一种非化学计量比高熵陶瓷及其制备方法

文档序号:28176707发布日期:2021-12-25 00:37阅读:252来源:国知局
一种非化学计量比高熵陶瓷及其制备方法

1.本发明属于高熵陶瓷技术领域,具体涉及一种非化学计量比高熵陶瓷及其制备方法。


背景技术:

2.过渡族金属共价键化合物具有高硬度及高的耐热性,因此,该类材料具有高硬度、低热导率和抗腐蚀等优异性能,广泛应用于航天、核能和切削加工等领域。“高熵效应”源于高熵合金,后被引入到陶瓷材料的研究中。高熵陶瓷是由多组元化合物通过一定的处理与烧结形成的单相共价键化合物,其晶体结构与参与的组元中的多数保持一致。多组元带来的“高熵效应”,使材料的分相倾向性被抑制,趋于形成单一物相。高熵相晶格中金属原子的混乱无序排布,引起晶格内部的畸变,通常表现出协同增效作用,使高熵材料的性能优于各组元的平均值。
3.高熵陶瓷的制备主要包括化合物直接烧结法、以金属和碳为原料的元素固相烧结法和以金属氧化物和碳为原料的碳热还原法。这些方法通常需要高的烧结温度(≥2000℃)限制了高熵陶瓷的工业应用。同时,高的烧结温度会导致晶粒异常长大和低的致密度,使材料的机械性能变差。feng等人发表的文献“low temperature sintering of single

phase,high

entropy carbide ceramics”中采用两步法合成了高熵碳化物陶瓷。首先,在1600℃保温2.5h利用碳热还原法制备了前驱体粉末。然后,在1750~1900℃通过热压法制得了(hfzrtitanb)c。但该方法中碳热还原保温时间过长,且需要二次烧结。
4.过渡金属共价键化合物具有非化学计量比的结构特征,能够维持高浓度的阴离子空位,并保持原有的面心立方结构。阴离子空位的存在,能够显著促进烧结过程中的原子扩散,显著降低烧结温度。将阴离子空位引入高熵陶瓷体系,不仅能够降低烧结温度,并且可以增加高熵碳化物的设计空间。但是这个阴离子空位只是理论上可以存在,而实际上是不确定的,可以通过人工方法在符合理论的范围内制成非化学计量比的化合物。
5.基于以上事实,近几年围绕高熵碳化物陶瓷的制备,peng等人通过机械合金化制备tic
x
、tin
x
及vc
x
之一,首先制备了一个非化学计量比的组元,然后以等摩尔的配比与其它ivb、vb和vib族过渡金属碳化物混合烧结,成功的制备出多组元的单相单一晶体结构的高熵陶瓷,包括碳化物高熵陶瓷、氮化物高熵陶瓷及碳氮化物高熵陶瓷。并且达到降低烧结温度、提高韧性的目的。这种首先制备非化学计量比组元的方法解决了此类高熵陶瓷的很多问题。但是,预制的非化学计量比组元容易在制备中遭受氧化等问题,特别是与其它组元混合过程中,由于非化学计量比组元的敏感性,从制备非化学计量比组元到高熵陶瓷的烧结,至少两次暴露在大气环境中,更容易氧化,因此会使制备过程复杂,导致烧结体质量不稳定。为此,急需一种更为简便的制备方法。


技术实现要素:

6.针对上述现有技术中存在的问题,本发明的目的在于设计提供一种非化学计量比
高熵陶瓷及其制备方法。该方法所需合成温度低,工艺简单高效。制备出的非化学计量比高熵陶瓷具有单相结构、细小的晶粒和高的致密度,表现出良好的性能。
7.为实现上述目的,本发明采用以下技术方案:
8.一种非化学计量比高熵陶瓷,其特征在于所述非化学计量比高熵陶瓷为mc
x
、mn
x
、m(cn)
x
中的一种,所述0.5≤x≤0.9。
9.所述的一种非化学计量比高熵陶瓷,其特征在于所述mc
x
为非化学计量比ivb、vb或vib族过渡金属碳化物,所述mn
x
为非化学计量比ivb、vb或vib族过渡金属氮化物,所述m(cn)
x
为非化学计量比ivb、vb或vib族过渡金属共价键碳氮化合物,所述mc
x
、mn
x
和m(cn)
x
中的m包括ivb、vb或vib族过渡金属ti、mo、v、nb、ta、w、zr、cr或hf中的一种或多种。
10.所述的一种非化学计量比高熵陶瓷,其特征在于所述非化学计量比高熵陶瓷是将一种或多种ivb、vb或vib族过渡金属m与两种或两种以上的mc或mn或mc+mn共价键化合物作为基本料以等摩尔配比,通过机械合金化和预压成坯后烧结制备得到的。
11.所述的一种非化学计量比高熵陶瓷,其特征在于所述非化学计量比高熵陶瓷为单相单一面心立方的晶体结构。
12.一种任一所述的一种非化学计量比高熵陶瓷的制备方法,其特征在于包括以下步骤:
13.(1)以等摩尔比称取一种或多种m和两种或两种以上的ivb、vb和vib族过渡金属mc或mn或mc+mn共价键化合物作为基本料;
14.(2)将上述基本料放入球磨罐中,在氩气手套箱中进行搅拌混合,取出并密封球磨罐,置于球磨机上进行机械合金化,得到前驱体粉末;
15.(3)将上述前驱体粉末装入模具中,在室温下预压成型,保持压力后泄压,脱模,制成坯料;
16.(4)将上述坯料放入石墨模具中,采用放电等离子烧结机,在真空或氩气气氛条件下进行烧结,得到非化学计量比高熵陶瓷。
17.所述的制备方法,其特征在于所述步骤(1)中m与mc或mn或mc+mn共价键化合物中的m均为ivb、vb或vib族过渡金属ti、mo、v、nb、ta、w、zr、cr或hf中的一种或多种,所述mc为ivb、vb或vib族过渡金属碳化物,所述mn为ivb、vb或vib族过渡金属氮化物。
18.所述的制备方法,其特征在于所述步骤(2)中球磨罐的球料比为10~20:1。
19.所述的制备方法,其特征在于所述步骤(3)中保持压力:压力100~200mpa,时间10~20min。
20.所述的制备方法,其特征在于所述步骤(4)中真空条件为:真空度3
×
101~3
×
10
‑1pa。
21.所述的制备方法,其特征在于所述步骤(4)中烧结条件为:施加压力30~50mpa,以50~100℃/min的速率升温至1600~1800℃后,保温10~30min,冷却至室温,得到非化学计量比高熵陶瓷。
22.本发明通过机械合金化,使金属m均匀混合到化合物组元中,从而得到前驱体粉末。然后经热压烧结的原子扩散制得单一相的非化学计量比高熵陶瓷。
23.相对于现有技术,本发明具有以下有益效果:
24.本发明以多种过渡族金属共价键碳化物(mc)、氮化物(mn)和过渡族金属(m)为原
料,通过机械合金化和放电等离子烧结,可以在较低的温度下(1600℃~1800℃)制得性能优异的非化学计量比高熵陶瓷材料。由于金属键的存在,使其在保持或提高各组元原始硬度的同时,其韧性有大幅度提高。与首先制备一个组元为非化学计量比化合物,然后再与其它组元混合、烧结制备高熵陶瓷的方法相比,由于减少了暴露在大气环境的次数,减轻了氧化问题,使制备的高熵陶瓷性能更好更稳定。本发明显著降低了高熵陶瓷的烧结温度,且制备工艺简单,便于工业化生产。非化学计量比高熵陶瓷产品具有细小的晶粒,高的致密度,表现出良好的硬度和韧性。
附图说明
25.图1为实施例1得到的非化学计量比高熵碳化物(nbtita)c
0.67
的xrd图谱;
26.图2为实施例2得到的非化学计量比高熵碳化物(nbtita)c
0.67
的xrd图谱;
27.图3为实施例2得到的非化学计量比高熵碳化物(nbtita)c
0.67
的断口形貌及晶粒尺寸分布;
28.图4为实施例2得到的非化学计量比高熵碳化物(nbtita)c
0.67
抛光面的元素分布;
29.图5为实施例3得到的非化学计量比高熵碳化物nb/tic/tac前驱体粉末的xrd图谱;
30.图6为实施例5得到的非化学计量比高熵碳化物(nbvtita)c
0.75
的xrd图谱;
31.图7为实施例5得到的非化学计量比高熵碳化物(nbvtita)c
0.75
的断口形貌及晶粒尺寸分布;
32.图8为实施例6得到的非化学计量比高熵碳化物(nbtitavw)c
0.8
的xrd图谱;
33.图9为实施例6得到的非化学计量比高熵碳化物(nbtitavw)c
0.8
的断口形貌及晶粒尺寸分布;
34.图10为实施例9的非化学计量比高熵碳氮化物(tinbvta)(cn)
0.5
的xrd图谱;
35.图11为实施例10的非化学计量比高熵碳氮化物陶瓷(nbvtita)(cn)
0.5
的xrd图谱。
具体实施方式
36.以下将通过附图和实施例对本发明作进一步说明。
37.实施例1:
38.(1)等摩尔称量tic、tac和nb,放入球磨罐,球料比为20:1。
39.(2)在氩气手套箱中进行搅拌混合,然后球磨罐进行密封。在球磨机上机械合金化20h,制得前驱体粉末。
40.(3)将步骤(2)得到的前驱体粉末装入模具中在室温下预压成型,保持压力100mpa,10min后泄压、脱模,制备成坯料。
41.(4)将坯料放入石墨模具中,采用放电等离子烧结。施加40mpa的压力,在600℃通入ar保护气氛,以50℃/min升温至1600℃,保温10min,然后自然冷却至室温,获得非化学计量比高熵碳化物(nbtita)c
0.67

42.样品的xrd图(如图1),结果显示本实施例1的非化学计量比高熵碳化物(nbtita)c
0.67
为单相面心立方结构。本实施例1的非化学计量比高熵碳化物的硬度和韧性分别为21.7gpa、4.46mpa
·
m
1/2

43.实施例2:
44.(1)等摩尔称量tic、tac和nb,放入球磨罐,球料比为20:1。
45.(2)在氩气手套箱中进行搅拌混合,然后球磨罐进行密封。在球磨机上机械合金化20h,制得前驱体粉末。
46.(3)将步骤(2)得到的前驱体粉末装入模具中在室温下预压成型,保持压力100mpa,10min后泄压、脱模,制备成坯料;
47.(4)将坯料放入石墨模具中,采用放电等离子烧结。施加40mpa的压力,在600℃通入ar保护气氛,以50℃/min升温至1700℃,保温10min,然后自然冷却至室温,获得非化学计量比高熵碳化物(nbtita)c
0.67

48.样品的xrd图(如图2),结果显示本实施例2的非化学计量比高熵碳化物(nbtita)c
0.67
为单相面心立方结构。图3为烧结体的断口形貌sem照片,从图3中可以看出颗粒间结合紧密,断裂方式为穿晶断裂。经统计,烧结体的平均粒径为1.92μm。图4为抛光面的sem

eds图像。由图4可知,nb、ti、ta和c元素均匀分布。本实施2的非化学计量比高熵碳化物的硬度和韧性分别为20.15gpa、4.89mpa
·
m
1/2

49.实施例3:
50.(1)等摩尔称量nb/tic/tac/vc/wc,放入球磨罐,球料比为10:1。
51.(2)在氩气手套箱中进行搅拌混合,然后球磨罐进行密封。在球磨机上机械合金化40h,制得前驱体粉末。
52.(3)将步骤(2)得到的前驱体粉末装入模具中在室温下预压成型,保持压力200mpa,10min后泄压、脱模,制备成坯料;
53.(4)将坯料放入石墨模具中,采用放电等离子烧结。施加50mpa的压力,在600℃通入ar保护气氛,以100℃/min升温至1600℃,保温10min,然后自然冷却至室温,获得非化学计量比高熵碳化物(nbtitavw)c
0.8

54.样品的xrd图(如图5),结果可以看出前驱体粉末具有单相的面心立方结构,说明金属nb和碳化物在机械合金过程中发生了显著扩散,碳空位随之产生。本实施例3的非化学计量比高熵碳化物(nbtitavw)c
0.8
的硬度和韧性分别为22.5gpa、5.0mpa
·
m
1/2

55.实施例4:
56.(1)等摩尔称量tic、tac和nb,放入球磨罐,球料比为10:1。
57.(2)在氩气手套箱中进行搅拌混合,然后球磨罐进行密封。在球磨机上机械合金化60h,制得前驱体粉末。
58.(3)将步骤(2)得到的前驱体粉末装入模具中在室温下预压成型,保持压力100mpa,10min后泄压、脱模,制备成坯料;
59.(4)将坯料放入石墨模具中,采用放电等离子烧结。施加40mpa的压力,在600℃通入ar保护气氛,以50℃/min升温至1600℃,保温30min,然后自然冷却至室温,获得非化学计量比高熵碳化物(nbtita)c
0.66

60.本实施例4的非化学计量比高熵碳化物(nbtita)c
0.66
的硬度和韧性分别为20.57gpa、4.9mpa
·
m
1/2

61.实施例5:
62.(1)等摩尔称量tic、tac、vc和nb,放入球磨罐,球料比为20:1。
63.(2)在氩气手套箱中进行搅拌混合,然后球磨罐进行密封。在球磨机上机械合金化60h,制得前驱体粉末。
64.(3)将步骤(2)得到的前驱体粉末装入模具中在室温下预压成型,保持压力100mpa,10min后泄压、脱模,制备成坯料;
65.(4)将坯料放入石墨模具中,采用放电等离子烧结。施加40mpa的压力,在600℃通入ar保护气氛,以50℃/min升温至1600℃,保温10min,然后自然冷却至室温,获得非化学计量比高熵碳化物(nbtitav)c
0.75

66.xrd图谱结果(如图6),显示本实施例的非化学计量比高熵碳化物nb/tic/tac/vc为单相面心立方结构。图7为烧结体的断口形貌sem照片。从图7中可以看出颗粒间结合紧密,断裂方式为穿晶断裂。经统计,烧结体平均粒径为1.78μm。该陶瓷材料的硬度和韧性分别为20.62gpa、4.88mpa
·
m
1/2

67.实施例6:
68.(1)等摩尔称量tic、tac、vc、wc和nb,放入球磨罐,球料比为20:1。
69.(2)在氩气手套箱中进行搅拌混合,然后球磨罐进行密封。在球磨机上机械合金化20h,制得前驱体粉末。
70.(3)将步骤(2)得到的前驱体粉末装入模具中在室温下预压成型,保持压力200mpa,10min后泄压、脱模,制备成坯料;
71.(4)将坯料放入石墨模具中,采用放电等离子烧结。施加40mpa的压力,在600℃通入ar保护气氛,以50℃/min升温至1600℃,保温10min,然后自然冷却至室温,获得非化学计量比高熵碳化物(nbtitavw)c
0.8

72.xrd图谱(如图8),结果显示本实施例的非化学计量比高熵碳化物(nbtitavw)c
0.8
为单相面心立方结构。图9为烧结体的断口形貌sem照片。从图9中可以看出颗粒间结合紧密,断裂方式为穿晶断裂。经统计,烧结体平均烧结体平均粒径为2.15μm。该陶瓷材料的硬度和韧性分别为21.26gpa、4.83mpa
·
m
1/2

73.实施例7:
74.(1)等摩尔称量tic、tac、vc、wc和nb,放入球磨罐,球料比为20:1。
75.(2)在氩气手套箱中进行搅拌混合,然后球磨罐进行密封。在球磨机上机械合金化20h,制得前驱体粉末。
76.(3)将步骤(2)得到的前驱体粉末装入模具中在室温下预压成型,保持压力200mpa,10min后泄压、脱模,制备成坯料;
77.(4)将坯料放入石墨模具中,采用放电等离子烧结。施加40mpa的压力,在600℃通入ar保护气氛,以50℃/min升温至1700℃,保温10min,然后自然冷却至室温,获得非化学计量比高熵碳化物(nbtitavw)c
0.8

78.本实施例7的非化学计量比高熵碳化物nb/tic/tac/vc/wc的硬度和韧性分别为18.52gpa、4.64mpa
·
m
1/2

79.实施例8:
80.(1)等摩尔称量tic、tac、vc、wc和nb,放入球磨罐,球料比为20:1。
81.(2)在氩气手套箱中进行搅拌混合,然后球磨罐进行密封。在球磨机上机械合金化20h,制得前驱体粉末。
82.(3)将步骤(2)得到的前驱体粉末装入模具中在室温下预压成型,保持压力200mpa,10min后泄压、脱模,制备成坯料;
83.(4)将坯料放入石墨模具中,采用放电等离子烧结。施加40mpa的压力,在600℃通入ar保护气氛,以50℃/min升温至1800℃,保温10min,然后自然冷却至室温,获得非化学计量比高熵碳化物(nbtitavw)c
0.8

84.本实施例的非化学计量比高熵碳化物nb/tic/tac/vc/wc的硬度和韧性分别为18.27gpa、4.58mpa
·
m
1/2

85.实施例9:
86.(1)等摩尔称量ti、nb、v、ta、tic、nbc、vn、tan,放入球磨罐,球料比为20:1。
87.(2)在氩气手套箱中进行搅拌混合,然后球磨罐进行密封。在球磨机上机械合金化40h,制得前驱体粉末。
88.(3)将步骤(2)得到的前驱体粉末装入模具中在室温下预压成型,保持压力200mpa,10min后泄压、脱模,制备成坯料;
89.(4)将坯料放入石墨模具中,采用放电等离子烧结。施加40mpa的压力,在600℃通入ar保护气氛,以40℃/min升温至1800℃,保温10min,然后自然冷却至室温,获得非化学计量比高熵碳化物(tinbvta)(cn)
0.5

90.本实施例9得到的(tinbvta)(cn)
0.5
的xrd图谱如图10所示,其以等摩尔的比例称取ti、nb、v、ta、tic、nbc、vn、tan,450r/min的转速机械合金化40h,在1800℃下经sps烧结,得到单相的(tinbvta)(cn)
0.5
的高熵陶瓷。非化学计量比高熵陶瓷(tinbvta)(cn)
0.5
的硬度和韧性分别为24.2gpa、6.8mpa
·
m
1/2

91.实施例10:
92.(1)等摩尔称量ti、nb、v、ta、tic、nbc、vn、tan,放入球磨罐,球料比为20:1。
93.(2)在氩气手套箱中进行搅拌混合,然后球磨罐进行密封。在球磨机上机械合金化40h,制得前驱体粉末。
94.(3)将步骤(2)得到的前驱体粉末装入模具中在室温下预压成型,保持压力200mpa,10min后泄压、脱模,制备成坯料;
95.(4)将坯料放入石墨模具中,采用放电等离子烧结。施加40mpa的压力,在600℃通入ar保护气氛,以40℃/min升温至1700℃,保温10min,然后自然冷却至室温,获得非化学计量比高熵碳化物tinbvta(cn)
0.5

96.本实施例10得到的(tinbvta)(cn)
0.5
的xrd图谱如图11所示,其以等摩尔的比例称取ti、nb、v、ta、tic、nbc、vn、tan,450r/min的转速机械合金化40h,在1700℃下经sps烧结,得到单相的(tinbvta)(cn)
0.5
的高熵陶瓷。非化学计量比高熵陶瓷(tinbvta)(cn)
0.5
的硬度和韧性分别为23.5gpa、5.7mpa
·
m
1/2

97.由实施例1~10可知,以多种过渡族金属共价键碳化物、氮化物、过渡族金属m为原料,等摩尔配比,通过机械合金化和放电等离子烧结,可以在较低的温度下(1600℃~1800℃)制得性能优异的非化学计量比高熵陶瓷材料。
98.以上所述仅为本发明的优选实施例,用以帮助理解本发明的原理和具体的实施方法。但本发明的实施方式并不限于上述的案例。因而,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应仍属于
本发明的技术方案保护的范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1