧气冲洗吸附塔内的空间,使真空解吸更彻底;

第六吸附塔在b步时的工作状态为逆均压状态,即从第六吸附塔氧气管道中充入富氧气体,此时该吸附塔空气管道处在关闭状态;

3)然后,转入第c步时,

第一吸附塔在c步时的工作状态为进气顺均状态,即从第一吸附塔空气管道中通入压缩空气,同时其氧气管道通过气路切换装置内部管路与正在真空排氮气的第四吸附塔氧气管道相连,将氧浓度较低的氧气输送到正在真空排氮气的第四吸附塔内,冲洗第四吸附塔内的氮气;

第二吸附塔在c步时的工作状态为静态稳定过程,此时其空气管道与氧气管道全部关闭,分子筛在内部低压氮气释放过程;

第三吸附塔在c步时的工作状态为反吹排氮过程,此时其空气管道与氮气管道相连接,其氧气管道通过一个细管道与成品气管道相连接,通过高浓度氧气对第三吸附塔进行冲洗以尽快排出内部的氮气;

第四吸附塔在c步时的工作状态为反吹与真空过程,此时其空气管道与真空管道相连接,其氧气管道通过气路切换装置内部管路与放氧结束的第一吸附塔连接,接入较高浓度的氧气冲洗第四吸附塔内的空间,使真空解吸更彻底;

第五吸附塔在c步时的工作状态为逆均压状态,即从第五吸附塔氧气管道中充入富氧气体,此时第五吸附塔空气管道处在关闭状态;

第六吸附塔在c步时的工作状态为进气放氧气状态,即从第六吸附塔空气管道中通入压缩空气,同时其氧气管道打开,第六吸附塔向外放出氧气;

4)然后,转入第d步时,

第一吸附塔在d步时的工作状态为静态稳定过程,此时其空气管道与氧气管道全部关闭,分子筛在内部低压氮气释放过程;

第二吸附塔在d步时的工作状态为反吹排氮过程,此时其空气管道与氮气管道相连接,其氧气管道通过一个细管道与成品气管道相连接,通过高浓度氧气对第二吸附塔进行冲洗以尽快排出内部的氮气;

第三吸附塔在d步时的工作状态为反吹与真空过程,此时其空气管道与真空管道相连接,其氧气管道通过气路切换装置内部管路与放氧结束的第六吸附塔连接,接入较高浓度的氧气冲洗吸附塔内的空间,使真空解吸更彻底;

第四吸附塔在d步时的工作状态为逆均压状态,即从第四吸附塔氧气管道中充入富氧气体,此时第四吸附塔空气管道处在关闭状态;

第五吸附塔在d步时的工作状态为进气放氧气状态,即从第五吸附塔空气管道中通入压缩空气,同时其氧气管道打开,第五吸附塔向外放出氧气;

第六吸附塔在d步时的工作状态为进气顺均状态,即从第六吸附塔空气管道中通入压缩空气,同时其氧气管道通过气路切换装置内部管路与正在真空排氮气的第三吸附塔氧气管道相连,将氧浓度较低的氧气输送到正在真空排氮气的第三吸附塔内,冲洗第三吸附塔内的氮气;

5)然后,转入第e步时,

第一吸附塔在e步时的工作状态为反吹排氮过程,此时其空气管道与氮气管道相连接,其氧气管道通过一个细管道与成品气管道相连接,通过高浓度氧气对第一吸附塔进行冲洗以尽快排出内部的氮气;

第二吸附塔在e步时的工作状态为反吹与真空过程,此时其空气管道与真空管道相连接,其氧气管道通过气路切换装置内部管路与放氧结束的第五吸附塔连接,接入较高浓度的氧气冲洗第五吸附塔内的空间,使真空解吸更彻底;

第三吸附塔在e步时的工作状态为逆均压状态,即从第三吸附塔氧气管道中充入富氧气体,此时第三吸附塔空气管道处在关闭状态;

第四吸附塔在e步时的工作状态为进气放氧气状态,即从第四吸附塔空气管道中通入压缩空气,同时其氧气管道打开,第四吸附塔向外放出氧气;

第五吸附塔在e步时的工作状态为进气顺均状态,即从第五吸附塔空气管道中通入压缩空气,同时其氧气管道通过气路切换装置内部管路与正在真空排氮气的第二吸附塔氧气管道相连,将氧浓度较低的氧气输送到正在真空排氮气的第二吸附塔内,冲洗第二吸附塔内的氮气;

第六吸附塔在e步时的工作状态为静态稳定过程,此时其空气管道与氧气管道全部关闭,分子筛在内部低压氮气释放过程;

6)然后,转入第f步时,

第一吸附塔在f步时的工作状态为反吹与真空过程,此时其空气管道与真空管道相连接,其氧气管道通过气路切换装置内部管路与放氧结束的第四吸附塔连接,接入较高浓度的氧气冲洗第一吸附塔内的空间,使真空解吸更彻底;

第二吸附塔在f步时的工作状态为逆均压状态,即从第二吸附塔氧气管道中充入富氧气体,此时第二吸附塔空气管道处在关闭状态;

第三吸附塔在f步时的工作状态为进气放氧气状态,即从第三吸附塔空气管道中通入压缩空气,同时其氧气管道打开,第三吸附塔向外放出氧气;

第四吸附塔在f步时的工作状态为进气顺均状态,即从第四吸附塔空气管道中通入压缩空气,同时其氧气管道通过气路切换装置内部管路与正在真空排氮气的第一吸附塔氧气管道相连,将氧浓度较低的氧气输送到正在真空排氮气的第一吸附塔内,冲洗吸附塔内的氮气;

第五吸附塔在f步时的工作状态为静态稳定过程,此时其空气管道与氧气管道全部关闭,分子筛在内部低压氮气释放过程;

第六吸附塔在f步时的工作状态为反吹排氮过程,此时其空气管道与氮气管道相连接,其氧气管道通过一个细管道与成品气管道相连接,通过高浓度氧气对第六吸附塔进行冲洗以尽快排出内部的氮气;

然后再回到第a步,如此循环进行。

本发明的有益效果是,通过六塔的循环工作,进一步提升了吸附塔的工作效率,氧气提取率可提高到60%,速度提升25%。每个吸附塔六步完成一个空分制氧循环,六个吸附塔互相交错实施,保证每一步都有一个吸附塔在放出高浓度的氧气,以保证高纯度氧气的快速、稳定的送出。

具体实施方式

设有第一吸附塔、第二吸附塔、第三吸附塔、第四吸附塔、第五吸附塔、第六吸附塔,六个吸附塔为分子筛吸附塔,其特征在于,第一吸附塔、第二吸附塔、第三吸附塔、第四吸附塔、第五吸附塔、第六吸附塔分别通过第一吸附塔空气管道、第二吸附塔空气管道、第三吸附塔空气管道、第四吸附塔空气管道、第五吸附塔空气管道、第六吸附塔空气管道及第一吸附塔氧气管道、第二吸附塔氧气管道、第三吸附塔氧气管道、第四吸附塔氧气管道、第五吸附塔氧气管道、第六吸附塔氧气管道与气路切换装置相连接;包括如下a、b、c、d、e、f六个步骤:

1)在第a步时,

第一吸附塔在a步时的工作状态为逆均压状态,即从第一吸附塔氧气管道中充入富氧气体,此时第一吸附塔空气管道在关闭状态;

第二吸附塔在a步时的工作状态为进气放氧气状态,即从第二吸附塔空气管道中通入压缩空气,同时第二吸附塔氧气管道打开,吸附塔向外放出氧气;

第三吸附塔在a步时的工作状态为进气顺均状态,即从第三吸附塔空气管道中通入压缩空气,同时第三吸附塔氧气管道通过气路切换装置内部管路与正在真空排氮气的第六吸附塔氧气管道相连,将氧浓度较低的氧气输送到正在真空排氮气的第六吸附塔内,冲洗第六吸附塔内的氮气;

第四吸附塔在a步时的工作状态为静态稳定过程,此时其空气管道与氧气管道全部关闭,分子筛在内部低压氮气释放过程;

第五吸附塔在a步时的工作状态为反吹排氮过程,此时其空气管道与氮气管道相连接,其氧气管道通过一个细管道与成品气管道相连接,通过高浓度氧气对第五吸附塔进行冲洗以尽快排出内部的氮气;

第六吸附塔在a步时的工作状态为反吹与真空过程,此时其空气管道与真空管道相连接,其氧气管道通过气路切换装置内部管路与放氧结束的第三吸附塔连接,接入较高浓度的氧气冲洗第六吸附塔内的空间,使真空解吸更彻底;

2)然后,转入第b步时,

第一吸附塔在b步时的工作状态为进气放氧气状态,即从第一吸附塔空气管道中通入压缩空气,同时其氧气管道打开,第一吸附塔向外放出氧气;

第二吸附塔在b步时的工作状态为进气顺均状态,即从第二吸附塔空气管道中通入压缩空气,同时其氧气管道通过气路切换装置内部管路与正在真空排氮气的第五吸附塔氧气管道相连,将氧浓度较低的氧气输送到正在真空排氮气的第五吸附塔内,冲洗第五吸附塔内的氮气;

第三吸附塔在b步时的工作状态为静态稳定过程,此时其空气管道与氧气管道全部关闭,分子筛在内部低压氮气释放过程;

第四吸附塔在b步时的工作状态为反吹排氮过程,此时其空气管道与氮气管道相连接,其氧气管道通过一个细管道与成品气管道相连接,通过高浓度氧气对第四吸附塔进行冲洗以尽快排出内部的氮气;

第五吸附塔在b步时的工作状态为反吹与真空过程,此时其空气管道与真空管道相连接,其氧气管道通过气路切换装置内部管路与放氧结束的第二吸附塔连接,接入较高浓度的氧气冲洗吸附塔内的空间,使真空解吸更彻底;

第六吸附塔在b步时的工作状态为逆均压状态,即从第六吸附塔氧气管道中充入富氧气体,此时该吸附塔空气管道处在关闭状态;

3)然后,转入第c步时,

第一吸附塔在c步时的工作状态为进气顺均状态,即从第一吸附塔空气管道中通入压缩空气,同时其氧气管道通过气路切换装置内部管路与正在真空排氮气的第四吸附塔氧气管道相连,将氧浓度较低的氧气输送到正在真空排氮气的第四吸附塔内,冲洗第四吸附塔内的氮气;

第二吸附塔在c步时的工作状态为静态稳定过程,此时其空气管道与氧气管道全部关闭,分子筛在内部低压氮气释放过程;

第三吸附塔在c步时的工作状态为反吹排氮过程,此时其空气管道与氮气管道相连接,其氧气管道通过一个细管道与成品气管道相连接,通过高浓度氧气对第三吸附塔进行冲洗以尽快排出内部的氮气;

第四吸附塔在c步时的工作状态为反吹与真空过程,此时其空气管道与真空管道相连接,其氧气管道通过气路切换装置内部管路与放氧结束的第一吸附塔连接,接入较高浓度的氧气冲洗第四吸附塔内的空间,使真空解吸更彻底;

第五吸附塔在c步时的工作状态为逆均压状态,即从第五吸附塔氧气管道中充入富氧气体,此时第五吸附塔空气管道处在关闭状态;

第六吸附塔在c步时的工作状态为进气放氧气状态,即从第六吸附塔空气管道中通入压缩空气,同时其氧气管道打开,第六吸附塔向外放出氧气;

4)然后,转入第d步时,

第一吸附塔在d步时的工作状态为静态稳定过程,此时其空气管道与氧气管道全部关闭,分子筛在内部低压氮气释放过程;

第二吸附塔在d步时的工作状态为反吹排氮过程,此时其空气管道与氮气管道相连接,其氧气管道通过一个细管道与成品气管道相连接,通过高浓度氧气对第二吸附塔进行冲洗以尽快排出内部的氮气;

第三吸附塔在d步时的工作状态为反吹与真空过程,此时其空气管道与真空管道相连接,其氧气管道通过气路切换装置内部管路与放氧结束的第六吸附塔连接,接入较高浓度的氧气冲洗吸附塔内的空间,使真空解吸更彻底;

第四吸附塔在d步时的工作状态为逆均压状态,即从第四吸附塔氧气管道中充入富氧气体,此时第四吸附塔空气管道处在关闭状态;

第五吸附塔在d步时的工作状态为进气放氧气状态,即从第五吸附塔空气管道中通入压缩空气,同时其氧气管道打开,第五吸附塔向外放出氧气;

第六吸附塔在d步时的工作状态为进气顺均状态,即从第六吸附塔空气管道中通入压缩空气,同时其氧气管道通过气路切换装置内部管路与正在真空排氮气的第三吸附塔氧气管道相连,将氧浓度较低的氧气输送到正在真空排氮气的第三吸附塔内,冲洗第三吸附塔内的氮气;

5)然后,转入第e步时,

第一吸附塔在e步时的工作状态为反吹排氮过程,此时其空气管道与氮气管道相连接,其氧气管道通过一个细管道与成品气管道相连接,通过高浓度氧气对第一吸附塔进行冲洗以尽快排出内部的氮气;

第二吸附塔在e步时的工作状态为反吹与真空过程,此时其空气管道与真空管道相连接,其氧气管道通过气路切换装置内部管路与放氧结束的第五吸附塔连接,接入较高浓度的氧气冲洗第五吸附塔内的空间,使真空解吸更彻底;

第三吸附塔在e步时的工作状态为逆均压状态,即从第三吸附塔氧气管道中充入富氧气体,此时第三吸附塔空气管道处在关闭状态;

第四吸附塔在e步时的工作状态为进气放氧气状态,即从第四吸附塔空气管道中通入压缩空气,同时其氧气管道打开,第四吸附塔向外放出氧气;

第五吸附塔在e步时的工作状态为进气顺均状态,即从第五吸附塔空气管道中通入压缩空气,同时其氧气管道通过气路切换装置内部管路与正在真空排氮气的第二吸附塔氧气管道相连,将氧浓度较低的氧气输送到正在真空排氮气的第二吸附塔内,冲洗第二吸附塔内的氮气;

第六吸附塔在e步时的工作状态为静态稳定过程,此时其空气管道与氧气管道全部关闭,分子筛在内部低压氮气释放过程;

6)然后,转入第f步时,

第一吸附塔在f步时的工作状态为反吹与真空过程,此时其空气管道与真空管道相连接,其氧气管道通过气路切换装置内部管路与放氧结束的第四吸附塔连接,接入较高浓度的氧气冲洗第一吸附塔内的空间,使真空解吸更彻底;

第二吸附塔在f步时的工作状态为逆均压状态,即从第二吸附塔氧气管道中充入富氧气体,此时第二吸附塔空气管道处在关闭状态;

第三吸附塔在f步时的工作状态为进气放氧气状态,即从第三吸附塔空气管道中通入压缩空气,同时其氧气管道打开,第三吸附塔向外放出氧气;

第四吸附塔在f步时的工作状态为进气顺均状态,即从第四吸附塔空气管道中通入压缩空气,同时其氧气管道通过气路切换装置内部管路与正在真空排氮气的第一吸附塔氧气管道相连,将氧浓度较低的氧气输送到正在真空排氮气的第一吸附塔内,冲洗吸附塔内的氮气;

第五吸附塔在f步时的工作状态为静态稳定过程,此时其空气管道与氧气管道全部关闭,分子筛在内部低压氮气释放过程;

第六吸附塔在f步时的工作状态为反吹排氮过程,此时其空气管道与氮气管道相连接,其氧气管道通过一个细管道与成品气管道相连接,通过高浓度氧气对第六吸附塔进行冲洗以尽快排出内部的氮气;

然后再回到第a步,如此循环进行。

本发明的有益效果是,通过六塔的循环工作,进一步提升了吸附塔的工作效率,氧气提取率可提高到60%,速度提升25%。每个吸附塔六步完成一个空分制氧循环,六个吸附塔互相交错实施,保证每一步都有一个吸附塔在放出高浓度的氧气,以保证高纯度氧气的快速、稳定的送出。

从第一吸附塔氧气管道、第二吸附塔氧气管道、第三吸附塔氧气管道、第四吸附塔氧气管道、第五吸附塔氧气管道及第六吸附塔氧气管道输出的氧气通到出氧通道中进行收集。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1