一种钛酸钡基弛豫铁电体陶瓷粉体、陶瓷及其制备方法和应用

文档序号:26138628发布日期:2021-08-03 14:21阅读:339来源:国知局
一种钛酸钡基弛豫铁电体陶瓷粉体、陶瓷及其制备方法和应用

本发明涉及储能陶瓷材料领域,具体涉及一种钛酸钡基弛豫铁电体陶瓷粉体、陶瓷及其制备方法和应用,以bi(zn2/3(nb0.85ta0.15)1/3)o3作为第二组元,具有快速放电能力和高储能密度。



背景技术:

能源是人类社会赖以生存和发展的重要物质基础。随着世界经济和人类社会的飞速发展,能源和环境问题日益突出,激发人们开发清洁和可再生能源技术。无铅介电电容器是一种典型的环境友好型介电材料,与电池、燃料电池、电化学电容器和超级电容器相比,由于其高的循环寿命(~5万次)和安全性、超快速的充放电速率(<1μs)和高的功率密度(~108w/kg)而引起了先进电子和电力系统,尤其是脉冲电源系统的极大兴趣,在核物理与技术、新能源发电系统、医用手术激光、混合动力汽车、石油天然气勘探和定向能武器等领域得到广泛应用,成为脉冲电源系统中最关键的元件之一。

目前用于介电储能电容器的介质材料主要包括聚合物、陶瓷—聚合物复合材料、玻璃、玻璃陶瓷和陶瓷五大类。相对于其他储能介质材料,介电陶瓷具有中等击穿场强、较低的介电损耗,优良的温度稳定性和抗疲劳特性,可以更好地满足航空航天、石油钻井、电磁脉冲武器等领域对储能电容器的需求。因而,陶瓷介质材料被认为是制备耐高温介电脉冲功率储能电容器的优选材料。通常,介电陶瓷包括铁电陶瓷,反铁电陶瓷,线性介电陶瓷和弛豫铁电陶瓷。在这其中,弛豫铁电体由于具有诸多优异性能,被广泛应用于现代电子、电力、航空航天等领域,特别是钛酸钡基弛豫铁电体一般具有高介电常数和弥散型相变带来的较小的介电常数—温度变化率,细长的电滞回线,以及快速放电能力,在储能电介质陶瓷领域占有一定地位。

然而,钛酸钡基弛豫铁电体陶瓷仍然存在由于其最大极化强度较低、介电击穿场强较低而引起储能密度较低的问题,这严重阻碍了它的实际应用。此外,介电储能陶瓷材料的充放电特性(如放电速率、功率密度和电流密度等)对实际应用有不可或缺的意义,但往往被忽略。因此,开发具有超快速放电能力和高储能密度的介电储能陶瓷材料具有真正意义上实际应用价值。



技术实现要素:

鉴于以上所述现有技术的缺点,本发明的目的在于提供一种钛酸钡基弛豫铁电体陶瓷粉体、陶瓷及其制备方法和应用,以bi(zn2/3(nb0.85ta0.15)1/3)o3作为第二组元,具有快速放电能力和高储能密度,有望在核物理与技术、定向能武器、脉冲功率设备等领域中得到应用。

为实现上述目的及其他相关目的,本发明第一方面提供一种钛酸钡基弛豫铁电体陶瓷粉体,所述钛酸钡基弛豫铁电体陶瓷粉体的化学通式为(1-z)(ba1-xcax)(ti1-ysny)o3-zbi(zn2/3(nb0.85ta0.15)1/3)o3,其中,0≤x≤0.05,0≤y≤0.09(如0~0.03或0.03~0.09),0.1≤z≤0.15(如0.1~0.12、0.12~0.13或0.13~0.15)。

上述化学通式(1-z)(ba1-xcax)(ti1-ysny)o3-zbi(zn2/3(nb0.85ta0.15)1/3)o3中,元素右下标数字代表各对应元素的摩尔比例关系。

本发明第二方面提供上述钛酸钡基弛豫铁电体陶瓷粉体的制备方法,包括如下步骤:

1)按权利要求1的化学通式中元素的化学计量比的原料:含ba化合物、可选的含ca化合物、含ti化合物、可选的含sn化合物、含bi化合物、含zn化合物、含nb化合物和含ta化合物以溶剂为介质球磨,获得浆料;

2)将所述浆料进行干燥、预烧,即得所述钛酸钡基弛豫铁电体陶瓷粉体。

优选地,所述含ba化合物为baco3。

优选地,所述含ca化合物为caco3。

优选地,所述含ti化合物为tio2。

优选地,所述含sn化合物为sno2。

优选地,所述含bi化合物为bi2o3。

优选地,所述含zn化合物为zno。

优选地,所述含nb化合物为nb2o5。

优选地,所述含ta化合物为ta2o5。

优选地,还包括如下技术特征中的至少一项:

11)步骤1)中,所述溶剂选自无水乙醇和水中的至少一种;

12)步骤1)中,所述溶剂与所述原料的质量比为2~3:1。

13)步骤1)中,所述球磨所用球如氧化锆球与所述原料的质量比为1.5~2:1。

14)步骤1)中,球磨时间为12~20h,如12~16h或16~20h。

21)步骤2)中,干燥温度为60~100℃,如60~80℃或80~100℃;

22)步骤2)中,干燥时间为4~6h;

23)步骤2)中,预烧温度为800~1000℃;更优选为850℃;

24)步骤2)中,预烧时间为2~6h,如2~4h或4~6h;更优选为4h。

本发明第三方面提供上述钛酸钡基弛豫铁电体陶瓷粉体在脉冲功率设备、高功率电容器和定向能武器中的应用。

本发明第四方面提供一种钛酸钡基弛豫铁电体陶瓷,所述钛酸钡基弛豫铁电体陶瓷的化学通式为(1-z)(ba1-xcax)(ti1-ysny)o3-zbi(zn2/3(nb0.85ta0.15)1/3)o3,其中,0≤x≤0.05,0≤y≤0.09,0.1≤z≤0.15。

上述化学通式(1-z)(ba1-xcax)(ti1-ysny)o3-zbi(zn2/3(nb0.85ta0.15)1/3)o3中,元素右下标数字代表各对应元素的摩尔比例关系。

本发明第五方面提供上述钛酸钡基弛豫铁电体陶瓷的制备方法,包括如下步骤:将钛酸钡基弛豫铁电体陶瓷粉体添加粘结剂造粒,压制成型,排粘,烧结,即得所述钛酸钡基弛豫铁电体陶瓷,所述钛酸钡基弛豫铁电体陶瓷粉体为上述钛酸钡基弛豫铁电体陶瓷粉体或上述制备方法制得的钛酸钡基弛豫铁电体陶瓷粉体。

优选地,还包括如下技术特征中的至少一项:

a)在造粒之前研磨和球磨;

b)所述造粒为将添加粘结剂的钛酸钡基弛豫铁电体陶瓷粉体在100~300目的筛子下过筛,如100~200目或200~300目;

c)所述粘结剂的用量为所述钛酸钡基弛豫铁电体陶瓷粉体的6~10wt%,如6~8wt%或8~10wt%;所述粘结剂的质量百分含量为粘结剂相对于所述钛酸钡基弛豫铁电体陶瓷粉体的质量百分含量;

d)所述粘结剂选自聚乙烯醇缩丁醛(pvb)和聚乙烯醇(pva)中的至少一种;

e)所述压制成型的相对压强为2~5mpa,如2~4mpa或4~5mpa;可在2~5mpa相对压强力下压制成直径为10mm,厚度1mm的圆片即陶瓷生胚片;

f)排粘温度为580~630℃,如580~610℃或610~630℃;

g)排粘时间为4~6h,如4~5h或5~6h;

h)在空气中于900~1200℃烧结,如900~1150℃、1150~1170℃或1170~1200℃;更优选为1150℃;

i)烧结时间为2~4h,如2~3h或3~4h;更优选为3h;

j)在烧结之后进行打磨和镀电极。

更优选地,还包括如下技术特征中的至少一项:

a1)特征a)中,球磨12~20h;

a2)特征a)中,球磨至0.2~1.4μm;

j1)特征j)中,打磨后的陶瓷厚度为0.1~0.3mm,如0.1~0.15mm、0.15~0.2mm或0.2~0.3mm;

j2)特征j)中,在打磨后的陶瓷上下表面镀银电极或金电极。

再更优选地,特征j2)中,还包括如下技术特征中的至少一项:

j21)银电极的直径为1.9~3mm,如1.9~2.1mm或2.1~3mm;

j22)采用烧银的方法镀银电极;

j23)金电极的直径为1.9~3mm,如1.9~2.1mm或2.1~3mm;

j24)采用烧金的方法镀金电极。

进一步再更优选地,还包括如下技术特征中的至少一项:

j221)特征j22)中,烧银温度为600~650℃,如600~620℃或620~650℃;

j222)特征j22)中,烧银时间为20~30min;

j241)特征j24)中,烧金温度为200~250℃;

j242)特征j24)中,烧金时间为20~30min。

本发明第六方面提供上述钛酸钡基弛豫铁电体陶瓷在脉冲功率设备、高功率电容器和定向能武器中的应用。

与现有技术相比,本发明具有如下有益效果中的至少一项:

1)本发明以bi(zn2/3(nb0.85ta0.15)1/3)o3作为第二组元的钛酸钡基弛豫铁电体陶瓷具有优良的储能性能及综合性能。以钛酸钡为基体,可以引入ca2+和sn4+离子降低材料的平均晶粒尺寸,阳离子sn4+进入晶格完全替换b位ti4+,ca2+进入晶格完全替换a位ba2+,从而使得材料介电击穿场强显著增强;bi(zn2/3(nb0.85ta0.15)1/3)o3作为第二组元,增强了材料的弛豫性,有效抑制了剩余极化强度,从而提升了材料的储能密度和储能效率。

2)本发明通过选择适当的x、y、z值及工艺控制,可使该钛酸钡基弛豫铁电体陶瓷材料可回收的能量密度达到1.052~1.331j/cm3,储能效率达到87.859~91.827%,放电能量密度为0.724~1.172j/cm3,放电速度为24.0~40.8ns,电流密度为679.887~859.435a/cm2,功率密度为40.793~51.566mw/cm3。本发明钛酸钡基弛豫铁电体陶瓷具有极快的放电速度、优异的电流密度以及功率密度,有望应用在脉冲功率设备、高功率电容器、定向能武器等领域。

3)本发明钛酸钡基弛豫铁电体陶瓷与纯钛酸钡陶瓷相比,选用bi(zn2/3(nb0.85ta0.15)1/3)o3作为第二组元,并且可以在钛酸钡基体中引入ca2+和sn4+,使得烧结温度由现有技术1450℃以上降低到1100~1200℃,降低陶瓷的烧结温度,缩短制备周期,节约能源,降低生产成本,实现节能减排与提高经济效益的双赢,且所用原料不含贵金属元素、稀土元素和铅元素,价格低廉,符合环保要求、无毒无污染的特点,可以进行工业化批量生产。

4)本发明钛酸钡基弛豫铁电体陶瓷在室温和170kv/cm电场的条件下,可回收的能量密度为1.052j/cm3,效率为87.859%。在室温和212.5kv/cm电场、过阻尼的条件下,放电能量密度为0.778j/cm3,放电速度t0.9为24ns。在室温和120kv/cm电场、欠阻尼的条件下,电流密度为722.901a/cm2,功率密度为43.374mw/cm3

附图说明

图1是实施例1、实施例2和实施例3所制备的钛酸钡基弛豫铁电体陶瓷材料的xrd谱图。

图2是实施例1所制备的钛酸钡基弛豫铁电体陶瓷在不同测试频率下的介温图谱。

图3是实施例1所制备的钛酸钡基弛豫铁电体陶瓷在室温和最大击穿电场下的电滞回线图。

图4是实施例1所制备的钛酸钡基弛豫铁电体陶瓷在室温和212.5kv/cm电场强度下的过阻尼放电电流曲线图。

图5是实施例1所制备的钛酸钡基弛豫铁电体陶瓷在室温、过阻尼、不同电场强度下的放电能量密度随时间的变化曲线图。

图6是实施例1所制备的钛酸钡基弛豫铁电体陶瓷在室温和120kv/cm电场强度下的欠阻尼放电电流曲线图。

图7是实施例2所制备的钛酸钡基弛豫铁电体陶瓷在不同测试频率下的介温图谱。

图8是实施例2所制备的钛酸钡基弛豫铁电体陶瓷在室温和最大击穿电场下的电滞回线图。

图9是实施例2所制备的钛酸钡基弛豫铁电体陶瓷在室温和230kv/cm电场强度下的过阻尼放电电流曲线图。

图10是实施例2所制备的钛酸钡基弛豫铁电体陶瓷在室温、过阻尼、不同电场强度下的放电能量密度随时间的变化曲线图。

图11是实施例2所制备的钛酸钡基弛豫铁电体陶瓷在室温和120kv/cm电场强度下的欠阻尼放电电流曲线图。

图12是实施例3所制备的钛酸钡基弛豫铁电体陶瓷在不同测试频率下的介温图谱。

图13是实施例3所制备的钛酸钡基弛豫铁电体陶瓷在室温和最大击穿电场下的电滞回线图。

图14是实施例3所制备的钛酸钡基弛豫铁电体陶瓷在室温和150kv/cm电场强度下的过阻尼放电电流曲线图。

图15是实施例3所制备的钛酸钡基弛豫铁电体陶瓷在室温、过阻尼、不同电场强度下的放电能量密度随时间的变化曲线图。

图16是实施例3所制备的钛酸钡基弛豫铁电体陶瓷在室温和120kv/cm电场强度下的欠阻尼放电电流曲线图。

具体实施方式

以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。

下面结合具体实施例进一步阐述本发明,应理解,这些实施例仅用于说明本发明而不用于限制本发明的保护范围。

实施例1

以制备(1-z)(ba1-xcax)(ti1-ysny)o3-zbi(zn2/3(nb0.85ta0.15)1/3)o3,x=0,y=0,z=0.13为例,原料选取baco3、tio2、bi2o3、zno、nb2o5、ta2o5,按化学通式0.87batio3-0.13bi(zn2/3(nb0.85ta0.15)1/3)o3中的ba、ti、bi、zn、nb和ta元素的化学计量比称取原料,将称取的原料放入球磨罐中,在球磨罐中加入氧化锆球和无水乙醇,球磨16h,出料在烘箱中(80℃,4h)烘干后得到混合粉料a,其中所述无水乙醇与原料的质量比为3:1;所述球磨所用氧化锆球与原料的质量比为2:1。将混合粉料a置于氧化铝坩埚中预烧,所述预烧温度为850℃,升温速率为3℃/min,保温4小时后,自然冷却得到预烧后粉料b。将预烧后粉料b研磨后,再球磨16h,二次球磨后得到粉料c。采用8wt%的聚乙烯醇pva作为粘结剂对粉料c进行造粒,在200目的筛子中过筛,在4mpa压力下压制成陶瓷生胚片d。将陶瓷生胚片d分别在610℃下保温5小时排粘处理后,再在1150℃下烧结保温3小时得到所述的钛酸钡基弛豫铁电体陶瓷材料0.87batio3-0.13bi(zn2/3(nb0.85ta0.15)1/3)o3。将烧结后的陶瓷片的上下两面进行打磨至厚度为0.15mm,再给其镀银电极,银电极的直径为1.9mm,在620℃下烧银20min。

将实施例1中所得到的弛豫铁电体陶瓷材料0.87batio3-0.13bi(zn2/3(nb0.85ta0.15)1/3)o3在室温下进行检测,得到实验结果如下的图1、图2、图3、图4、图5和图6所示:

图1中batio3-bznt为实施例1获得的0.87batio3-0.13bi(zn2/3(nb0.85ta0.15)1/3)o3样品的xrd图谱。从图1的xrd图谱可知实施例1中的钛酸钡基弛豫铁电体陶瓷材料均为单一纯相的钙钛矿结构,并且xrd图谱中显示无其他杂相。从图2可知本实施例陶瓷材料具有明显的频率色散行为,表明材料中第二组元的加入使钛酸钡基陶瓷从铁电体转变为弛豫铁电体。

对其进行铁电性能测试,并进行储能性能计算,能量密度和效率为测量电滞回线计算所得,计算公式为:

其中,wrec为可回收的能量密度,pmax为最大极化强度,pr为剩余极化强度,e为电场强度,p为极化强度,η为储能效率,wloss为损失的能量密度。

其中最大击穿场强下的电滞回线图如图3所示。由图可知,0.87batio3-0.13bi(zn2/3(nb0.85ta0.15)1/3)o3弛豫铁电体陶瓷的最大击穿场强为170kv/cm,可回收的能量密度为1.052j/cm3,效率为87.859%。

对其进行充放电性能测试,并进行放电性能计算,电流密度、功率密度和放电能量密度的计算公式为:

其中,cd为电流密度,pd为功率密度,wd为放电能量密度,imax为最大电流,s为电极面积,e为电场强度,r为负载电阻,v为样品体积。

图4为本实施例陶瓷材料在室温和212.5kv/cm电场强度下的过阻尼放电电流曲线图;

图5为本实施例陶瓷材料在过阻尼、室温、不同电场强度下的放电能量密度随时间的变化曲线图。本实施例弛豫铁电体陶瓷的抗击穿场强为212.5kv/cm,负载电阻为187ω,放电能量密度经公式(5)计算可得为0.778j/cm3,放电速度t0.9为24ns。图6为本实施例弛豫铁电体陶瓷在室温和120kv/cm电场强度下的欠阻尼放电电流曲线图。由欠阻尼放电进行充放电性能计算得到:本实施例弛豫铁电体陶瓷在120kv/cm电场强度下的电流密度为722.901a/cm2,功率密度为43.374mw/cm3

实施例2

以制备(1-z)(ba1-xcax)(ti1-ysny)o3-zbi(zn2/3(nb0.85ta0.15)1/3)o3,x=0.05,y=0.09,z=0.13为例,原料选取baco3、caco3、tio2、sno2、bi2o3、zno、nb2o5、ta2o5,按配方0.87(ba0.95ca0.05)(ti0.91sn0.09)o3-0.13bi(zn2/3(nb0.85ta0.15)1/3)o3中元素配比称取所选原料,预烧温度为850℃,排粘处理后陶瓷生胚片的保温温度为1200℃,将烧结后的陶瓷片的上下两面进行打磨至厚度为0.20mm,再给其镀银电极,银电极的直径为2.1mm,其余实验条件和实施例1一致。

经检测可知,该实施例中所得最终样品为本发明中弛豫铁电储能陶瓷材料0.87(ba0.95ca0.05)(ti0.91sn0.09)o3-0.13bi(zn2/3(nb0.85ta0.15)1/3)o3;图1中(ba0.95ca0.05)(ti0.91sn0.09)o3-bznt为实施例2获得的0.87(ba0.95ca0.05)(ti0.91sn0.09)o3-0.13bi(zn2/3(nb0.85ta0.15)1/3)o3样品的xrd图谱,由xrd图谱可以看出本实施例所得到的弛豫铁电体陶瓷材料为纯钙钛矿结构,无杂相。从图7可知本实施例陶瓷材料具有明显的频率色散行为,是弛豫铁电体的特征。最大击穿场强下的电滞回线图如图8所示。由图可知,0.87(ba0.95ca0.05)(ti0.91sn0.09)o3-0.13bi(zn2/3(nb0.85ta0.15)1/3)o3弛豫铁电体陶瓷的最大击穿场强为200kv/cm,可回收的能量密度为1.2168j/cm3,效率为91.827%。图9为本实施例陶瓷材料在室温和230kv/cm电场强度下的过阻尼放电电流曲线图;图10为本实施例陶瓷材料在室温、不同电场强度下的放电能量密度随时间的变化曲线图。本实施例弛豫铁电体陶瓷的抗击穿场强为230kv/cm,负载电阻为187ω,放电能量密度经公式(5)计算可得为1.172j/cm3,放电速度t0.9为32.8ns。图11为本实施例弛豫铁电体陶瓷在室温和120kv/cm电场强度下的欠阻尼放电电流曲线图。由欠阻尼放电进行充放电性能计算得到:本实施例弛豫铁电体陶瓷在120kv/cm电场强度下的电流密度为679.887a/cm2,功率密度为40.793mw/cm3

实施例3

以制备(1-z)(ba1-xcax)(ti1-ysny)o3-zbi(zn2/3(nb0.85ta0.15)1/3)o3,x=0.05,y=0.03,z=0.12为例,原料选取baco3、caco3、tio2、sno2、bi2o3、zno、nb2o5、ta2o5,按配方0.88(ba0.95ca0.05)(ti0.97sn0.03)o3-0.12bi(zn2/3(nb0.85ta0.15)1/3)o3中元素配比称取所选原料,预烧温度为1000℃,排粘处理后陶瓷生胚片的保温温度为1170℃,将烧结后的陶瓷片的上下两面进行打磨至厚度为0.30mm,再给其镀金电极,金电极的直径为2mm,在250℃下烧金20min,其余实验条件和实施例1一致。

经检测可知,该实施例中所得最终样品为本发明中弛豫铁电储能陶瓷材料0.88(ba0.95ca0.05)(ti0.97sn0.03)o3-0.12bi(zn2/3(nb0.85ta0.15)1/3)o3;图1中(ba0.95ca0.05)(ti0.97sn0.03)o3-bznt为实施例3获得的0.88(ba0.95ca0.05)(ti0.97sn0.03)o3-0.12bi(zn2/3(nb0.85ta0.15)1/3)o3样品的xrd图谱,由xrd图谱可以看出本实施例所得到的弛豫铁电体陶瓷材料为纯钙钛矿结构,无杂相。从图12可知本实施例陶瓷材料具有明显的频率色散行为,是弛豫铁电体的特征。最大击穿场强下的电滞回线图如图13所示。由图可知,0.88(ba0.95ca0.05)(ti0.97sn0.03)o3-0.12bi(zn2/3(nb0.85ta0.15)1/3)o3弛豫铁电体陶瓷的最大击穿场强为180kv/cm,可回收的能量密度为1.3311j/cm3,效率为89.131%。图14为本实施例陶瓷材料在室温和150kv/cm电场强度下的过阻尼放电电流曲线图;图15为本实施例陶瓷材料在室温、不同电场强度下的放电能量密度随时间的变化曲线图。本实施例弛豫铁电体陶瓷的抗击穿场强为150kv/cm,负载电阻为187ω,放电能量密度经公式(5)计算可得为0.724j/cm3,放电速度t0.9为40.8ns。图16为本实施例弛豫铁电体陶瓷在室温和120kv/cm电场强度下的欠阻尼放电电流曲线图。由欠阻尼放电进行充放电性能计算得到:本实施例弛豫铁电体陶瓷在120kv/cm电场强度下的电流密度为859.435a/cm2,功率密度为51.566mw/cm3

通过以上给出的实施例,可以进一步清楚的了解本发明的内容,但其不是对本发明的限定。

上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1