一种机器人用石墨烯增强氧化铝基陶瓷型轴承的制作方法

文档序号:21402015发布日期:2020-07-07 14:34阅读:180来源:国知局

本发明属于精密铸造领域,具体涉及一种机器人用石墨烯增强氧化铝基陶瓷型轴承。



背景技术:

众所周知,在机器人操作过程中,驱动设备产生热,每个驱动设备包括多个电气组件,其可一忍受高达70℃的温度,超过了这个温度,驱动设备可能会损坏,工业机器人通常是被指定在一高达50℃的环境内操作,电机的功过温度经常达到145℃,这样电机和驱动设备产生热,现有技术的驱动设备位于控制柜内,冷却设备如风扇被设置在控制柜内来保持驱动设备的温度低于最大的操作极限温度70℃,这样的设计不但抑制电机的工作效率,而且风扇噪音大,而且由于散热不畅还有造成电机在热量过高的情况下发生故障的隐患。

氧化铝基陶瓷型芯以氧化铝粉为基体材料,通过添加mgo、sio2、tio2及稀土氧化物作为矿化剂,促进烧结。矿化剂加入容易导致氧化铝陶瓷型芯的高温性能下降,比如高温强度和高温挠度等。目前常用的氧化铝基陶瓷型芯高温强度在10mpa以下,高温挠度≤0.5mm,严重影响叶片的尺寸精度和浇注合格率。此外,由于氧化铝材料化学性质较为稳定,难与酸碱等物质发生反应,随着叶片内腔结构越来越复杂,氧化铝陶瓷型芯的脱除越来越成为制约其使用的瓶颈。为解决氧化铝陶瓷型芯高温性能差,脱芯难的问题,需要向氧化铝基陶瓷型芯体系中引入其他物质,以增强氧化铝陶瓷型芯在高温条件下的使用性能及化学溶除性。



技术实现要素:

本发明的目的在于克服已有技术存在的不足,提供了一种机器人用石墨烯增强氧化铝基陶瓷型轴承,该陶瓷型芯制备工艺简单易行,可操作性强,所制备的氧化铝基陶瓷型芯具有优异的高温性能且易于溶除。该陶瓷型芯能够满足单晶空心叶片的制备使用需要,且能保证叶片的尺寸精度和合格率。

一种机器人用石墨烯增强氧化铝基陶瓷型轴承,陶瓷型芯材料的化学组成包括按照重量百分比分配的:氧化铝陶瓷粉90%~95%,氧化硅粉4.5%~8%,石墨烯粉0.5%~2%,增塑剂15%~24%。

本发明优选的,石墨烯粉为纳米级、亚微米级及微米级尺寸。

本发明优选的,氧化铝陶瓷粉为200目氧化铝陶瓷粉和325目氧化铝陶瓷粉的混合物。

本发明优选的,氧化硅粉为纳米氧化硅粉。

一种机器人用石墨烯增强氧化铝基陶瓷型轴承的制备方法,包括以下步骤:

(1)将氧化铝陶瓷粉、氧化硅粉、石墨烯粉按照的重量百分比使用三维混料机进行混合,制成混合均匀成分均一的陶瓷粉体。

(2)添加占陶瓷粉体质量15%~24%的增塑剂,先将增塑剂溶化后,再将陶瓷粉体逐步加入到增塑剂中,待陶瓷粉体全部加入后,继续搅拌10h~20h制得陶瓷型芯浆料。

(3)采用热压注成型方法制备陶瓷型芯,将在步骤(2)中获得的陶瓷型芯浆料装入压注设备中,在模具中获得所需的湿态陶瓷型芯,注射压力为2mpa~4mpa,并保压10s~30s;

(4)将在步骤(3)中获得的湿态陶瓷型芯在惰性气氛保护下进行烧结,采用的烧结工艺机制为:a、以1℃/min~2℃/min的升温速率加热至400℃~500℃,进行排蜡工艺;b、而后以2℃/min~3℃/min的升温速率加热1000℃~1200℃,并保温2h~6h,完成低温预烧结;c、再以不高于3℃/min~5℃/min的升温速率加热到1400℃~1600℃进行高温烧结处理,保温时间为3h~8h;d、最后烧结完成后随炉冷却,从而获得石墨烯增强氧化铝基陶瓷型芯。

本发明有益效果为:

本发明的一种机器人用石墨烯增强氧化铝基陶瓷型轴承,将具有优异力学性能及热性能的石墨烯材料引入氧化铝基陶瓷型芯材料体系,石墨烯材料提高了氧化铝基陶瓷型芯的高温性能及溶蚀性能、提高了叶片成品率及脱芯效率,解决了氧化铝陶瓷型芯脱除困难问题。石墨烯材料使氧化铝基陶瓷型芯的高温强度从10mpa提升到15mpa~30mpa,高温挠度从≤0.5mm进一步降低到≤0.3mm,气孔率从30%~50%提升到45%~55%。高温强度提升增强了陶瓷型芯的抗高温金属冲击能力,用于叶片浇注时断芯率降低30%;高温挠度的降低改善了陶瓷型芯的高温抗变形能力,用于叶片浇注时偏芯率降低30%;气孔率的提升使叶片的脱芯效率提高20%以上。本发明的一种机器人用石墨烯增强氧化铝基陶瓷型轴承适用于浇注条件苛刻、尺寸要求严格、内腔结构复杂的空心叶片使用。

具体实施方式

为能进一步了解本发明的内容、特点及功效,兹例举以下实施例详细说明如下。需要说明的是,本实施例是描述性的,不是限定性的,不能由此限定本发明的保护范围。

一种机器人用石墨烯增强氧化铝基陶瓷型轴承,陶瓷型芯材料的化学组成包括按照重量百分比分配的:氧化铝陶瓷粉90%~95%,氧化硅粉4.5%~8%,石墨烯粉0.5%~2%,增塑剂15%~24%。

本发明优选的,石墨烯粉为纳米级、亚微米级及微米级尺寸。

本发明优选的,氧化铝陶瓷粉为200目氧化铝陶瓷粉和325目氧化铝陶瓷粉的混合物。

本发明优选的,氧化硅粉为纳米氧化硅粉。

一种机器人用石墨烯增强氧化铝基陶瓷型轴承的制备方法,包括以下步骤:

(1)将氧化铝陶瓷粉、氧化硅粉、石墨烯粉按照的重量百分比使用三维混料机进行混合,制成混合均匀成分均一的陶瓷粉体。

(2)添加占陶瓷粉体质量15%~24%的增塑剂,先将增塑剂溶化后,再将陶瓷粉体逐步加入到增塑剂中,待陶瓷粉体全部加入后,继续搅拌10h~20h制得陶瓷型芯浆料。

(3)采用热压注成型方法制备陶瓷型芯,将在步骤(2)中获得的陶瓷型芯浆料装入压注设备中,在模具中获得所需的湿态陶瓷型芯,注射压力为2mpa~4mpa,并保压10s~30s;

(4)将在步骤(3)中获得的湿态陶瓷型芯在惰性气氛保护下进行烧结,采用的烧结工艺机制为:a、以1℃/min~2℃/min的升温速率加热至400℃~500℃,进行排蜡工艺;b、而后以2℃/min~3℃/min的升温速率加热1000℃~1200℃,并保温2h~6h,完成低温预烧结;c、再以不高于3℃/min~5℃/min的升温速率加热到1400℃~1600℃进行高温烧结处理,保温时间为3h~8h;d、最后烧结完成后随炉冷却,从而获得石墨烯增强氧化铝基陶瓷型芯。

另外,本发明优选的,增塑剂材料的化学组成按照质量百分比依次包括:石蜡93%~97%,蜂蜡1.5%~2%,聚乙烯1%~3%,改性石墨烯0.5%~2%。其作用效果为:提高了石蜡基增塑剂材料的适温性能及尺寸稳定性,压制陶瓷型芯成型率高,石墨烯在石蜡基增塑剂中均匀混合,以获得流动性好,成型率高的石墨烯增强石蜡基增塑剂材料。与常规石蜡基增塑剂材料相比,采用石墨烯增强石蜡基增塑剂材料制备的陶瓷型芯素胚收缩降低30%、素胚室温强度提高50%、素胚尺寸抗变形能力提高20%,成型率提高60%,陶瓷型芯素胚收缩可控制在0.1~0.3%,素胚室温强度可达10mpa以上,变形率低于10%,成型率高达90%以上。

另外,本发明优选的,改性石墨烯采用现有技术中的成熟产品。

为了更清楚地描述本发明的石墨烯增强氧化铝基陶瓷型芯及其制备方法,下面提供几种实施例:

实施例1

一种机器人用石墨烯增强氧化铝基陶瓷型轴承,采用包括下述原料制备:200目氧化铝粉45%,325目氧化铝粉45%,纳米氧化硅粉8%,亚微米级石墨烯粉2%。添加占陶瓷粉体质量15%的增塑剂。

陶瓷型芯的制备方法,包括:

(1)将氧化铝陶瓷粉、氧化硅粉及石墨烯粉使用三维混料机进行混合,制成混合均匀,成分均一的陶瓷粉体。

(2)添加占陶瓷粉体质量15%的增塑剂,将增塑剂溶化后,将陶瓷粉体逐步加入到增塑剂中,陶瓷粉体全部加入后,继续搅拌10h制得陶瓷型芯浆料。

(3)采用热压注成型方法制备陶瓷型芯,将在步骤(1)中获得的原料装入压注设备中,在模具中获得所需的湿态陶瓷型芯,注射压力为2mpa,并保压10s;

(4)将在步骤(3)中获得的湿态陶瓷型芯在惰性气氛保护下进行烧结,采用的烧结工艺机制为:首先以1℃/min的升温速率加热400℃,进行排蜡工艺;以2℃/min的升温速率加热1000℃,并保温2h,完成低温预烧结;接着以3℃/min的升温速率加热到1600℃进行高温烧结处理,保温时间为3h,烧结完成后随炉冷却,从而获得石墨烯增强氧化铝基陶瓷型芯。

采用本实施例制备的石墨烯增强氧化铝基陶瓷型芯高温强度为28.6mpa,高温挠度为0.12mm,气孔率为46.2%。

实施例2

一种机器人用石墨烯增强氧化铝基陶瓷型轴承,采用包括下述原料制备:200目氧化铝粉46%,325目氧化铝粉46%,纳米氧化硅粉6.5%,亚微米级石墨烯粉1.5%。添加占陶瓷粉体质量18%的增塑剂。

陶瓷型芯的制备方法,包括:

(1)将氧化铝陶瓷粉、氧化硅粉及石墨烯粉使用三维混料机进行混合,制成混合均匀,成分均一的陶瓷粉体。

(2)添加占陶瓷粉体质量18%的增塑剂,将增塑剂溶化后,将陶瓷粉体逐步加入到增塑剂中,陶瓷粉体全部加入后,继续搅拌15h制得陶瓷型芯浆料。

(3)采用热压注成型方法制备陶瓷型芯,将在步骤(1)中获得的原料装入压注设备中,在模具中获得所需的湿态陶瓷型芯,注射压力为2.5mpa,并保压180s。

(4)将在步骤(3)中获得的湿态陶瓷型芯在惰性气氛保护下进行烧结,采用的烧结工艺机制为:首先以1.2℃/min的升温速率加热450℃,进行排蜡工艺;以2.4℃/min的升温速率加热1100℃,并保温3h,完成低温预烧结;接着以3.2℃/min的升温速率加热到1550℃进行高温烧结处理,保温时间为4h,烧结完成后随炉冷却,从而获得石墨烯增强氧化铝基陶瓷型芯。

采用本实施例制备的石墨烯增强氧化铝基陶瓷型芯高温强度为28.6mpa,高温挠度为0.12mm,气孔率为46.2%。

实施例3

一种机器人用石墨烯增强氧化铝基陶瓷型轴承,采用包括下述原料制备:200目氧化铝粉47%,325目氧化铝粉46%,纳米氧化硅粉6%,亚微米级石墨烯粉1%。添加占陶瓷粉体质量19%的增塑剂。

陶瓷型芯的制备方法,包括:

(1)将氧化铝陶瓷粉、氧化硅粉及石墨烯粉使用三维混料机进行混合,制成混合均匀,成分均一的陶瓷粉体。

(2)添加占陶瓷粉体质量19%的增塑剂,将增塑剂溶化后,将陶瓷粉体逐步加入到增塑剂中,陶瓷粉体全部加入后,继续搅拌16h制得陶瓷型芯浆料。

(3)采用热压注成型方法制备陶瓷型芯,将在步骤(1)中获得的原料装入压注设备中,在模具中获得所需的湿态陶瓷型芯,注射压力为2.8mpa,并保压20s。

(4)将在步骤(3)中获得的湿态陶瓷型芯在惰性气氛保护下进行烧结,采用的烧结工艺机制为:首先以1.5℃/min的升温速率加热480℃,进行排蜡工艺,以2.5℃/min的升温速率加热1150℃,并保温3.5h,完成低温预烧结;以3.5℃/min的升温速率加热到1450℃进行高温烧结处理,保温时间为4.5h;烧结完成后随炉冷却,从而获得石墨烯增强氧化铝基陶瓷型芯。

采用本实施例制备的石墨烯增强氧化铝基陶瓷型芯高温强度为21.2mpa,高温挠度为0.21mm,气孔率为52.1%。

实施例4

一种机器人用石墨烯增强氧化铝基陶瓷型轴承,采用包括下述原料制备:200目氧化铝粉47%,325目氧化铝粉47%,纳米氧化硅粉5.2%,亚微米级石墨烯粉0.8%。添加占陶瓷粉体质量20%的增塑剂。

陶瓷型芯的制备方法,包括:

(1)将氧化铝陶瓷粉、氧化硅粉及石墨烯粉使用三维混料机进行混合,制成混合均匀,成分均一的陶瓷粉体。

(2)添加占陶瓷粉体质量20%的增塑剂,将增塑剂溶化后,将陶瓷粉体逐步加入到增塑剂中,陶瓷粉体全部加入后,继续搅拌18h制得陶瓷型芯浆料。

(3)采用热压注成型方法制备陶瓷型芯,将在步骤(1)中获得的原料装入压注设备中,在模具中获得所需的湿态陶瓷型芯,注射压力为3mpa,并保压28s。

(4)将在步骤(3)中获得的湿态陶瓷型芯在惰性气氛保护下进行烧结,采用的烧结工艺机制为:首先以1.6℃/min的升温速率加热485℃,进行排蜡工艺,以2.6℃/min的升温速率加热1185℃,并保温4.2h,完成低温预烧结;以4℃/min的升温速率加热到1400℃进行高温烧结处理,保温时间为5h;烧结完成后随炉冷却,从而获得石墨烯增强氧化铝基陶瓷型芯。

采用本实施例制备的石墨烯增强氧化铝基陶瓷型芯高温强度为21.2mpa,高温挠度为0.21mm,气孔率为52.1%。

实施例5

一种机器人用石墨烯增强氧化铝基陶瓷型轴承,采用包括下述原料制备:200目氧化铝粉47%,325目氧化铝粉48%,纳米氧化硅粉4.5%,亚微米级石墨烯粉0.5%。添加占陶瓷粉体质量24%的增塑剂。

陶瓷型芯的制备方法,包括:

(1)将氧化铝陶瓷粉、氧化硅粉及石墨烯粉使用三维混料机进行混合,制成混合均匀,成分均一的陶瓷粉体。

(2)添加占陶瓷粉体质量24%的增塑剂,将增塑剂溶化后,将陶瓷粉体逐步加入到增塑剂中,陶瓷粉体全部加入后,继续搅拌20h制得陶瓷型芯浆料。

(3)采用热压注成型方法制备陶瓷型芯,将在步骤(1)中获得的原料装入压注设备中,在模具中获得所需的湿态陶瓷型芯,注射压力为4mpa,并保压30s。

(4)将在步骤(3)中获得的湿态陶瓷型芯在惰性气氛保护下进行烧结,采用的烧结工艺机制为:首先以2℃/min的升温速率加热500℃,进行排蜡工艺,以3℃/min的升温速率加热1200℃,并保温6h,完成低温预烧结;接着以5℃/min的升温速率加热到1400℃进行高温烧结处理,保温时间为8h;烧结完成后随炉冷却,从而获得石墨烯增强氧化铝基陶瓷型芯。

采用该方法制备的石墨烯增强氧化铝基陶瓷型芯高温强度为15.2mpa,高温挠度为0.25mm,气孔率为54.2%。

应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1