一种无机纤维保温板及其制备方法和应用与流程

文档序号:22504978发布日期:2020-10-13 09:41阅读:183来源:国知局

本发明涉及保温材料技术领域,尤其涉及一种无机纤维保温板及其制备方法和应用。



背景技术:

船用保温材料由于其高湿度、高盐度的使用环境,对保温材料的防潮反卤性能上提出了比一般建筑保温材料更高的要求。目前市场上主要船用舱室保温材料主要为岩棉材料,且由于传统运行环境一般温差较大,因此,在长期的使用过程中容易出现返潮反卤、吸水性强和强度衰减快等问题,且还存在制备成本高、不能连续生产、能耗高等问题。因此,如何解决现有船用保温材料存在的性能上的不足以及生产成本高、不能连续生产的问题,成为研发人员亟待解决的关键问题。



技术实现要素:

针对现有技术中船用保温材料材料存在的上述问题,本发明提供一种无机纤维保温板及其制备方法和应用。

为解决上述技术问题,本发明提供的技术方案是:

一种无机纤维保温板,包括如下质量份数的原料组分:冶金渣15-30份,煤矸石20-50份,淘洗龙岩土10-30份,氧化铝30-60份,氧化硅30-50份,滑石粉5-10份和萤石3-5份。

相对于现有技术,本发明提供的无机纤维保温板,选择冶金渣和煤矸石作为提供sio2和al2o3纤维骨架的组分,并加入氧化铝和氧化硅进行调质,使原料满足成纤的条件;滑石粉在熔体状态可与原料中的氧化铝形成硅酸镁铝成分,使硅酸铝纤维中掺杂少量的硅酸镁铝纤维,提高了材料的保温性能和机械性能;淘洗龙岩土和滑石粉的加入,可改善原料组分熔融后的流动性,提高纤维的机械强度和疏水性,且滑石粉对红外线具有红外线具有一定能的阻隔作用,可提高材料的保温性能;加入特定含量的萤石有利于改善原料组分的熔体粘度,降低原料熔化温度,降低能耗,并有利于降低纤维直径和渣球含量,提高保温板的密度均匀性。上述各组分协同作用,使得制备的无机纤维板具有较高的保温隔热性能和憎水性能,且选用了冶金渣、煤矸石等工业废料,既降低了生产成本,同时又缓解了其带来的环境污染问题,具有较高的经济效益和环保效益。

本发明提供的无机纤维保温板充分利用固体废弃物,实现了固体废弃物的资源化利用,平均温度500℃下,导热系数为0.03~0.04w/(m.k)(平均温度500℃),憎水率为99.3%~99.5%,体积吸水率为1.2%~1.8%,压缩强度为72-78kpa,可广泛应用于船用舱室的保温,可达到较好的保温、隔热、防潮的效果,且原料廉价易得,具有广泛的应用前景。

本发明中所述冶金渣为炼铁所产生炉渣废弃物;所述煤矸石为洗煤过程所产生的煤矸石废弃物;所述淘洗龙岩土为龙岩土原矿经淘洗后得到的龙岩土细粉;所述氧化铝为纯度为95%以上的工业氧化铝粉;所述氧化硅为纯度为95%以上的工业氧化铝粉;所述滑石粉为纯度为90%以上的滑石粉;所述萤石为caf2含量为95%以上的萤石矿粉。

优选的,所述冶金渣为温度为100-300℃的热态冶金渣。

采用热态冶金渣,不仅可避免冶金渣冷却的热量损失和带来的环境污染,而且还有利于后续采用冶金渣为原料制备纤维时二次熔化需要增加的能量消耗。

本发明还提供上述无机纤维保温板的制备方法,包括如下步骤:

步骤一、按照设计配比称取各组分,将称取的各组分混合均匀,加热至1430~1460℃,得液态浆料;

步骤二、将所述液态浆料经高速离心,甩丝,收集,得直径为3.5~4.8μm的纤维;

步骤三、将所述纤维压制,针刺,得纤维毡;

步骤四、制备胶液,在所述纤维毡的底层施加负压,将所述胶液淋浇于所述纤维毡顶层,然后挤压得到纤维板,干燥,得所述防火材料。

本发明提供的无机纤维保温板的制备方法,采用特定含量的淘洗龙岩土、氧化铝、氧化硅、滑石粉和萤石对冶金渣和煤矸石进行调质改性,使最终的成分达到硅酸铝纤维的成分要求,并有利于提高渣料的酸度系数,进而有利于提高纤维产品的性能和化学稳定性;且制备方法简单,可以连续进行生产,极大地降低了生产成本,便于实现工业化生产。

本发明步骤一中,加热熔化的温度为1430~1460℃。优选的加热熔化温度有利于使液态浆料具有合适的黏度,使其流动性好,便于纤维的形成。温度过低,黏度过大,流动性降低,熔体还没完全铺展开便被甩出,不利于纤维的形成;温度过高,黏度过小,熔体会在成纤前被甩出,降低成纤率。

优选的,步骤二中,所述离心转速为600~680r/min。

纤维直径越小,强度越高,但是纤维直径小,还会导致纤维的脆性增大,优选的转速有利于得到直径为3.5~4.8μm的纤维,优选的纤维直径有利于使纤维的强度和柔韧性俱佳,同时也有利于提高纤维的稳定性和保温性能。

优选的,步骤三中,所述压制的压力为0.8~1.2mpa。

优选的,步骤三中,针刺的密度为120~180针/m2

优选的,步骤四中,所述胶液为质量比为15~25:1的铝溶胶和甲基硅酸钠的混合物。

优选的胶液具有较好的粘结性能,并能提高材料的憎水性能。

优选的,步骤四中,所述胶液和纤维毡的质量比为1:8~10。

优选的针刺密度和胶液用量有利于使胶液充分渗入纤维毡中,并有利于胶液附着在每根纤维的表面,进而提高制备的保温纤维板的韧性。

优选的,步骤四中,负压值为0.5mpa~1.2mpa。

优选的负压值有利于胶液快速渗入纤维毡中,并使胶液从顶层向底层扩散,均匀分布于纤维毡内部,提高纤维毡的韧性和防潮性。

优选的,步骤四中,挤压的压力强度为4~8mpa。

优选的,步骤四中,所述干燥采用微波干燥的方式,干燥温度为300~380℃,干燥时间为2~3h。

优选的干燥方式和干燥温度可减少板材因内部水分、空气、骨料受热膨胀或受热不均匀导致的形变,进而避免对板材结构的破坏。

本发明还提供了上述无机纤维保温板或上述任一项所述的无机纤维保温板的制备方法制备得到的无机纤维保温板作为船用舱室或船体空间分隔用材料中的应用。

将本发明提供的无机纤维保温板制成船用舱室用或船体空间分隔用材料用的保温板,不仅有效利用了工业废渣,而且还为船体提供了优异的保温效果,扩大了保温材料的市场,具有较高的实用价值。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

实施例1

本实施例提供一种无机纤维保温板,包括如下质量份数的原料组分:

冶金渣15份,煤矸石50份,淘洗龙岩土30份,氧化铝45份,氧化硅30份,滑石粉10份和萤石4份。

上述无机纤维保温板的制备方法包括如下步骤:

步骤一、按照设计配比称取各组分,将称取的各组分混合均匀,加热至1460℃熔化,得液态浆料;

步骤二、将所述液态浆料在600r/min的条件下离心甩丝,甩成平均直径为4.8μm的超细纤维并收集,得纤维;

步骤三、将所述纤维压实整形成平板状,压强为1.2mpa,然后进行针刺,针刺密度为180针/m2,得纤维毡;

步骤四、将铝溶胶和甲基硅酸钠按照质量比为25:1混合均匀,得胶液;

步骤五、在所述纤维毡的底层用真空抽滤泵施加负压,负压值为0.5mpa,然后将所述胶液淋浇于所述纤维毡顶层,胶液与纤维毡的质量比为1:9,然后于8mpa条件下挤压得到纤维板,微波干燥,干燥温度为380℃,干燥时间为2h,裁剪为合适的大小,得无机纤维保温板。

上述制备的无机纤维保温板经国家建筑材料测试中心检测,压缩强度可达到72kpa(gb/t13480-2014);憎水率为99.3%(gb/t10299-2011),质量吸湿率为1.8%(gb/t5480-201711),密度为245kg/m3(gb/t16400-20157.2,gb/t5480-20177),平均温度500℃下,导热系数为0.040w/(m·k)。

实施例2

本实施例提供一种无机纤维保温板,包括如下质量份数的原料组分:

冶金渣20份,煤矸石35份,淘洗龙岩土10份,氧化铝60份,氧化硅50份,滑石粉8份和萤石5份。

上述无机纤维保温板的制备方法包括如下步骤:

步骤一、按照设计配比称取各组分,将称取的各组分混合均匀,加热至1430℃熔化,得液态浆料;

步骤二、将所述液态浆料在640r/min的条件下离心甩丝,甩成平均直径为4.0μm的超细纤维并收集,得纤维;

步骤三、将所述纤维压实整形成平板状,压强为1.0mpa,然后进行针刺,针刺密度为150针/m2,得纤维毡;

步骤四、将铝溶胶和甲基硅酸钠按照质量比为20:1混合均匀,得胶液;

步骤五、在所述纤维毡的底层用真空抽滤泵施加负压,负压值为1.2mpa,然后将所述胶液淋浇于所述纤维毡顶层,胶液与纤维毡的质量比为1:10,然后于6mpa条件下挤压得到纤维板,微波干燥,干燥温度为300℃,干燥时间为3h,裁剪为合适的大小,得无机纤维保温板。

上述制备的无机纤维保温板经国家建筑材料测试中心检测,压缩强度可达到76kpa(gb/t13480-2014);憎水率为99.4%(gb/t10299-2011),质量吸湿率为1.5%(gb/t5480-201711),密度为220kg/m3(gb/t16400-20157.2,gb/t5480-20177),平均温度500℃下,导热系数为0.034w/(m·k)。

实施例3

本实施例提供一种无机纤维保温板,包括如下质量份数的原料组分:

冶金渣30份,煤矸石20份,淘洗龙岩土20份,氧化铝30份,氧化硅40份,滑石粉5份和萤石3份。

上述无机纤维保温板的制备方法包括如下步骤:

步骤一、按照设计配比称取各组分,将称取的各组分混合均匀,加热至1445℃熔化,得液态浆料;

步骤二、将所述液态浆料在680r/min的条件下离心甩丝,甩成平均直径为3.5μm的超细纤维并收集,得纤维;

步骤三、将所述纤维压实整形成平板状,压强为0.8mpa,然后进行针刺,针刺密度为120针/m2,得纤维毡;

步骤四、将铝溶胶和甲基硅酸钠按照质量比为15:1混合均匀,得胶液;

步骤五、在所述纤维毡的底层用真空抽滤泵施加负压,负压值为0.8mpa,然后将所述胶液淋浇于所述纤维毡顶层,胶液与纤维毡的质量比为1:8,然后于4mpa条件下挤压得到纤维板,微波干燥,干燥温度为360℃,干燥时间为2.5h,裁剪为合适的大小,得无机纤维保温板。

上述制备的无机纤维保温板经国家建筑材料测试中心检测,压缩强度可达到78kpa(gb/t13480-2014);憎水率为99.5%(gb/t10299-2011),质量吸湿率为1.2%(gb/t5480-201711),密度为214kg/m3(gb/t16400-20157.2,gb/t5480-20177),平均温度500℃下,导热系数为0.030w/(m·k)。

上述实施例1-3中的冶金渣还可以为温度为100-300℃的热态冶金渣,均可达到与原来基本相当的效果。

对比例1

本对比例提供一种无机纤维保温板,其原料组成以及制备方法均与实施例1相同,不同的仅是将实施例1中的煤矸石替换为大理石粉。

上述制备的无机纤维保温板经国家建筑材料测试中心检测,压缩强度可达到38.5kpa(gb/t13480-2014);憎水率为88.1%(gb/t10299-2011),质量吸湿率为3.7%(gb/t5480-201711),平均温度500℃下,导热系数为0.067w/(m·k)。

对比例2

本对比例提供一种防火门芯板,其原料组成以及制备方法均与实施例1相同,不同的仅是将实施例1中的冶金渣替换为粉煤灰。

上述制备的无机纤维保温板经国家建筑材料测试中心检测,压缩强度可达到42.8kpa(gb/t13480-2014);憎水率为87.5%(gb/t10299-2011),质量吸湿率为4.2%(gb/t5480-201711),平均温度500℃下,导热系数为0.074w/(m·k)。

对比例3

本对比例提供一种防火门芯板,其原料组成以及制备方法均与实施例1相同,不同的仅是将实施例1中的冶金渣的份数改为10份。

上述制备的无机纤维保温板经国家建筑材料测试中心检测,压缩强度可达到47.8kpa(gb/t13480-2014);憎水率为89.1%(gb/t10299-2011),质量吸湿率为3.4%(gb/t5480-201711),平均温度500℃下,导热系数为0.085w/(m·k)。

由上述实施例和对比例可以看出,本发明获得的无机纤维保温板的压缩强度强度在72kpa以上,平均温度在500℃条件下导热系数为0.03~0.04w/(m.k),憎水率为99.3%~99.5%,体积吸水率为1.2%~1.8%;在改变组分以及比例的条件下,均会使保温隔热和憎水性能发生明显下降。这也证明了本发明各组分间存在协同作用,综合作用使得到的材料强度、保温、憎水等性能指标均符合标准规定。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1