一种单晶材料、制备方法及其应用与流程

文档序号:21279789发布日期:2020-06-26 23:31阅读:338来源:国知局
一种单晶材料、制备方法及其应用与流程

本申请涉及一种单晶材料,属于红外非线性光学材料及其制备领域。



背景技术:

红外及中远红外非线性光学材料,在民用和军事方面有潜在的广泛用途,如激光器件、红外波段激光倍频、远程传感、红外激光制导、红外激光雷达、光电对抗等。

目前,3~20μm固态中、远红外波段激光的产生主要是基于非线性光学原理及红外非线性光学晶体变频技术。现成熟的红外非线性光学晶体主要有zngep2,aggas2,aggase2等。这些晶体都已在民用高科技领域和军事装备中起到关键性的作用,但是目前的这些晶体在综合性能上还不能达到人们理想的水平,随着技术的不断发展与进步,对红外非线性晶体的要求也在不断提高,因此,对于新型红外非线性晶体的探索,在民用高科技产业和提升军事装备都具有重要的战略意义。



技术实现要素:

根据本申请的一个方面,提供了一种单晶材料,该晶体具有优良的红外非线性光学性能,尤其是红外波段透过范围上具有显著优势。硫锌铟钡(分子式:ba10in6zn7s26),分子量为3353.5,属正交晶系,空间群i-42m,单胞参数为α=β=γ=90°,v=z=2。采用密封真空石英管及石墨坩埚高温反应法制备。硫锌铟钡晶体具有优良的红外非线性光学性能,实验测定其粉末(粒度150-210μm)shg强度大约为相同粒度商用aggas2的一半,粉末损伤阈值为aggas2的13.5倍,并且其具有高的热稳定性以及一致熔融特性使其能够较为简便的生长出尺寸为6×6.5×4.5mm3的红色块状稳定晶体。

所述单晶材料,其特征在于,

具有式i所示的化学式:

baxinyznlsm式i

其中,x:y:l:m=10:6:7:26。

可选地,所述单晶材料属正交晶系,空间群i-42m,单胞参数为a=11.0α=β=γ=90°,v=z=2。

可选地,所述单晶材料的化学式为ba10in6zn7s26;单胞参数为a=α=β=γ=90°,v=z=2。

可选地,所述单晶材料的体积为200~300mm3

可选地,所述单晶材料的尺寸为6×6.5×4.5mm3

可选地,所述单晶材料的透过波段范围为0.38~15μm。

本申请中,所述单晶材料为硫锌铟钡单晶体,其中,z=2。属正交晶系,空间群i-42m。其分子量为3353.5。在晶体结构中,[m4s10]t2超四面体阴离子簇共点连接构成无限阴离子层[m4s10]n-,进一步[m4s10]t2超四面体通过公用硫原子的方式连接[m4s10]n-层与[m4s10]n-层,形成具有闪锌矿拓扑结构的三维阴离子骨架[m24s44]29-,其中m代表的是in原子或者zn原子,再进一步由零维阴离子结构单元ms4簇(t1)和ba2+在间隙中平衡电荷,然后构建ba10in6zn7s26的完整化合物(如图1所示)。

可选地,所述单晶材料的透过波段范围为0.38~15μm。

粉末红外倍频实验表明,硫锌铟钡(ba10in6zn7s26)具有优良的红外非线性光学性能,在2.05μm激光照射下,有很强的1.025μm倍频光输出,其粉末(粒度150-210μm)shg(二次谐波效应)强度等同于相应粒度aggas2的一半,但ba10in6zn7s26在红外波段透过范围上具有显著优势,相对于aggas2晶体的0.45-13微米,aggase2晶体的0.7-18微米以及zngep2晶体的0.7-12微米的透过波段,ba10in6zn7s26的单晶达到了0.38-15微米的宽透过波段。同时ba10in6zn7s26可以在相较aggas2,zngep2的合成温度更低的情况下,使用化合物较为简便地合成尺寸接近1厘米的块状稳定晶体。

根据本申请的另一方面,提供一种所述单晶材料的制备方法,该方法制备得到了接近厘米级的单晶,相较aggas2,zngep2的合成温度更低,合成方法简单,适于工业化生产。

所述的单晶材料的制备方法,其特征在于,所述方法包括:

将含有硫源、锌源、铟源、钡源的混合物压片,于真空密闭条件下,加热至850~980℃,恒温20~60小时,降温至室温,得到所述单晶材料。

可选地,所述硫源中硫元素、锌源中锌元素、铟源中铟元素、钡源中钡元素的摩尔比为26~30:6~7:6~7:9~10。

可选地,所述硫源中硫元素、锌源中锌元素、铟源中铟元素、钡源中钡元素的摩尔比为26:7:6:10。

可选地,所述硫源选自bas、in2s3、zns、单质s中的至少一种;

所述锌源选自zns、单质zn中的至少一种;

所述铟源选自in2s3、单质in中的至少一种;

所述钡源选自bas、单质ba、醋酸钡中的至少一种。

可选地,所述加热的时间为5~50小时;

所述加热的升温速率为20~200℃/h;

所述降温的速率为0.5~20℃/h。

可选地,所述降温为以0.8~1.2℃/h的降温速率降温至880℃,然后10~20h降温至室温。

可选地,所述方法包括:

将bas、in2s3、zns按照摩尔比10:3:7混合,压片,置于真空密闭容器中,以150~200℃/h的升温速率升温至850~980℃,恒温20~60小时,以0.8~1.2℃/h的降温速率降温至室温,获得所述单晶材料。

可选地,将bas、in2s3、zns按照摩尔比10:3:7混合,压片,置于真空密闭容器中,加热10小时至920℃,恒温50小时,以0.8℃/h的降温速率降温至880℃,然后20小时降温至室温,得到所述单晶材料。

可选地,所述的单晶材料和/或根据所述的方法制备的单晶材料为红外非线性光学材料。

作为一种实施方式,所述的单晶材料的制备方法,包括:将bas,in2s3,zns混合,压片后,置于真空密闭容器中,在850℃-950℃恒温处理,得到单晶。

可选地,在上述制备方法中,将化合物bas:in2s3:zns以摩尔比为10:3:7的比例投料,混合均匀后,压片,放入石墨坩埚,再装入石英管中,抽真空后封口,置于高温炉中。优选在850℃-950℃恒温20-60小时,之后缓慢降至室温。可选地,用十小时使温度达到920℃,并且在920℃恒温五十小时,然后以一定速率降至室温。

根据本申请的又一方面,提供一种所述的单晶材料、根据所述的方法制备的单晶材料、所述的红外非线性光学材料在红外波段激光变频器件、红外电光器件、太赫兹激光器、近红外滤光器件、红外激光雷达中的应用。

本发明进一步提供了所述硫锌铟钡单晶体的用途,其用于激光器件、红外通讯、红外波段激光倍频等领域。硫锌铟钡是一种非中心对称空间群晶体,具有重要的应用价值。

本申请能产生的有益效果包括:

1)本申请所提供的硫锌铟钡(ba10in6zn7s26单晶材料,尺寸接近厘米级,是一种非中心对称空间群晶体,具有优良的非线性光学性能,在2.05μm激光照射下,有很强的1.025μm倍频光输出,其粉末(粒度150-210μm)shg(二次谐波效应)强度等同于相应粒度aggas2的一半,但ba10in6zn7s26在红外波段透过范围上具有显著优势,相对于aggas2晶体的0.45-13μm,aggase2晶体的0.7-18μm以及zngep2晶体的0.7-12μm的透过波段,ba10in6zn7s26的单晶达到了0.38-15μm的同时包含紫外与中远红外宽透过波段。

2)本申请所提供的硫锌铟钡(ba10in6zn7s26)单晶材料的制备方法,合成温度较低,合成方法简单,适于工业化生产。

附图说明

图1为本申请实施例2的硫锌铟钡晶体的沿(110)晶面的结构图,其中m1,m2,m3均表示in原子或者zn原子,s1~s6为s原子。

图2为本申请实施例2的硫锌铟钡晶体、aggase2的粉末红外倍频测试。

图3为本申请实施例2的硫锌铟钡晶体尺寸照片。

图4为本申请实施例2的硫锌铟钡晶体的粉末xrd的实验图谱与模拟图谱的对比。

图5为本申请实施例2的硫锌铟钡晶体的单晶所测的红外透过范围。

具体实施方式

下面结合实施例详述本申请,但本申请并不局限于这些实施例。

如无特别说明,本申请的实施例中的原料均通过商业途径购买。

本申请的实施例中分析方法如下:

x–射线粉末衍射物相分析(xrd)在rigaku公司的miniflexii型x射线衍射仪上进行,cu靶,kα辐射源(λ=0.154184nm)。

x–射线单晶衍射在rigaku公司的mercuryccd型单晶衍射仪上进行,mo靶,kα辐射源(λ=0.07107nm),测试温度293k。

利用将单晶体置于网格坐标纸上,每格长度为1mm,并在显微镜下进行观察,最后用手机自带相机于目镜镜头处拍摄并进行晶体照片分析。

利用q转换2.05μm红外激光器,利用kurtzandperry法对硫锌铟钡(ba10in6zn7s26)的粉末晶体的进行非线性光学性能分析。

实施例1硫锌铟钡单晶体的制备

按bas:in2s3:zns元素摩尔比为10:3:7,称取bas,in2s3和zns混合均匀,压片,放入石墨坩埚,再装入石英管中,抽真空后封口,置于高温炉中,用五十小时使温度达到920℃,并且在该温度下恒温五十小时,然后以2℃/h缓慢降至室温,获得红色块状晶体,化学式为ba10in6zn7s26,属正交晶系,记为样品1#。

实施例2硫锌铟钡6×6.5×4.5mm3单晶体的制备

按bas:in2s3:zns元素摩尔比为10:3:7,称取bas,in2s3和zns混合均匀,压片,放入石墨坩埚,再装入石英管中,抽真空后封口,置于高温炉中,用十小时使温度达到920℃,并且在920℃恒温五十小时,然后以0.8℃每小时缓慢降至880℃,然后20小时降至室温,获得一个尺寸6×6.5×4.5mm3为块状晶体,化学式为ba10in6zn7s26,属正交晶系,记为样品2#。

实施例3硫锌铟钡单晶体的结构测试

实施例1~2制备的硫锌铟钡单晶体的x–射线粉末衍射物相分析(xrd)在rigaku公司的miniflexii型x射线衍射仪上进行,cu靶,kα辐射源(λ=0.154184nm)。结果表明,实施例1~2所制备的样品1#~2#均为高纯度和高结晶度的样品。样品1#~2#均为ba10in6zn7s26晶体,属正交晶系,空间群i-42m。

实施例1~2制备的硫锌铟钡单晶体的x–射线单晶衍射在mercuryccd型单晶衍射仪上进行,mo靶,kα辐射源(λ=0.07107nm),测试温度293k。并通过shelxl97对进行结构解析,实施例2制备的硫锌铟钡晶体的沿(110)晶面的结构图如图1所示。样品1#~2#单晶数据拟合得到的xrd衍射图谱与其实验测得的xrd衍射图谱高度一致,证明所得样品为高纯度和高结晶度的样品。图1显示,样品1#~2#制备的ba10in6zn7s26硫锌铟钡单晶体,z=2。属正交晶系,空间群i-42m。其分子量为3353.5。在晶体结构中,[m4s10]t2超四面体阴离子簇共点连接构成无限阴离子层[m4s10]n-,进一步[m4s10]t2超四面体通过公用硫原子的方式连接[m4s10]n-层与[m4s10]n-层,形成具有闪锌矿拓扑结构的三维阴离子骨架[m24s44]29-,其中m代表的是in原子或者zn原子,再进一步由零维阴离子结构单元ms4簇(t1)和ba2+在间隙中平衡电荷,然后构建ba20in12zn14s52的完整化合物(图1)。

实施例4硫锌铟钡单晶体的形貌测试

实施例1~2制备的硫锌铟钡单晶体的典型照片如图2所示,对应实施例3。图3显示,样品2#单晶的尺寸为6×6.5×4.5mm3

实施例5硫锌铟钡单晶体的性能测试

将待测样品与标准样品aggas2分别研磨,并用标准筛筛出粒度为150-210μm的晶体样品,将样品置于两片玻璃片之间压实,并使得样品具有0.5mm厚,然后将其放入直径8mm的圆柱体铝盒中。利用q转换2.05μm红外激光器对样品1#~2#单晶进行粉末倍频测试。样品1#~2#的倍频实验具体步骤如下:将所的样品置于2.05μm激光发射器器与1.025μm激光探测器的光路之间,并将所得倍频光信号以在示波器上显示,并且通过比较示波器显示出的强度大小说明两者性能差异。

典型的测试结果如图2和5所示,对应实施例2。粉末倍频实验表明,硫锌铟钡(ba10in6zn7s26)具有优良的红外非线性光学性能,在2.05μm激光照射下,有很强的1.025μm倍频光输出,其粉末(粒度150-210μm)shg(二次谐波效应)强度等同于相应粒度aggas2的一半,如图2所示。但ba10in6zn7s26在红外波段透过范围上具有显著优势,相对于aggas2晶体的0.45-13微米,aggase2晶体的0.7-18微米以及zngep2晶体的0.7-12微米的透过波段,ba10in6zn7s26的单晶达到了0.38-15微米的宽透过波段,如图5所示。同时ba10in6zn7s26可以在相较aggas2,zngep2的合成温度更低的情况下,使用化合物较为简便地合成尺寸接近1厘米的块状稳定晶体。

以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1