一种高熵低硼化物陶瓷及其制备方法

文档序号:26842334发布日期:2021-10-08 23:20阅读:240来源:国知局
一种高熵低硼化物陶瓷及其制备方法

1.本发明涉及一种高熵低硼化物陶瓷及其制备方法,属于高熵陶瓷技术领域。


背景技术:

2.随着人们对材料性能要求的不断提高,单一组元陶瓷材料已经无法满足当前的使用需求。为了发展在极端条件下使用的新型陶瓷材料,在传统超高温复相陶瓷体系的基础之上,应用高熵合金设计思想制备的新型高熵陶瓷已成为近期的研究热点。按照化学成分分类,可以分为氧化物高熵陶瓷和非氧化物高熵陶瓷。氧化物高熵陶瓷可以按照晶体结构进行分类,如岩盐型结构、萤石型结构、钙钛矿型结构、尖晶石型结构高熵陶瓷等。非氧化物高熵陶瓷按照成分分类,包括碳化物、硼化物、氮化物和硅化物高熵陶瓷等,这些高熵陶瓷具有优异的性能包括:低的热传导率、高熔点、高硬度、较优异的力学性能和理化稳定性,在热电、航空航天、核能和高速切削加工等极端环境有着广阔的应用前景。
3.其中过渡族金属硼化物是目前研究较多的非氧化物高熵陶瓷之一,硼化物陶瓷及其复合材料作为一种重要的高新材料,具有极其优异的性能,包括:高熔点、高硬度、良好的抗氧化性和耐磨性,可以用于硬质工具材料、耐磨及耐腐蚀部件,并且硼化物陶瓷还具有优异的电性能,可以作为惰性电极和高温电极材料。现有的制备高熵硼化物的方式通常为纯的金属粉末和硼粉之间的固相扩散反应,或者是通过硼热或硼碳热还原预先制备前驱体,烧结所需要的驱动力较大,工艺步骤较复杂,尤其是对含有w、mo、nb等难熔金属元素的体系,通常在2000℃以上才能实现材料的致密化,形成单一的固溶体相。


技术实现要素:

4.本发明的目的是提供一种高熵低硼化物陶瓷及其制备方法,制备单相四方结构的高熵低硼化物陶瓷(nbcrmowfe)b
0.8

5.为了实现上述目的,本发明采用的技术方案是:一种高熵低硼化物陶瓷,所述高熵低硼化物陶瓷为单相四方结构,原子百分比表达式为(nbcrmowfe)b
0.8

6.一种制备所述高熵低硼化物陶瓷的方法,包括以下步骤:s1:将各原料粉末混合均匀,制备得到混合粉末;s2:采用热压烧结技术,将步骤s1制备的混合粉末放入导热性能良好的石墨模具中进行固相反应烧结,烧结结束后,冷却至室温,得到高熵陶瓷(nbcrmowfe)b
0.8

7.本发明技术方案的进一步改进在于:所述原料粉末分别nb粉、fe粉、mob粉、wb粉和crb2粉,各粉末纯度均高于99.5%。
8.本发明技术方案的进一步改进在于:所述nb、fe、mob、wb和crb2的摩尔比为1:1:1:1:1。
9.本发明技术方案的进一步改进在于:所述fe粉的粒度为35~40μm,nb粉的粒度为5~10μm,mob粉的粒度为10~15μm,wb粉的粒度为10~15μm,crb2粉的粒度为3~5μm。
10.本发明技术方案的进一步改进在于:所述步骤s1的具体制备步骤为:s11:将各原料粉末按照等摩尔比例进行称量;s12:将s11称量的粉末装入玛瑙球磨罐中,球粉比为5:1,大球与小球的质量比为1:1,采用真空硅脂密封球磨罐,并向球磨罐中充入氩气;s13:采用行星式球磨机对原料混合粉末进行球磨,转速为220r/min,球磨时间为10h。
11.本发明技术方案的进一步改进在于:所述步骤s2中的热压烧结温度为1400~1600℃,升温速率为10℃/min,升到烧结温度后保温时间为2h。
12.本发明技术方案的进一步改进在于:所述步骤s2中,烧结的升温过程采用10mpa的预压力,升到温度后采用30mpa保压,在烧结过程中石墨模具中的真空度需保持低于1.8
×
10
‑2pa由于采用了上述技术方案,本发明取得的技术效果有:本发明利用硼化物和纯金属粉末为原料制备了块状高熵低硼化物,采用了较低熔点的纯金属元素作为粘结相,纯金属在高温环境下为熔融状态,将固相硼化物粉末完全包围,增大了各组分之间的接触面积,更有利于元素之间的扩散,可以有效的降低烧结温度。
13.本发明采用crb2、mob和wb粉末作为高熵硼化物陶瓷中硼元素的来源,可以有效便利的控制体系中硼元素的含量。本发明利用硼化物熔点较高,在烧结过程中可以保持良好的热稳定性的特点,并通过加入熔点较低的纯金属降低烧结所需要的动力,可以使高熵陶瓷在较低温度下致密成型,且能获得单一的固溶体相。
14.本发明制备的高熵低硼化物陶瓷(nbcrmowfe)b
0.8
为单相四方结构,高熵陶瓷致密性好、硬度高,具有极高的应用价值。
附图说明
15.图1是本发明的实例2制备的(nbcrmowfe)b
0.8
陶瓷的xrd图;图2是本发明的实例2制备的(nbcrmowfe)b
0.8
陶瓷的sem和eds图;图3是本本发明制备的(nbcrmowfe)b
0.8
陶瓷的硬度随烧结温度变化曲线。
具体实施方式
16.下面结合附图及具体实施例对本发明做进一步详细说明:一种高熵低硼化物陶瓷,所述高熵低硼化物陶瓷为单相四方结构,原子百分比表达式为(nbcrmowfe)b
0.8

17.一种制备所述高熵低硼化物陶瓷的方法,包括以下步骤:s1:将各原料粉末混合均匀,制备得到混合粉末:s11:将各原料粉末按照等摩尔比例进行称量,所述原料粉末分别nb粉、fe粉、mob粉、wb粉和crb2粉,各粉末纯度均高于99.5%,所述fe粉的粒度为35~40μm,nb粉的粒度为5~10μm,mob粉的粒度为10~15μm,wb粉的粒度为10~15μm,crb2粉的粒度为3~5μm;s12:将s11称量的粉末装入玛瑙球磨罐中,球粉比为5:1,大球与小球的质量比为1:1,采用真空硅脂密封球磨罐,并向球磨罐中充入氩气;s13:采用行星式球磨机对原料混合粉末进行球磨,转速为220r/min,球磨时间为
10h。
18.s2:采用热压烧结技术,将步骤s13得到的混合粉末放入导热性能良好的石墨模具中进行固相反应烧结,用石墨纸包覆在石墨模具的内壁和与粉末接触的部位,在烧结过程中石墨模具中的真空度需保持低于1.8
×
10
‑2pa;烧结温度为1400~1600℃,升温速率为10℃/min,升温过程采用10mpa的预压力,升到烧结温度后保温时间为2h,并采用30mpa保压。烧结结束后,冷却至室温,得到高熵陶瓷(nbcrmowfe)b
0.8

19.实施例1:一种高熵低硼化物陶瓷(nbcrmowfe)b
0.8
为单相四方结构。
20.制备所述高熵低硼化物陶瓷(nbcrmowfe)b
0.8
的方法,包括以下步骤:s1:制备所需混合粉末:s11:准备原料粉末:fe粉、nb粉、mob粉、wb粉和crb2粉,原料粉末的摩尔比例为nb:fe:mob:wb:crb2=1:1:1:1:1,用天平分别称量4.4gcrb2粉,6.4mob粉,11.7gwb粉,5.6gnb粉和3.4gfe粉;s12:将s11称量的粉末置于玛瑙球磨罐中,加入157.5g玛瑙球,球粉比为5:1,大球与小球的质量比为1:1,采用真空硅脂密封球磨罐,并向球磨罐中充入氩气,防止粉末氧化;s13:在行星式球磨机上混粉10h,转速为220r/min,制备得到混合粉末。
21.s2:热压烧结制备高熵硼化物陶瓷:称取s13制备的15g混合粉末放入导热性能良好的石墨模具中,并用石墨纸包覆在石墨模具的内壁和与粉末接触的部位。将模具放入热压烧结炉中,抽真空为1.8
×
10
‑2pa,烧结温度设置为1400℃,升温过程中分别在600℃、900℃和1200℃各保温10min,升温速度为10℃/min,升温过程采用10mpa的预压力;温度升至1400℃时,控制压力为30mpa,保温时间为2h。
22.烧结过程结束后,炉冷至室温时取出样品,然后使用线切割将圆饼状样品切割为所需尺寸大小进行后续测试。检测结果显示,材料的致密度为92.3%,在此工艺下(nbcrmowfe)b
0.8
陶瓷的维氏硬度约为925hv
0.5

23.实施例2:一种高熵低硼化物陶瓷(nbcrmowfe)b
0.8
为单相四方结构。
24.制备所述高熵低硼化物陶瓷(nbcrmowfe)b
0.8
的方法,包括以下步骤:s1:制备所需混合粉末:s11:准备原料粉末:fe粉、nb粉、mob粉、wb粉和crb2粉,原料粉末的摩尔比例为nb:fe:mob:wb:crb2=1:1:1:1:1,用天平分别称量4.4gcrb2粉,6.4mob粉,11.7gwb粉,5.6gnb粉和3.4gfe粉;s12:将s11称量的粉末置于玛瑙球磨罐中,加入157.5g玛瑙球,球粉比为5:1,大球与小球的质量比为1:1,采用真空硅脂密封球磨罐,并向球磨罐中充入氩气,防止粉末氧化;s13:在行星式球磨机上混粉10h,转速为220r/min,制备得到混合粉末。
25.s2:热压烧结制备高熵硼化物陶瓷:称取s13制备的15g混合粉末放入导热性能良好的石墨模具中,并用石墨纸包覆在石墨模具的内壁和与粉末接触的部位。将模具放入热压烧结炉中,抽真空为1.8
×
10
‑2pa,烧结温度设置为1500℃,升温过程中分别在600、900和1200℃各保温10min,升温速度为10℃/
min,升温过程采用10mpa的预压力,温度升至1500℃时,控制压力为30mpa,保温时间为2h。
26.烧结过程结束后,炉冷至室温时取出样品,然后使用线切割将圆饼状样品切割为所需尺寸大小进行后续测试。检测结果显示,在此工艺下材料的致密度为95.8%,(nbcrmowfe)b
0.8
陶瓷的维氏硬度约为1505hv
0.5
;图1为样品的xrd图,图谱中主要为单一四方结构相的衍射峰,无其他物质的衍射峰,说明制备的(nbcrmowfe)b
0.8
硼化物高熵陶瓷纯度较高;图2为样品的sem和eds图,sem图中可以看出材料的致密性较好,存在一些不可避免的气孔,eds图中可以看出,各元素分布均匀,无偏聚现象的产生,而硼元素超出了测量范围,无法测得。
27.实施例3:一种高熵低硼化物陶瓷(nbcrmowfe)b
0.8
为单相四方结构。
28.制备所述高熵低硼化物陶瓷(nbcrmowfe)b
0.8
的方法,包括以下步骤:s1:制备所需混合粉末:s11:准备原料粉末:fe粉、nb粉、mob粉、wb粉和crb2粉,原料粉末的摩尔比例为nb:fe:mob:wb:crb2=1:1:1:1:1。用天平分别称量4.4gcrb2粉,6.4mob粉,11.7gwb粉,5.6gnb粉和3.4gfe粉;s12:将s11称量的粉末置于玛瑙球磨罐中,加入157.5g玛瑙球,球粉比为5:1,大球与小球的质量比为1:1,采用真空硅脂密封球磨罐,并向球磨罐中充入氩气,防止粉末氧化;s13:在行星式球磨机上混粉10h,转速为220r/min,制备得到混合粉末。
29.s2:热压烧结制备高熵硼化物陶瓷:称取s13制备的15g混合粉末放入导热性能良好的石墨模具中,并用石墨纸包覆在石墨模具的内壁和与粉末接触的部位。将模具放入热压烧结炉中,抽真空为1.8
×
10
‑2pa,烧结温度设置为1600℃,升温过程中分别在600、900和1200℃保温10min,升温速度为10℃/min。升温过程采用10mpa的预压力;温度升至1600℃时,控制压力为30mpa,保温时间为2h。
30.烧结过程结束后,炉冷至室温时取出样品,然后使用线切割将圆饼状样品切割成所需尺寸大小进行后续测试。检测结果显示,材料的致密度为96.5%,在此工艺下(nbcrmowfe)b0.8陶瓷的维氏硬度约为1738hv
0.5

31.对比例1:一种高熵低硼化物陶瓷(nbcrmowfe)b
0.8
为单相四方结构。
32.制备所述高熵低硼化物陶瓷(nbcrmowfe)b
0.8
的方法,包括以下步骤:s1:制备所需混合粉末:s11:准备原料粉末:fe粉、nb粉、mob粉、wb粉和crb2粉,原料粉末的摩尔比例为nb:fe:mob:wb:crb2=1:1:1:1:1。用天平分别称量4.4gcrb2粉,6.4mob粉,11.7gwb粉,5.6gnb粉和3.4gfe粉;s12:将s11称量的粉末置于玛瑙球磨罐中,加入157.5g玛瑙球,球粉比为5:1,大球与小球的质量比为1:1,采用真空硅脂密封球磨罐,并向球磨罐中充入氩气,防止粉末氧化;s13:在行星式球磨机上混粉10h,转速为220r/min,制备得到混合粉末。
33.s2:热压烧结制备高熵硼化物陶瓷:称取s13制备的15g混合粉末放入导热性能良好的石墨模具中,并将石墨纸包覆在石墨模具的内壁和与粉末接触的部位。将模具放入热压烧结炉中,抽真空为1.8
×
10
‑2pa,烧
结温度设置为1650℃,升温过程中分别在600、900和1200℃各保温10min,升温速度为10℃/min,升温过程采用10mpa的预压力;温度升至1650℃时,控制压力为30mpa,保温时间为2h。
34.烧结过程结束后,炉冷至室温时取出样品,然后使用线切割将圆饼状样品切割为所需尺寸大小进行后续测试。检测结果显示,在此工艺下材料的致密度为97.3%,(nbcrmowfe)b
0.8
陶瓷的维氏硬度约为1398hv
0.5
,并且检测结果显示除四方结构相外,还有高温wb相的析出。
35.图3为本发明三个实例和一个对照例对应的硬度变化,可以发现,当烧结温度在1400

1600℃范围内升高时,高熵陶瓷的硬度是逐渐增大的,在1400
o
c和1500℃之间硬度值有明显的变化,是因为在此温度范围内材料的致密化程度大幅度增加,但当温度进一步升高至1650℃,因为高温析出相的影响,高熵陶瓷的硬度下降。
36.以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1