
1.本发明属于陶瓷粉体制备技术领域,具体涉及一种热障陶瓷涂层材料及其制备方法。
背景技术:2.reta3o9的化学式亦可写作re
0.33
tao3(re为稀土元素),其与abo3型的钙钛矿的结构相像,亦称为缺陷钙钛矿结构,同时,稀土离子半径越大,tao6八面体的扭曲程度将越小。reta3o9具有以下性能特征:热导率(约为1.3~2.4w
·
m
‑1·
k
‑1,100~900℃)远远小于ysz(2.3
‑
3.5w
·
m
‑1·
k
‑1,900℃),热膨胀系数为4.0~10.6
×
10
‑6k
‑1,稀土离子半径大小对reta3o9硬度影响较小,其硬度在9.0gpa左右,
3.稀土钽酸盐reta3o9粉末的制备是tbcs制备过程中非常关键的一步,其质量直接影响涂层的性能。高质量的粉末应具有颗粒球形规则、表面光滑、饱满、团聚少、粒度均匀、流动性好和密度适中等特点。密度大且粗的粉末,在热喷涂的过程中就容易从火焰中分离出来,降低了涂层的沉积效率和致密度。反之,密度小且细的粉末(如很多纳米粉)漂浮于火焰的表面,无法进入火焰的内部以达到最好的熔化状态,导致基体与涂层的结合强度差。
技术实现要素:4.本发明的目的是提供一种热障陶瓷涂层材料及其制备方法,以获得球形率高,流动性好的稀土钽酸盐reta3o9球形粉体。
5.本发明采用以下技术方案:一种热障陶瓷涂层材料,为稀土钽酸盐reta3o9球形粉体,粒径为10~100μm;由原料和熔盐混合制备而成,所述原料和熔盐的质量比为(1~10):(1~6),在所述原料中,所述稀土氧化物re2o3和五氧化二钽ta2o5的摩尔比为1:3,在熔盐中,所述kcl和nacl的质量比为(1~6):(0~3)。
6.进一步地,该稀土氧化物为sm2o3。
7.本发明还公开了上述的一种热障陶瓷涂层材料的制备方法,如下:称取上述各原料,将所述原料和熔盐混合球磨,一次干燥、过筛并取过筛物,将所述过筛物加热煅烧,并冷却清洗,烘干,即得稀土钽酸盐reta3o9球形粉体;加热煅烧的过程为:由室温程序升温至600~1200℃,在600~1200℃下煅烧2~30h,程序升温速率为5~10℃/分钟,所述室温为25℃。
8.进一步地,加热煅烧冷却后,依次用去离子水和酒精超声清洗物料,用于除去多余的氯化物盐,且在清洗后,过滤取稀土钽酸盐reta3o9球形粉体,烘干、过筛,即得所需粒径的稀土钽酸盐reta3o9球形粉体。
9.进一步地,一次干燥时,在60~100℃下干燥12~24h后,先后过150目筛和1000目筛,取中间过筛物。
10.进一步地,稀土钽酸盐reta3o9球形粉体在60~100℃下烘干12~24h,过筛得到粒径为10μm~100μm的reta3o9球形粉体。
11.进一步地,球磨时,以无水乙醇为介质,球料比为(1~10):(1~5),球磨时间为1~
50h,球磨机转速为200~600r/min,球磨后无水乙醇中的颗粒粒径为0.1~10μm。
12.进一步地,该原料和熔盐的纯度均>99.99%,粒径为10~100μm。
13.本发明的有益效果是:1、采用熔盐法合成的稀土钽酸盐reta3o9球形粉体纯度高、合成温度低。2、可以通过控制熔盐与原料的比例、熔盐成分、煅烧温度和煅烧时间来控制球形粉体的形貌和粒径,获得球形率高和流动性好的稀土钽酸盐reta3o9球形粉体。3、制备的稀土钽酸盐reta3o9球形粉体具有粒径均匀、性能优异、质量稳定、可控性强、适用于工业化生产的特点。
附图说明
14.图1为实施例1中熔盐法制备smta3o9的xrd图谱。
15.图2为实施例1中熔盐法制备smta3o9的sem图谱。
具体实施方式
16.下面结合附图和具体实施方式对本发明进行详细说明。
17.本发明一种热障陶瓷涂层材料,为稀土钽酸盐reta3o9球形粉体,粒径为10~100μm;由原料和熔盐混合制备而成,所述原料和熔盐的质量比为(1~10):(1~6),在所述原料中,所述稀土氧化物re2o3和五氧化二钽ta2o5的摩尔比为1:3,在熔盐中,kcl和nacl的质量比为(1~6):(0~3)。稀土氧化物为sm2o3。所选的原料和熔盐的纯度均>99.99%,粒径为15~90μm。根据结构分析,采用本发明中的发明制备的稀土元素中的其他元素的钽酸盐也可作为热障陶瓷涂层材料。kcl和nacl用于降低煅烧温度。
18.本发明还公开了上述的一种热障陶瓷涂层材料的制备方法,如下:称取上述各原料,将所述原料和熔盐混合球磨,一次干燥,过筛并取过筛物。球磨时,以无水乙醇为介质,球料比为(1~10):(1~5),球磨时间为1~50h,球磨机转速为200~600r/min,球磨后无水乙醇中的颗粒粒径为0.1~10μm。一次干燥时,在60~100℃下干燥12~24h后,先后过180目筛和2000目筛。
19.将所述过筛物加热煅烧,并冷却清洗,烘干,即得稀土钽酸盐reta3o9球形粉体;加热煅烧的过程为:由室温程序升温至600~1200℃,在600~1200℃下煅烧2~30h,程序升温速率为5~10℃/分钟,所述室温为25℃。加热煅烧冷却后,依次用去离子水和酒精超声清洗物料,用于除去多余的氯化物盐,且在清洗后,过滤取稀土钽酸盐reta3o9球形粉体,烘干、过筛,即得所需粒径的稀土钽酸盐reta3o9球形粉体。稀土钽酸盐retao4球形粉体在60~100℃下烘干12~24h,过筛得到粒径为10μm~100μm的reta3o9球形粉体。稀土钽酸盐的化学反应式为re2o3+3ta2o5=2reta3o9。
20.实施例1
21.本实施例一种热障陶瓷涂层材料的制备方法,具体包括以下步骤:
22.按摩尔比1:3称取原料稀土氧化物sm2o3和五氧化二钽ta2o5共500g,按质量比(1~6):(0~3)比例称取kcl和nacl的混合盐,如表1,按摩尔比1:3称取原料和熔盐倒入球磨罐中,以无水乙醇为介质,在行星式球磨机中球磨24h,转速为400r/min,将研磨后的混合物在90℃下干燥24h,先后过150目筛和1000目筛,取中间过筛物置于电阻炉中煅烧,由室温程序升温到800℃,煅烧温度和煅烧时间分别为800℃和5h,升温速率为5℃/分钟,煅烧结束后随
炉冷却,待温度降至室温取出粉体,用加热的去离子水反复清洗,得到的产物数次,以除去多余的氯化物盐,直到用硝酸银(agno3)试剂检验滤液中不含有cl
‑
为止,将洗涤后的粉末过滤后,在90℃下干燥24h,先后过150目筛和1000目筛,取两筛间的物料,利用激光粒度仪测试粉末粒径,测得粒径范围在10μm~100μm,利用霍尔流速计测试流动性,流动性在(43~135)s/50g。利用扫描电镜观察粉末颗粒形貌,计算球形率。
23.图1为实施例1中的熔盐法合成smta3o9的xrd图谱,与smta3o9的pdf标准卡片(pdf:38
‑
1413)对比,smta3o9的xrd图谱中尖峰的位置与pdf标准卡片(pdf:38
‑
1413)中尖峰的位置相一致,则表明smta3o9纯度较高,如图2所示,为实施例1中的熔盐法合成smta3o9的扫描电子显微镜(sem)图,球形率的计算方法是在图1中球形颗粒与总颗粒的比值。观察smta3o9球形粉的微观形貌和球形率,可以得出smta3o9球形粉粒径为40~90μm,球形率>99%,球形率越高,则其流动性越好,有助于提高喷涂过程中,送粉流畅,不卡枪,提高涂层性能的可控性。
24.表1中为不同的kcl和nacl的比例制备的smta3o9,由表1可知kcl和nacl的比例为6:1或1:0时具有较好的球形率(>98%)和流动性(29s~33s/50g)。流动性的评价如下,50g球形粉在同体积的漏斗中流净的时间位评价标准,流净的时间越短,流动性越好。
25.表1熔盐中kcl和nacl比例与稀土钽酸盐smta3o9球形率及流动性的关系
[0026][0027]
实施例2
[0028]
本实施例所述一种热障陶瓷涂层材料的制备方法,具体包括以下步骤:
[0029]
按摩尔比1:3称取原料稀土氧化物sm2o3和五氧化二钽ta2o5共500g,称取纯kcl作为熔盐,按质量比(1~2):(1~6)称取原料和熔盐倒入球磨罐中,以无水乙醇为介质,在行星式球磨机中球磨24h,转速为400r/min,将其在90℃下依次干燥24h,先后过150目筛和1000目筛,取中间过筛物置于电阻炉中煅烧,煅烧温度和煅烧时间分别为800℃和5h,升温速率为5℃/分钟,煅烧结束后随炉冷却,待温度降至室温取出粉体,用加热的去离子水反复清洗得到的产物数次以除去多余的氯化物盐,直到用硝酸银(agno3)试剂检验滤液中不含有cl
‑
为止,将洗涤后的粉末过滤后、在90℃下干燥24h,先后过150目筛和1000目筛,取两筛间的物料,利用激光粒度仪测试粉末粒径,粒径范围在40μm~90μm,利用霍尔流速计测试流动性,流动性在,利用扫描电镜观察粉末颗粒形貌,计算球形率,由表2中可知,原料与熔盐比例为1:4时,粉末有较好的球形率(99%)和流动性(30s/50g)。流动性的评价如下,50g球形粉在同体积的漏斗中流净的时间位评价标准,流净的时间越短,流动性越好。
[0030]
表2原料和熔盐比例与稀土钽酸盐smta3o9球形率及流动性的关系
[0031][0032]
实施例3
[0033]
本实施例一种热障陶瓷涂层材料的制备方法,具体包括以下步骤:按摩尔比1:3称取原料稀土氧化物sm2o3和五氧化二钽ta2o5共500g,称取纯kcl作为熔盐,按1:4称取原料和熔盐倒入球磨罐中,以无水乙醇为介质,在行星式球磨机中球磨24h(400r/min),将其在90℃下一次干燥24h,先后过150目筛和1000目筛,取两筛过筛物置于电阻炉中煅烧,煅烧温度和煅烧时间分别为600~1000℃和5h,升温速率为5℃/分钟,煅烧结束后随炉冷却,待温度降至室温取出粉体,用加热的去离子水反复清洗得到的产物数次以除去多余的氯化物盐,直到用硝酸银(agno3)试剂检验滤液中不含有cl
‑
为止,将洗涤后的粉末过滤后、在90℃下烘干24h,先后过150目筛和1000目筛,取两筛间的物料,利用激光粒度仪测试粉末粒径,粒径范围在40μm~90μm,利用霍尔流速计测试流动性,利用扫描电镜观察粉末颗粒形貌,计算球形率,由表3中可知,煅烧温度为800℃~850℃时,粉末有较好的球形率(98%~99%)和流动性在(30s~31s)/50g。流动性的评价如下,以50g球形粉在同体积的漏斗中流净的时间为评价标准,流净的时间越短,流动性越好。
[0034]
表3煅烧温度与稀土钽酸盐smta3o9球形率及流动性的关系
[0035]