基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷及其制备方法与应用与流程

文档序号:21883934发布日期:2020-08-18 17:02阅读:239来源:国知局
基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷及其制备方法与应用与流程

本发明属于无铅电致伸缩陶瓷领域,进一步涉及钙钛矿型铌酸钾钠基无铅电致伸缩陶瓷领域,具体涉及一种基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷及其制备方法与应用。



背景技术:

驱动器和高精度位移传感器要求具有优异的应变输出性能,这种应变输出性能是通过材料的压电效应或电致伸缩效应产生。因电致伸缩效应在电场诱导下的应变与电场强度成线性关系,且温度稳定性较好,已在国家安全和国民经济的各个领域得到广泛的应用。

传统的电致伸缩材料主要以铅基弛豫铁电材料为主,如pb(mg1/3nb2/3)o3(pmn)、pb(zn1/3nb2/3)o3(pzn)等,具有较高的电致应变(0.1%)和较大的电致伸缩系数(0.015-0.025m4/c2),能够满足相关器件的需求。然而铅为有毒重金属元素,传统铅基电致伸缩陶瓷中的氧化铅含量在60%以上,在制备和烧结过程中氧化铅的挥发会造成严重污染。随着人类对生态环境保护意识的提高,社会可持续发展战略的要求,许多国家都立法禁止使用含铅的电子材料,如欧盟于2006年7月1日开始执行的“电器和电子设备中限制有害物质”(rohs)法令,禁止在电子电器设备上使用含铅材料,并且所有出口到欧洲的电子产品均需获得rohs检测报告。美国、日本以及我国电子信息产业部也相继颁布了类似法案。尽管欧盟rohs指令对压电陶瓷中铅的使用暂时豁免到2021年7月21日,但之后欧盟将更严格地执行rohs指令。

目前,在无铅电致伸缩陶瓷的研究中,三类具有钙钛矿结构的无铅陶瓷,即钛酸钡(batio3:bt)系,钛酸铋钠(bi0.5na0.5tio3:bnt)系和铌酸钾钠(k0.5na0.5nbo3:knn)系,以其具有优良的电学性能及可望能够采用传统制备工艺规模化生产进行制作而受到广泛研究。其中,铌酸钾钠基无铅陶瓷以其相对优异的电学性能而倍受关注,被认为是最有望取代铅基电致伸缩陶瓷的无铅陶瓷体系之一,但纯组分knn陶瓷很难通过普通的固相烧结法来烧结致密化。且总体来说,无铅电致伸缩陶瓷性能尚未达到完全取代铅基电致伸缩陶瓷的要求,这对无铅电致伸缩陶瓷的研究提出了严峻的挑战。虽然有些发达国家,尤其是日本在环保型无铅电致伸缩材料及器件应用等方面已取得重要进展,但对核心技术进行封锁。因此,研究开发环境协调性好的无铅电致伸缩陶瓷材料已成为一项关系到电子技术可持续发展的紧迫、且意义重大的任务。



技术实现要素:

针对目前铅基电致伸缩陶瓷生产过程中存在的存在重金属污染、而现有无铅电致伸缩陶瓷性能尚未达到完全取代铅基电致伸缩陶瓷的要求等问题,本发明目的旨在提供一种基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷,具有高的电致伸缩应变和电致伸缩系数,且电致伸缩系数呈现优异的温度稳定性。

本发明的第二个目的是提供一种基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷制备方法,通过对knn基陶瓷进行a、b位掺杂对铌酸钾钠基无铅电致伸缩陶瓷性能改进。

本发明的第三个目的在于提供上述基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷在制造驱动器和高精度微位移传感器件中的应用。

为了实现上述目的,本发明的发明思路为:铌酸钾钠(k0.5na0.5nbo3:knn)系陶瓷是钙钛矿型铁电体,属于含氧八面体铁电体中的一种,通式为abo3,顶角被较大的a离子占据,体心被较小的b离子占据,六个面心被o离子占据。这些氧离子形成氧八面体,离子b处于氧八面体的中心。本发明通过同时在a位掺杂bi3+和b位掺杂zr4+、sb5+,引入a位缺位和氧空位来打破原体系的长程铁电有序性,来获得具有优异电致伸缩性能的无铅陶瓷。

本发明提供的基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷,该无铅电致伸缩陶瓷组分组成如下述通式所示:

(1-x-y)(k0.6na0.4)nbo3-xnasbo3-ybi0.7na0.5zro3-afe2o3

通式中的x、y、a取值分别为:0.05≤x≤0.09,0.01≤y≤0.05,0.001≤a≤0.01。

本发明提供的基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷,通过同时在a位掺杂bi3+和b位掺杂zr4+、sb5+,增加极性纳米微区数量,引入a位缺位和氧空位来打破原体系的长程铁电有序性,在室温附近诱导出弛豫相,且在外场激励下弛豫相和铁电相可实现可逆转变,从而产生高的电致伸缩应变和电致伸缩系数。发明人在电致伸缩陶瓷研究中发现,不同化学组分及配比会造成所制备陶瓷中的极性纳米微区数量区别较大,根据本发明给出的化学计量式所制备的无铅电致伸缩陶瓷,其极性纳米微区数量明显增多。另外,由于该弛豫相具有较高的温度稳定性,使得电致伸缩系数呈现优异的温度稳定性,在传感器和位移器等领域具有十分重要的应用前景。此外,添加fe2o3可以有效降低烧结温度,获得致密的陶瓷体,增强耐压能力。

上述基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷,通式中x、y、a取值分别优选0.06≤x≤0.08,0.02≤y≤0.04,0.002≤a≤0.008。进一步分别优选x=0.07,y=0.025,a=0.005。当x=0.07,y=0.025,a=0.005时,其电致伸缩应变高达0.1%,电致伸缩系数可达0.047m4/c2,且电致伸缩系数在室温至180℃的宽温区内保持稳定,显著优于铅基电致伸缩陶瓷和现有报道的铌酸钾钠基电致伸缩陶瓷。

本发明提供的上述基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷的制备方法,包括以下步骤:

(1)配料,以na2co3、k2co3、nb2o5、sb2o3、bi2o3、zro2和fe2o3为原料,按通式(1-x-y)(k0.6na0.4)nbo3-xnasbo3-ybi0.7na0.5zro3-afe2o3中x、y、a的设定值确定的化学式进行称量配料;

(2)球磨,将配好的原料进行球磨,充分球磨后经烘干得到干粉料;

(3)预烧,将干粉料在750~900℃下预烧3~6h进行铌酸盐化合物的合成,得到预烧粉体;

(4)成型,向所得预烧粉体中加入质量浓度为5%~9%的聚乙烯醇水溶液进行造粒得到粒料,并将所得粒料用模具压制成型;

(5)煅烧,将模压成型的陶瓷型坯在1100~1180℃下烧结2~4h,得到烧结陶瓷,将所得烧结陶瓷烧渗电极即获得基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷。

上述基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷,步骤(2)中,球磨的目的在于将原料均匀混合,采用本领域常用球磨工艺即可,如以无水乙醇为球磨介质采用滚动球磨法进行研磨。

本发明提供的上述基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷,具有高的电致伸缩应变和电致伸缩系数,以及优异的温度稳定性,可用于制造驱动器和高精度微位移传感器件。

本发明提供的基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷技术与现有技术相比具有以下有益效果:

1、本发明提供的基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷,在铌酸钾钠陶瓷体系中通过a位掺杂bi3+和b位掺杂zr4+、sb5+,引入a位缺位和氧空位来打破原有的长程铁电有序,获得在室温下具有强弛豫性的无铅电致伸缩陶瓷,该无铅电致伸缩陶瓷具有高的电致伸缩应变、大的电致伸缩系数和温度稳定性,其电致伸缩应变高达0.1%,电致伸缩系数可达0.047m4/c2,且电致伸缩系数在室温至180℃的宽温区内保持稳定。

2、本发明提供的基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷,可以采用工业原料经传统陶瓷制备技术获得,工艺成熟,流程简单,易于实现,有利于工业化规模生产。

3、本发明提供的基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷,基于优异的电致伸缩应变、电致伸缩系数和温度稳定性,且对环境友好,该无铅电致伸缩陶瓷可在驱动器和微位移控制器等电子器件中获得应用,对取代铅基电致伸缩材料具有重大意义。

附图说明

图1为铌酸钾钠系无铅电致伸缩陶瓷的x射线衍射图谱,其中,(a)、(b)、(c)分别对应实施例1、3、5制备的铌酸钾钠系无铅电致伸缩陶瓷;

图2为实施例3制备的铌酸钾钠系无铅电致伸缩陶瓷的介温图谱及弛豫因子,其中图(a)为介温图谱,图(b)为驰豫因子;

图3为铌酸钾钠系无铅电致伸缩陶瓷的压电力原子显微镜图谱,其中,(a)、(b)、(c)分别对应实施例1、3、5制备的铌酸钾钠系无铅电致伸缩陶瓷;

图4为实施例3制备的铌酸钾钠系无铅电致伸缩陶瓷的电滞回线和应变回线,其中(a)为电致回线,(b)为应变回线;

图5为实施例3制备的铌酸钾钠系无铅电致伸缩陶瓷其室温下电致伸缩示意图;

图6为实施例3制备的铌酸钾钠系无铅电致伸缩陶瓷其电致伸缩系数随温度的变化。

具体实施方式

以下将通过实施例并结合附图对本发明的技术方案进行清楚、完整的描述,显然,所述实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施例,都属于本发明所保护的范围。

实施例1

本实施例制备由通式(1-x-y)(k0.6na0.4)nbo3-xnasbo3-ybi0.7na0.5zro3-afe2o3表示的无铅电致伸缩陶瓷,式中x=0.05、y=0.01、a=0.001(样品1),具体包括以下步骤:

(1)配料,以na2co3、k2co3、nb2o5、sb2o3、bi2o3、zro2和fe2o3为原料,按化学式0.94(k0.6na0.4)nbo3-0.05nasbo3-0.05bi0.7na0.5zro3-0.001fe2o3进行称量配料;

(2)球磨,将配好的原料置入球磨机并加入无水乙醇采用滚动球磨法进行球磨,充分球磨后经烘干得到干粉料;

(3)预烧,将干粉料置入煅烧炉在约750℃下预烧6h左右进行铌酸盐化合物的合成,冷却至室温后得到预烧粉体;

(4)成型,将所得预烧粉体磨匀后加入质量浓度约为5%的聚乙烯醇水溶液进行造粒,之后将所得粒料在压力为10mpa下用直径为10mm模具压制成厚度为0.5mm陶瓷坯片,并排胶;

(5)煅烧,将排胶后的陶瓷坯片置入煅烧炉在约1180℃下保温烧结2h左右,冷却至室温取出得到烧结陶瓷,将所得烧结陶瓷烧渗银电极即获得高性能铌酸钾钠基电致伸缩陶瓷。

实施例2

本实施例制备由通式(1-x-y)(k0.6na0.4)nbo3-xnasbo3-ybi0.7na0.5zro3-afe2o3表示的无铅电致伸缩陶瓷,式中x=0.06、y=0.02、a=0.002(样品2),具体包括以下步骤:

(1)配料,以na2co3、k2co3、nb2o5、sb2o3、bi2o3、zro2和fe2o3为原料,按化学式0.92(k0.6na0.4)nbo3-0.06nasbo3-0.02bi0.7na0.5zro3-0.002fe2o3进行称量配料;

(2)球磨,将配好的原料置入球磨机并加入无水乙醇采用滚动球磨法进行球磨,充分球磨后经烘干得到干粉料;

(3)预烧,将干粉料置入煅烧炉在约800℃下预烧5h左右进行铌酸盐化合物的合成,冷却至室温后得到预烧粉体;

(4)成型,将所得预烧粉体磨匀后加入质量浓度约为6%的聚乙烯醇水溶液进行造粒,之后将所得到粒料在压力为10mpa下用直径为10mm模具压制成厚度为0.5mm陶瓷坯片,并排胶;

(5)煅烧,将排胶后的陶瓷坯片置入煅烧炉在约1160℃下保温烧结3h左右,冷却至室温取出得到烧结陶瓷,将所得烧结陶瓷烧渗银电极即获得高性能铌酸钾钠基电致伸缩陶瓷。

实施例3

本实施例制备由通式(1-x-y)(k0.6na0.4)nbo3-xnasbo3-ybi0.7na0.5zro3-afe2o3表示的无铅电致伸缩陶瓷,式中x=0.07、y=0.025、a=0.005(样品3),具体包括以下步骤:

(1)配料,以na2co3、k2co3、nb2o5、sb2o3、bi2o3、zro2和fe2o3原料,按化学式0.905(k0.6na0.4)nbo3-0.07nasbo3-0.025bi0.7na0.5zro3-0.005fe2o3进行称量配料;

(2)球磨,将配好的原料置入球磨机并加入无水乙醇采用滚动球磨法进行球磨,充分球磨后经烘干得到干粉料;

(3)预烧,将干粉料置入煅烧炉在约850℃下预烧4h左右进行铌酸盐化合物的合成,冷却至室温后得到预烧粉体;

(4)成型,将所得预烧粉体磨匀后加入质量浓度约为7%的聚乙烯醇水溶液进行造粒,之后将所得到粒料在压力为10mpa下用直径为10mm模具压制成厚度为0.5mm陶瓷坯片片,并排胶;

(5)煅烧,将排胶后的陶瓷坯片置入煅烧炉在约1140℃下保温烧结3h左右,冷却至室温取出得到烧结陶瓷,将所得烧结陶瓷烧渗银电极即获得高性能铌酸钾钠基电致伸缩陶瓷。

实施例4

本实施例制备由通式(1-x-y)(k0.6na0.4)nbo3-xnasbo3-ybi0.7na0.5zro3-afe2o3表示的无铅电致伸缩陶瓷,式中x=0.08、y=0.04、a=0.008(样品4),具体包括以下步骤:

(1)配料,以na2co3、k2co3、nb2o5、sb2o3、bi2o3、zro2和fe2o3为原料,按化学式0.88(k0.6na0.4)nbo3-0.08nasbo3-0.04bi0.7na0.5zro3-0.008fe2o3进行称量配料;

(2)球磨,将配好的原料置入球磨机并加入无水乙醇采用滚动球磨法进行球磨,充分球磨后经烘干得到干粉料;

(3)预烧,将干粉料置入煅烧炉在约850℃下预烧4h左右进行铌酸盐化合物的合成,冷却至室温后得到预烧粉体;

(4)成型,将所得预烧粉体磨匀后加入质量浓度约为8%的聚乙烯醇水溶液进行造粒,之后将所得到粒料在压力为10mpa下用直径为10mm模具压制成厚度为0.5mm陶瓷坯片,并排胶;

(5)煅烧,将排胶后的陶瓷坯片置入煅烧炉在约1120℃下保温烧结4h左右,冷却至室温取出得到烧结陶瓷,将所得烧结陶瓷烧渗银电极即获得高性能铌酸钾钠基电致伸缩陶瓷。

实施例5

本实施例制备由通式(1-x-y)(k0.6na0.4)nbo3-xnasbo3-ybi0.7na0.5zro3-afe2o3表示的无铅电致伸缩陶瓷,式中x=0.09、y=0.05、a=0.01(样品5),具体包括以下步骤:

(1)配料,以na2co3、k2co3、nb2o5、sb2o3、bi2o3、zro2和fe2o3为原料,按化学式0.86(k0.6na0.4)nbo3-0.09nasbo3-0.05bi0.7na0.5zro3-0.01fe2o3进行称量配料;

(2)球磨,将配好的原料置入球磨机并加入无水乙醇采用滚动球磨法进行球磨,充分球磨后经烘干得到干粉料;

(3)预烧,将干粉料置入煅烧炉在约900℃下预烧3h左右进行铌酸盐化合物的合成,冷却至室温后得到预烧粉体;

(4)成型,将所得预烧粉体磨匀后加入质量浓度约为9%的聚乙烯醇水溶液进行造粒,之后将所得到粒料在压力为10mpa下用直径为10mm模具压制成厚度为0.5mm陶瓷坯片,并排胶;

(5)煅烧,将排胶后的陶瓷坯片置入煅烧炉在约1100℃下保温烧结4h左右,冷却至室温取出得到烧结陶瓷,将所得烧结陶瓷烧渗银电极即获得高性能铌酸钾钠基电致伸缩陶瓷。

对实施例3制备的铌酸钾钠基无铅电致伸缩陶瓷的结构和性能分析如下。

(一)结构分析

对实施例1、3、5制备的铌酸钾钠系无铅电致伸缩陶瓷(样品1、3、5)进行x射线衍射分析,分析结果如图1所示。从图1中可以看出,该无铅电致伸缩陶瓷呈现单一立方结构,没有第二相产生;实施例1典型的四方相结构,实施例3和5所有的衍射峰均为单峰,表明该铌酸钾钠基无铅电致伸缩陶瓷为膺立方相结构,由此说明bi3+和zr4+、sb5+可以进入knn晶体结构中取代a位/b位的离子而不引起晶体结构的较大变化。

(二)性能分析

1、介电性能

对实施例3制备的铌酸钾钠基无铅电致伸缩陶瓷(样品3)进行介电性能分析。不同频率下介电温度关系及豫驰因子的变化如图2所示,从图2可以看出,该无铅电致伸缩陶瓷介电性能表现出明显的豫驰特征,豫驰因子γ(弥散性指数)为1.64,具有良好的频谱弥散性。这是由于k+、na+被bi3+取代,nb4+被zr4+、sb5+取代,造成在a位同时被k+、na+被bi3+离子随机占位,b位上同时被nb4+、zr4+和sb5+离子随机占位,由此a位和b位中多种离子在材料背部是无序分布的,这就导致了材料内部化学组分不均分布,从而造成材料内部不同微观区域的化学成分不同,而组分的变化对驰豫铁电体的铁电-顺电相变温度(居里温度)的影响非常敏感,所以组成的轻微变化就会引起不同的微观区域有不同的居里温度。全部微区性质的综合表现就是驰豫铁电体的宏观性能,即居里温度不再是一个确定的点,而是一个温度范围。由于电致伸缩材料对温度稳定性要求较高,介电常数的稳定性越好,越有利于材料发挥更好的性能。介温图谱的宽化使得介电常数在一定的温度范围内的稳定稳定性更好,从而可以提高材料的可靠性。从图3可以看出,随着x、y、a含量的增加,陶瓷的畴结构由大块的微米级铁电畴变为纳米级的铁电微区畴,再到铁电畴逐渐消失,表明a、b位掺杂促进了陶瓷中极性纳米微区(pnrs)的生长,而过量的bi3+、zr4+、sb5+掺杂会导致pnrs消失。从图4(a)可以看出,样品电滞回线较为细长,剩余极化强度和矫顽电场都较小,这表明通过适量a位掺杂bi3+和b位掺杂zr4+、sb5+,离子价态和半径的不同促进了陶瓷中极性纳米微区(pnrs)的生长,使剩余极化和矫顽电场降低。

2、电致伸缩性能

实施例3制备的铌酸钾钠基电致伸缩陶瓷(样品3)进行电致伸缩性能分析。应变回线如图4(b)所示,样品的应变曲线滞后较小,与电场几乎是线性关系。在最大电场强度为60kv/cm时,最大应变量为0.1%。这是因为;室温下电致伸缩示意图如图5所示,从图5可以看出,s-p曲线非常好地拟合成抛物线,表明通过本发明方法制备的样品3具有良好的电致伸缩效应,且在室温下的电致伸缩系数高达0.047m4/c2。这是由于通过在a位掺杂bi3+、na+和b位掺杂zr4+、sb5+,使陶瓷中极性纳米微区增多,同时引入a位缺位和氧空位来打破原体系的长程铁电有序性,在室温附近诱导出弛豫相,且在外场激励下弛豫相和铁电相可实现可逆转变,从而产生高的电致伸缩应变和电致伸缩系数。

(三)温度稳定性

对实施例3制备的铌酸钾钠系无铅电致伸缩陶瓷(样品3)的电致伸缩系数温度稳定性进行分析,分析结果如图6所示。由图6可以看出,电致伸缩系数在室温至180℃的宽温区内保持稳定,表明本发明制备的铌酸钾钠基无铅电致伸缩陶瓷,其电致伸缩系数呈现优异的温度稳定性。这是由于弛豫相具有较高的稳定性,使得电致伸缩系数在室温至180℃的宽温区内保持稳定。

综上所述,本发明提供的基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷,利用不等价离子取代引入a位缺位和氧空位来打破原体系的长程铁电有序性,增加弛豫型,具有优异的电致伸缩应变、电致伸缩系数和温度稳定性,可在驱动器和微位移控制器等电子器件中获得应用,对取代铅基电致伸缩材料具有重大意义。

本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1