一种低层数氧化石墨烯的制备装置的制作方法

文档序号:16999921发布日期:2019-03-02 01:42阅读:204来源:国知局

本发明涉及氧化石墨烯的生产技术领域,具体来讲,涉及一种能够生产干燥且层数较低的氧化石墨烯的装置。



背景技术:

通常,由于氧化石墨的热稳定性差,往往在烘干过程中就会出现热解现象,并且受热烘干后的氧化石墨容易团聚成硬块,不利于后续的分散。



技术实现要素:

本发明的目的在于解决现有技术存在的上述不足中的至少一项。例如,本发明的目的之一在于提供一种用于氧化石墨烯干燥的新装置。

为了实现上述目的,本发明提供了一种低层数氧化石墨烯的制备装置,所述制备装置包括水凝胶形成单元、低温干燥单元和传送机构,其中,所述水凝胶形成单元具有分散槽,所述分散槽能够接收具有第一层数的氧化石墨烯和水,并将氧化石墨烯分散在水中,以形成氧化石墨烯水凝胶;所述低温干燥单元具有控温单元、控压单元和冷干腔,其中,所述冷干腔由壳体构成且具有进料口、出料口和腔体,所述控温单元用于将所述腔体内的温度控制为不高于-50℃且控制整个腔体内的温度变化不超过±4℃,所述控压单元用于将所述腔体内的压强控制为低于1个大气压且控制整个腔体内的压强变化不超过±100pa;所述传送机构具有贯穿所述冷干腔的传送件、以及能够调节传送件行进速度的调速机构,所述传送件用于接收所述水凝胶形成单元形成的氧化石墨烯水凝胶并使所述氧化石墨烯水凝胶历经整个冷干腔,以从所述出料口获得具有第二层数的氧化石墨烯,所述第二层数小于所述第一层数。

与现有技术相比,本发明的有益效果包括:(1)用本发明的装置处理氧化石墨烯,冷冻干燥过程不会破坏氧化石墨片层的结构,较好的保存官能团,经冷冻干燥后的氧化石墨不易发生团聚现象;(2)经冷冻干燥的氧化石墨烯片层层间距大于其他干燥方法干燥后的氧化石墨烯产品,具有更优异的分散性能、更少的层数和更大的比表面积。

具体实施方式

在下文中,将结合示例性实施例来详细说明本发明的低层数氧化石墨烯的制备装置。

在本发明的一个示例性实施例中,低层数氧化石墨烯的制备装置可由水凝胶形成单元、低温干燥单元和传送机构构成。

所述水凝胶形成单元具有分散槽。分散槽能够接收具有第一层数的氧化石墨烯和水,并将氧化石墨烯分散在水中,以形成氧化石墨烯水凝胶。例如,分散槽可以具有槽体、设置在槽体上方的加料口、以及设置在槽体侧部或底部的出料口。其中,加料口用于加入作为原料的具有第一层数氧化石墨烯和水。这里,所述第一层数可以为十数层至数十层,例如,20~30层。出料口用于排出氧化石墨烯水凝胶。此外,所述水凝胶形成单元还可进一步具有超声发生机构。所述超声发生机构可向所述分散槽发射超声波,以对处于分散槽的水中的氧化石墨烯形成超声震荡,从而有利于强化分散效果。

通过分散槽能够将具有第一层数的氧化石墨烯分散在水中,并形成氧化石墨烯水凝胶。作为原料的氧化石墨烯中含有含氧官能团。例如,所述具有第一层数的氧化石墨烯可通过利用质子酸插层石墨制备得到。在分散过程中,优选通过超声分散进一步强化分散效果,从而使水分子充分进入到氧化石墨烯的片层结构中或者褶皱中,或者与氧化石墨烯表面的官能团结合成水合离子,形成氧化石墨烯水凝胶。氧化石墨烯水凝胶具有在其自身的氧化石墨烯的片层或者褶皱中结合有水分子的结构。氧化石墨烯水凝胶的固含量可以为0.1~50wt%。

所述低温干燥单元具有控温单元、控压单元和冷干腔。其中,所述冷干腔由壳体围成并且具有进料口、出料口和确定长度的腔体。冷干腔的腔体可呈u型或带有缺口的环形,以便节省空间。然而,本示例性实施例不限于此,冷干腔的腔体也可呈s型或直线型。进料口和出料口沿物料的行进方向分别设置在腔体的前端和后端,并且各自设置有可开合的阀门以将腔体与外界分隔开。所述控温单元可以为与冷干腔连接且具有恒定控温功能的制冷机,所述制冷机能够将冷干腔的腔体内的温度控制为不高于-50℃且控制整个冷干腔的腔体内的温度变化不超过±4℃。并且,所述控压单元可以为与冷干腔连接且具有恒定控压功能的真空泵,所述真空泵能够将所述冷干腔的腔体内的压强控制为低于1个大气压且控制整个腔体内的压强变化不超过±100pa。

进一步,所述控温单元可将所述腔体内的温度控制在-55~-65℃范围内且控制整个腔体内的温度变化不超过±2℃,并且所述控压单元可将所述腔体内的压强控制在10~100pa且控制整个腔体内的压强变化不超过±10pa,从而有利于获得兼具相对稳定的低温以及相对稳定的真空度的气氛环境。

通过控温单元和控压单元的协调作用,能够使水分子变成冰分子,通过体积膨胀,进一步的拓宽石墨的片层结构;而且冰在低温低压下会凝华挥发,温度低,“熵”值低,能够使得氧化石墨烯被撑开的结构得以保持,使制备的氧化石墨烯材料分散性好、比表面积大。而且,通过相对恒定的低温温度(例如,不高于-50℃且控制整个冷干腔的腔体内的温度变化不超过±4℃)和相对恒定的真空度(例如,低于1个大气压且控制整个腔体内的压强变化不超过±100pa),有利于使水分子的凝结速度和程度相对稳定,因此,对氧化石墨烯层的“撑开”效果稳定;而且有利于使冰分子的凝华速度和程度相对稳定,因此,也有利于一定程度避免因氧化石墨烯层的局部应力而导致的局部缺陷。更进一步讲,通过控温单元和控压单元将冷干腔的气氛控制为温度在-55~-65℃范围内且控制整个腔体内的温度变化不超过±2℃,以及压强控制在10~100pa且控制整个腔体内的压强变化不超过±10pa,更加有利于使水分子的凝结速度和程度进一步稳定,从而对氧化石墨烯层的“撑开”效果稳定;而且有利于使冰分子的凝华速度和程度进一步稳定,从而也有利于进一步避免因氧化石墨烯层的局部应力而导致的局部缺陷。

所述传送机构具有贯穿所述冷干腔的传送件、以及能够调节传送件行进速度的调速机构。所述传送件能够接收所述水凝胶形成单元形成的氧化石墨烯水凝胶,并使所述氧化石墨烯水凝胶行进以通过整个冷干腔,最终从所述冷干腔的出料口处获得具有第二层数的氧化石墨烯。所述传送件可以为传送带。所述调速机构可以控制传送带以预设速度匀速通过冷干腔。第二层数小于所述第一层数。第二层数相比第一层数可具有明显的下降。这里,第二层数可以为第一层数的1/3~1/6。例如,第二层数可以为5~7层。

在本发明的另一个示例性实施例中,低层数氧化石墨烯的制备装置可在具有上述示例性实施例的结构的基础上,进一步包括缓冲区。具体来讲,缓冲区可与出料口连接,以便对从出料口进入缓冲区内的氧化石墨烯进行适当升温,从而使作为产品的氧化石墨烯能够适应室温环境或后续处理工艺。例如,缓冲区的长度可以为1.5~4米,但本示例性实施例不限于此。

在本发明的另一个示例性实施例中,低层数氧化石墨烯的制备装置可在具有上述示例性实施例的结构的基础上,进一步包预处理区。具体来讲,预处理区可以与所述进料口连接且自身被所述传送件贯穿。预处理区具有降温构件,从而能够对通过传送件进入其内的氧化石墨烯水凝胶进行适当的降温处理,以使氧化石墨烯水凝胶的温度降低。例如,预处理区内的温度可稳定保持在所述腔体内的温度的1/6~3/5。通过预处理区的设置,可对氧化石墨烯进行初次降温,便于控制降温过程,且利于操作。例如,预处理区的长度可以为1.5~4米,但本示例性实施例不限于此。

在本发明的示例性实施例中,所述制备装置可通过协调控制冷干腔的腔体的长度、冷干腔内的温度和压强、以及传送件的速度来获得干燥完全的所述具有第二层数的氧化石墨烯。具体来讲,在设计本发明的制备装置时,可先根据上述相关要求确定冷干腔内的温度和压强,随后根据场地等要求确定腔体长度和传送件的运行速度,以确保通过传送件输送并运行通过冷干腔的氧化石墨烯水凝胶能够充分完成低温冷冻和凝华干燥的过程。例如,冷干腔的腔体长度可以为10~20米,但本示例性实施例不限于此。

综上所述,本发明能够在干燥的过程中进一步“撑开”氧化石墨烯片层,同时,在低温下氧化石墨烯材料保持了较低的熵值,有利于其已被“撑开”的氧化石墨烯片层微观结构保持,从而能够得到较高品质的氧化石墨烯产品。例如,本发明的方法所制得的石墨烯不仅具有完整的微观结构,而且能够使氧化石墨烯的层数降低为原先的1/3~1/6,例如,层数从20~30层可以减少到5~7层;使氧化石墨烯的比表面积增大,例如,比表面积从100~200m2/g增大到200~400m2/g。

尽管上面已经结合示例性实施例及描述了本发明,但是本领域普通技术人员应该清楚,在不脱离权利要求的精神和范围的情况下,可以对上述实施例进行各种修改。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1