一种紫外激发荧光陶瓷及其制备方法与流程

文档序号:20579750发布日期:2020-04-29 01:23阅读:864来源:国知局
一种紫外激发荧光陶瓷及其制备方法与流程

本发明涉及一种紫外激发荧光陶瓷及其制备方法,属于发光材料技术领域。



背景技术:

半导体固态照明因其效率高、体积小、环保、使用寿命长等优点被誉为21世纪的新型绿色照明光源,在照明和显示领域有广泛的应用前景。目前,固态照明的白光光源主要是通过led或ld芯片激发荧光粉的形式得到,如已经商业化的蓝光led芯片加上re3al5o12(re=lu,y,tb和gd)稀土铝酸盐荧光材料。但它仍存在一些问题:蓝光led芯片电光转换效率低,大部分能量转换成热能,致使器件散热困难,更进一步导致荧光材料的性能恶化。

相比于蓝光led芯片,紫外led芯片电光转换效率高,芯片的发热量低,具有其独特的优势。随着对高功率、高亮度照明光源的需求增加,亮度远远高于白光led的激光照明正受到了世界范围内的广泛关注,因此以紫外ld作为激发源也是一种很好的选择。无论是利用紫外led还是紫外ld为激发源,在追求更高质量光源的情况下,其对所用的荧光材料都提出了更高的要求。

相比于传统的需要有机树脂进行封装的荧光粉,荧光陶瓷无需封装且具有更高的热导率,能有效减少光衰,提高亮度和光谱的稳定性,是当前产业界的研究热点。然而,目前开展的荧光陶瓷的研究多是针对蓝光芯片的,因此研究制备出能与紫外芯片匹配的高性能荧光陶瓷是目前亟需解决的关键问题。

据报道,ce3+掺杂的ca2rehf2al3o12是一种具有石榴石结构的荧光体,其激发光谱在紫外区,发射光弥补了全光谱照明中缺失的青绿光。其量子效率高,达到50%左右。其热稳定性好,远远优于商业(sr,ba)2sio4:eu2+。但是该荧光粉需要用树脂封装,其热导率通常为0.1–0.4w(mk)-1,在高功率led/ld激发下散热慢,导致器件表面温度过高,树脂碳化,荧光粉发光强度急剧下降。如果制备成荧光陶瓷则不需要另外的有机物封装,其物理化学稳定性好,且热导率通常是树脂的数十倍,是目前备受关注的新型荧光材料形式。但是并不是所有的荧光粉都能通过压制成型烧结出相应的致密陶瓷。在本领域中,由于缺乏对其烧结特性的研究,其相应的致密荧光陶瓷还未曾报道。另外,其发射光谱缺乏红光,不能直接与紫外芯片合成白光,虽然添加红色荧光体是一种解决方法,但由于是两种荧光体物理混合,存在重吸收、长久稳定性差等众多问题。因此合成一种光谱可调、热稳定性高的紫外激发荧光陶瓷显得尤为重要。



技术实现要素:

针对上述问题,本发明首次对ca2rehf2al3o12的烧结性能及其显微结构进行大量研究,然后选取特定的烧结工艺制备得到一种光谱可调和热稳定好的紫外激发荧光陶瓷。而且,本发明中采用固相反应法真空烧结工艺,通过控制烧结温度和升温速率等制备得到致密的荧光陶瓷,避免了气孔的产生和由于少量第二相导致的开裂。

一方面,本发明提供了一种紫外激发荧光陶瓷,所述紫外激发荧光陶瓷的化学式为:ca2rehf2al3o12:xce3+,ymn2+,其中re为y、lu中的至少一种,0<x<0.08,0≤y<0.2。

本公开中,该紫外激发荧光陶瓷的激发光谱在300~430nm的紫外区,与紫外芯片匹配,发射光谱在450~700nm。而且,本公开进一步通过改变ce3+掺杂含量,可以调控发射峰位置;通过共掺杂mn2+,由ce3+将能量传递给mn2+,可以得到双峰发射,该单一荧光陶瓷与紫外芯片结合可以得到白光。总的来说,本发明通过改变x值和y值,可以对紫外激发荧光陶瓷在450~700nm范围内的发光光谱进行调控。

较佳的,所述紫外激发荧光陶瓷呈半透明,且致密度不低于90%。

较佳的,在300~430nm波长的紫外光激发下,所述紫外激发荧光陶瓷的发射光谱在450~700nm波段颜色可调。

另一方面,本发明还提供了一种上述的紫外激发荧光陶瓷的制备方法,包括:

(1)按照紫外激发荧光陶瓷化学计量比称取ca源、re源、hf源、al源、ce源和mn源并混合,得到混合粉体;

(2)将所得混合粉体在600~1000℃下煅烧,得到煅烧粉体;

(3)将所得煅烧粉体压制成型后在1600~1720℃下真空烧结,得到所述紫外激发荧光陶瓷。

在本发明中,按照ca2rehf2al3o12:xce3+,ymn2+化学计量比称取ca源、re源、hf源、al源、ce源、mn源,进行混合,得到混合粉体,不需要添加任何烧结助剂。将混合粉体先在600~1000℃下煅烧,目的是去除有机杂质,提高粉体活性。然后将煅烧后粉体压制成型后进行真空烧结,使原料粉体充分反应,并逐步减少杂质相的存在,从而得到致密半透明陶瓷,所得紫外激发荧光陶瓷的结晶良好,晶粒尺寸均匀。由于烧结气氛为真空,属于非氧化气氛,mn离子易以+2价掺杂进晶格之内。此外,在常见的石榴石荧光陶瓷材料中(如yag,luag),很难获得高效的ce-mn2+共掺的荧光陶瓷,因为它们的最佳烧温度在1700℃以上,而mn在这种高温下会发生严重的挥发。在本发明中,针对ca2rehf2al3o12的最佳烧结温度为1700℃~1720℃,加入特定含量mn源的掺杂同时降低了烧结温度(降低了约100℃,即含有锰源时,其真空烧结的温度控制在1600℃~1620℃),在相对较低温度(1600℃~1620℃)的真空烧结下获得了高效且致密的ce-mn2+共掺的荧光陶瓷。

较佳的,其特征在于,所述ca源为含ca的化合物,优选为cao、caco3、ca(oh)2中的至少一种;所述re源为y2o3、lu2o3中的至少一种;所述hf源为hfo2;所述al源为al2o3;所述ce源为ceo2;所述mn源为mno、mnco3、mn2o3中的至少一种。

较佳的,所述煅烧的时间为3~10小时。

较佳的,所述压制成型的方式包括干压成型或/和冷等静压成型,优选为先干压成型后冷等静压成型。

较佳的,所述干压成型的压力为10~15mpa,保压时间为0.5~5分钟;所述冷等静压成型的压力为180~200mpa,保压时间为1~10分钟。

较佳的,所述真空烧结的真空度<10-2pa;所述真空烧结的时间为3~20小时。

较佳的,所述真空烧结的升温制度包括:先以5~10℃/分钟的升温速率v1升温至1200℃,再以1~5℃/分钟的升温速率v2升温至1600~1720℃,且v1>v2。也就是说,当温度<1200℃时,升温速率为5~10℃/分钟;当升温的温度>1200℃时,升温速率进一步降低至1~5℃/分钟。

有益效果:

在本发明中,所得紫外激发荧光陶瓷具有立方晶系结构,在真空烧结下无需任何烧结助剂即可制备成致密陶瓷,工艺简单,成本低;

本发明的紫外激发荧光陶瓷激发光谱与紫外芯片完美匹配;

本发明通过增加ce3+含量,可以实现发射光谱红移。通过共掺mn2+,利用ce3+-mn2+间的能量传递,实现了双峰发射,其中mn2+的发射光填补了缺失的橙红光区域。适量的ce-mn2+共掺的单一荧光陶瓷与紫外芯片结合可以得到白光,克服了多色荧光体混合导致的再吸收问题;

本发明所得紫外激发荧光陶瓷发光效率高,光谱可调,热稳定性好,为全光谱照明提供了不同的发光波段,在大功率、高效白光照明显示上具有巨大的应用前景。

附图说明

图1为实施例1-3制备的紫外激发荧光陶瓷的实物图;

图2为实施例1制备的紫外激发荧光陶瓷的激发光谱;

图3为实施例1-5制备的紫外激发荧光陶瓷归一化发射光谱;

图4为实施例1制备的紫外激发荧光陶瓷的热稳定性测试;

图5为实施例5制备的紫外激发荧光陶瓷在408nm紫外ld激发下的发射光谱。

具体实施方式

以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。

本发明提供了一种紫外激发荧光陶瓷,其化学式为:ca2rehf2al3o12:xce3+,ymn2+,其中re为y、lu中的至少一种,0<x<0.08,0≤y<0.2,x、y分别为发光离子ce3+、mn2+掺杂的摩尔分数。在发明中,所得紫外激发荧光陶瓷的致密度高、化学稳定性好、量子效率高、热稳定好。其在紫外区有两个宽的激发带,可以被紫外芯片有效激发。通过调节ce3+/mn2+掺杂含量,其发射光谱在450-700nm范围内可调。

在本发明的实施方式中,所述紫外激发荧光陶瓷可通过固相反应法结合真空烧结制备得到,无需添加任何烧结助剂,其制备工艺简单,成本低,适合工业化生产,可应用于大功率、高亮度紫外激发的固态照明中。以下示例性地说明该紫外激发荧光陶瓷的制备方法。

按照紫外激发荧光陶瓷的化学计量比称取ca源、re源、hf源、al源、ce源和mn源,进行混合,得到混合粉体。在可选的实施方式中,ca源为含ca的化合物,例如cao、caco3、ca(oh)2等。re源可为re的氧化物,可为y2o3、lu2o3等。hf源可为hfo2等。al源可为al2o3等。ce源可为ceo2等。mn源可为mno、mnco3、mn2o3等中的至少一种。作为一个示例,按照ca2rehf2al3o12:xce3+,ymn2+(0<x<0.08,0≤y<0.2)化学计量比称取cao粉体、re2o3粉体、hfo2粉体、al2o3粉体、ceo2粉体、mno粉体,进行球磨混合,研磨、过筛,得到混合粉体。上述所有原料粉体(ca源、re源、hf源、al源、ce源和mn源)的纯度不低于99.0%,其粒径可在微米级、亚微米级、或纳米级。

将混合粉体于低温马弗炉中煅烧,得到煅烧粉体(或称煅烧后混合粉体)。进行煅烧的目的是除去粉体中有机杂质,提高粉体活性。其中,煅烧的温度可为600~1000℃,时间可为3~10小时。

将煅烧后混合粉体压制成型,得到素坯。其中,压制成型的方式包括干压成型或/和冷等静压成型,优选为先干压成型后冷等静压成型。在可选的实施方式中,干压成型的压力可为10~15mpa,保压时间为0.5~5min。在可选的实施方式中,所述冷等静压成型的压力可为180~200mpa,保压时间为1~10min。

将素坯在真空度低于10-2pa下、于1600~1720℃真空烧结。其中,真空烧结的时间可为3~20小时。优选,真空烧结的升温速率的调控制度包括:在<1200℃时,升温速率为5~10℃/分钟;当>1200℃时,降低升温速率至1~5℃/分钟。

进一步地,将制备好的紫外激发荧光陶瓷的双面进行研磨抛光,直至处理至合适厚度,最终获得高致密的半透明荧光陶瓷。

在本发明中,该紫外激发荧光陶瓷的激发光谱与紫外芯片完美匹配。而且,所得紫外激发荧光陶瓷具有高的发光效率和良好的热稳定性,可以广泛应用于高功率照明或显示等领域。本发明采用干压成型及真空烧结制备方法,工艺简单、成本低,适合于工业应用批量生产。

下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。

实施例1

采用纯度为99.99%的caco3、lu2o3、hfo2、al2o3、ceo2为原料,按照ca2luhf2al3o12:0.005ce3+组成精确称取4.992克caco3、4.974克lu2o3、10.524克hfo2、3.823克al2o3、0.021克ceo2,以无水乙醇为球磨介质进行球磨混合,球磨12h后,将浆料取出,在烘箱中干燥24h,然后用100目筛网过筛,得到的粉体先在马弗炉中于800℃煅烧6h,再用钢模在15mpa压强下压制成直径20mm的圆片,在200mpa下进行冷等静压处理得到素坯;然后将素坯放入真空炉中,以5℃/分钟升温至1200℃,再以1℃/分钟从1200℃升温至1700℃并烧结5h,得到紫外激发荧光陶瓷。最后将得到的荧光陶瓷进行抛光处理。本实施例1制备得到的紫外激发荧光陶瓷,如图1所示,具有透光性,密度为99.2%,量子效率为53.88%。其激发光谱如图2所示,在紫外区有两个宽的激发带。其发射光谱如图3所示,发射峰中心波长为466nm,色坐标为(0.1435,0.2009)。其热稳定性测试如图4所示,该荧光陶瓷在高温下仍能保持较高的发光强度和颜色稳定性。

实施例2

采用纯度为99.99%的caco3、lu2o3、hfo2、al2o3、ceo2为原料,按照ca2luhf2al3o12:0.01ce3+组成精确称取4.979克caco3、4.974克lu2o3、10.524克hfo2、3.823克al2o3、0.043克ceo2,以无水乙醇为球磨介质进行球磨混合,球磨12h后,将浆料取出,在烘箱中干燥24h,然后用100目筛网过筛,得到的粉体先在马弗炉中于800℃煅烧6h,再用钢模在15mpa压强下压制成直径20mm的圆片,在200mpa下进行冷等静压处理得到素坯;然后将素坯放入真空炉中,以5℃/分钟升温至1200℃,再以1℃/分钟从1200℃升温至1700℃并烧结5h,得到紫外激发荧光陶瓷。最后将得到的荧光陶瓷进行抛光处理。本实施例2制备得到的紫外激发荧光陶瓷如图1所示,具有透光性,密度为99.3%,量子效率为50.66%。其激发光谱与实施例1相似。其发射光谱如图3所示,发射峰中心波长为484nm,色坐标为(0.1448,0.2176)。

实施例3

采用纯度为99.99%的caco3、lu2o3、hfo2、al2o3、ceo2为原料,按照ca2luhf2al3o12:0.07ce3+组成精确称取4.829克caco3、4.974克lu2o3、10.524克hfo2、3.823克al2o3、0.301克ceo2,以无水乙醇为球磨介质进行球磨混合,球磨12h后,将浆料取出,在烘箱中干燥24h,然后用100目筛网过筛,得到的粉体先在马弗炉中于800℃煅烧6h,再用钢模在15mpa压强下压制成直径20mm的圆片,在200mpa下进行冷等静压处理得到素坯;然后将素坯放入真空炉中,以5℃/分钟升温至1200℃,再以1℃/分钟从1200℃升温至1700℃并烧结5h,得到紫外激发荧光陶瓷。最后将得到的荧光陶瓷进行抛光处理。本实施例5制备得到的紫外激发荧光陶瓷如图1所示,具有透光性,密度为99.2%,量子效率为25.95%。其激发光谱与实施例1相似。其发射光谱如图3所示,发射峰中心波长为497nm,色坐标为(0.2083,0.4098)。

实施例4

采用纯度为99.99%的caco3、lu2o3、hfo2、al2o3、ceo2、mnco3为原料,按照ca2luhf2al3o12:0.01ce3+,0.05mn2+组成精确称取4.979克caco3、4.974克lu2o3、10.261克hfo2、3.823克al2o3、0.043克ceo2,0.144克mnco3。以无水乙醇为球磨介质进行球磨混合,球磨12h后,将浆料取出,在烘箱中干燥24h,然后用100目筛网过筛,得到的粉体先在马弗炉中于800℃煅烧6h,再用钢模在15mpa压强下压制成直径20mm的圆片,在200mpa下进行冷等静压处理得到素坯;然后将素坯放入真空炉中,以5℃/分钟升温至1200℃,再以1℃/分钟从1200℃升温至1600℃并烧结5h,得到紫外激发荧光陶瓷。最后将得到的荧光陶瓷进行抛光处理。本实施例4制备得到的紫外激发荧光陶瓷具有透光性,致密度为99.0%,量子效率为32.14%。作为对比示例,ca2luhf2al3o12:0.01ce3+在1600℃烧结时,所得陶瓷的致密度仅为79.32%。其激发光谱与实施例1相似。其发射光谱如图3所示,呈双峰发射,发射峰中心波长分别位于480nm和576nm,色坐标为(0.2078,0.2694)。

实施例5

采用纯度为99.99%的caco3、lu2o3、hfo2、al2o3、ceo2、mnco3为原料,按照ca2luhf2al3o12:0.01ce3+,0.15mn2+组成精确称取4.979克caco3、4.974克lu2o3、9.735克hfo2、3.823克al2o3、0.043克ceo2,0.431克mnco3。以无水乙醇为球磨介质进行球磨混合,球磨12h后,将浆料取出,在烘箱中干燥24h,然后用100目筛网过筛,得到的粉体先在马弗炉中于800℃煅烧6h,再用钢模在15mpa压强下压制成直径20mm的圆片,在200mpa下进行冷等静压处理得到素坯;然后将素坯放入真空炉中,以5℃/分钟升温至1200℃,再以1℃/分钟从1200℃升温至1600℃并烧结5h,得到紫外激发荧光陶瓷。最后将得到的荧光陶瓷进行抛光处理。本实施例5制备得到的紫外激发荧光陶瓷具有透光性,致密度为99.3%,量子效率为32.47%。其激发光谱与实施例1相似。其发射光谱如图3所示,呈双峰发射,发射峰中心波长分别位于480nm和580nm,色坐标为(0.2847,0.3044),接近白光。其与408nm紫外ld组合得到白光的发射光谱如图5所示。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1