耐高温陶瓷基质复合材料及环境障碍涂层的制作方法

文档序号:29312939发布日期:2022-03-19 20:43阅读:120来源:国知局
耐高温陶瓷基质复合材料及环境障碍涂层的制作方法
耐高温陶瓷基质复合材料及环境障碍涂层
本技术是申请日为2014年3月4日,申请号为201480012286.3,发明名称为“耐高温陶瓷基质复合材料及环境障碍涂层”的发明专利申请的分案申请。背景
1.为了提高燃气涡轮发动机的效率,人们持续探寻用于燃气涡轮发动机的更高的工作温度。然而,当工作温度升高时,必须相应提高发动机部件的耐高温性能。通过铁、镍和钴基超合金的制剂,已获得了高温性能的显著进展。虽然已发现超合金广泛应用于整个燃气涡轮发动机所用的部件,特别是在更高温的部分中,但已经提出可供选择的更轻质、且具有甚至更高的温度性能的基材。
2.陶瓷基质复合材料(cmc)是一类提供良好替代的材料。cmc包括由耐火纤维制成、且用陶瓷基材致密化的纤维增强件。其被广泛认为用于航天工业中。这类复合材料的一个实例是sic-sic复合材料,其包括si-sic基质及sic纤维,其中该基质通过硅熔体浸渗致密化。然而,目前体系的使用温度上限限于约2400f。人们期望提高这类复合材料的温度限制至更高的温度。
3.可以采用环境障碍涂层(ebc)和/或热障碍涂层(tbc)涂覆cmc,以保护cmc免受高温发动机部分的苛刻环境。将环境障碍涂层(ebc)涂敷于含硅材料及易受反应性物类(例如高温水蒸汽)攻击的其它材料。ebc通过防止环境与材料表面的接触来提供保护。例如,涂敷于含硅材料的ebc被设计为在高温、含水蒸气环境下相对化学稳定。另一方面,热障碍涂层(tbc)通常用于通过保持贯穿tbc厚度的温度梯度来降低基材温度。在一些情况下,ebc也可起到tbc的作用。ebc体系一般包含粘合涂层,该粘合涂层包括元素硅或硅合金。
4.该基材的硅包含杂质,该杂质可降低cmc和ebc及因此降低cmc/ebc体系的寿命和温度性能。由此,在该领域需要具有提高的寿命和温度性能的cmc。概述
5.本公开的各方面提高cmc/ebc部件寿命和温度性能。本公开的发明人教导了改进的cmc/ebc体系。
6.本公开的一个方面是一种可高温工作的陶瓷基质复合材料,其包括:含硅的陶瓷基材;包括含硅粘合涂层的环境障碍涂层;及碳化物或氮化物的扩散阻碍层,该扩散阻碍层位于基材及环境障碍涂层的硅粘合涂层之间;其中该扩散阻碍层选择性地防止或减小硼及其它不期望的杂质从基材向环境障碍涂层体系的硅粘合涂层扩散。
7.在一个实施方案中,该基材包括由硅熔体浸渗制得的sic-sic陶瓷基质复合材料。在另一个实施方案中,在基材中的硅是高纯的。用于熔体浸渗的硅可包含其它元素,这些元素可以是有意加入的或作为污染物进入的。例如,向熔体浸渗所用的硅中有意加入硼,同时其它降低硅熔融温度的杂质可小于1%(即除硼以外)。在一个实施方案中,通过化学气相沉积或通过等离子喷涂或通过电子束物理气相沉积(eb-pvd)来沉积粘合涂层的硅。在一个实施方案中,该可高温工作陶瓷基质复合材料进一步包括环境障碍涂层,该环境障碍涂层具有至少一种稀土焦硅酸盐(re2si2o7)的至少一个层,所述稀土焦硅酸盐包括sc、y、la、ce、pr、nd、pm、sm、eu、gd、tb、dy、ho、er、tm、yb和/或lu。
8.在一个实施方案中,该扩散阻碍层是碳化硅或氮化硅,且该碳化硅或氮化硅可以是结晶的、无定形的或混合物,并且其中将基材与环境障碍涂层分隔的碳化硅或氮化硅的层是约1微米至约150微米厚。在另一实施方案中,该陶瓷基质复合材料可在至高约2550f温度下工作,且该粘合涂层可在至高约2570f的温度下工作。
9.在一个实施方案中,基材的热膨胀系数和环境障碍涂层的热膨胀系数之间的差异不超过约20%。在另一实施方案中,该基材是陶瓷基质复合材料,该粘合涂层具有约10μm至约500μm的厚度,且该扩散阻碍层的厚度为从约1μm至约150μm。
10.在一个方面,本公开涉及一种用于制造可高温工作的涡轮发动机部件的方法,所述方法包括:提供具有第一热膨胀系数的含硅基材,其中已基本上从该基材中除去除硼以外的杂质;及将粘合涂层粘合至该部件的外表面的至少一部分;其中该粘合涂层包括硅层,且其中该粘合涂层具有第二热膨胀系数;并且在该含硅基材和ebc体系之间提供碳化物或氮化物的扩散阻碍层,以限制不期望的物类/元素在该基材和该ebc体系之间连通。
11.在一个实施方案中,该基材包括sic-sic陶瓷基质复合材料。在一个实施方案中,本公开的方法可以进一步包括在该环境障碍涂层中包含至少一种稀土硅酸盐。在一个实施方案中,该碳化物或氮化物的扩散阻碍层是结晶的,且其中将基材与环境障碍涂层分隔的碳化硅或氮化硅层是约1微米至约150微米厚。在一个实施方案中,该陶瓷基质复合材料可在至高约2550f温度下工作,且该粘合涂层可在至高约2570f的温度下工作。在一个实施方案中,在基材中硅的杂质浓度(除硼以外)小于1%,且优选小于0.1%。在一个实施方案中,环境障碍涂层的粘合涂层包括硅和氧化物的混合层,而不是包括硅层的环境障碍涂层体系的粘合涂层。
12.根据以下公开内容的多个方面的详细说明并结合附图,本公开的这些和其它方面、特征和优点将变得明显。附图简要说明
13.关于本发明的主题特别指出并清楚地要求保护在说明书结尾的权利要求书。根据以下本发明方面的详细说明并结合附图,本公开内容的前述和其它特征、方面和优点将容易理解,其中:
14.图1显示了陶瓷基材、包括粘合涂层的ebc体系及位于陶瓷基材和ebc体系的粘合涂层之间的碳化物或氮化物的扩散阻碍层的示意表示。
15.图2显示了依据本公开的一个实施方案的涂覆有环境障碍涂层和扩散阻碍层的制品的局部侧截面图。
16.图3显示了依据本公开的方面的流程图,其阐述了用于制造可高温工作的涡轮发动机部件的方法。详细说明
17.以下详细参考本发明的示例性实施方案,结合附图阐述其实施例。但凡有可能,在整个附图中使用的相同附图标记指代相同或相似的部件。
18.本文描述的本发明实施方案涉及cmc和ebc体系。本文所采用的“cmc”涉及含硅复合材料,更特别是包括sic纤维和含sic基质的含硅复合材料。本文可接受使用的含硅cmc的一些实例可以包括,但不应限于,具有基质和增强纤维的材料,该增强纤维包括非氧化物硅基材料,例如碳化硅、氮化硅、碳氧化硅、氮氧化硅及其混合物。实例包括,但不限于,具有碳
化硅基质和碳化硅纤维的cmc;具有氮化硅基质和碳化硅纤维的cmc,以及具有碳化硅/氮化硅混合基质和碳化硅纤维的cmc。
19.本文所采用的术语“障碍涂层”涉及环境障碍涂层(ebc)。本文的障碍涂层可适用于存在于高温环境中的、例如在燃气涡轮发动机中存在的高温环境中的陶瓷基材;“基材部件”或简称作“部件”是指由cmc和/或包括硅的整料陶瓷所制造的部件。
20.如本文所采用的,术语“粘合”理解为包括通过另一层而直接或间接粘合,例如粘合涂层或中间层。
21.陶瓷基质复合材料(cmc)是一类由被陶瓷基质相包围的增强材料构成的材料。预期将这类材料及某些整料陶瓷(即,不含增强材料的陶瓷材料)用于超过现有体系的温度性能的应用中。通常的cmc基质材料的一些实例可以包括硅、碳化硅、氮化硅及其混合物。通常的cmc增强材料的一些实例可以包括,但不应限于,碳化硅、氮化硅、碳氧化硅和氮氧化硅。cmc材料包括由耐火纤维、一般是碳纤维或陶瓷纤维制成的纤维增强件,并用一般由sic制成的陶瓷基质致密化。含硅整料陶瓷的一些实例可包括碳化硅、氮化硅、氮氧铝硅(sialon)。
22.采用这些陶瓷材料可以减小重量并提高温度性能,同时保持涡轮部件的强度和耐久性。因此,目前考虑将这些材料用于多种在燃气涡轮发动机的高温部分中使用的燃气涡轮部件,例如翼面(例如压缩机、涡轮及叶片)、燃烧器、护罩及其它类似的部件,其受益于这些部件将可以提供的更轻的重量和更高的温度性能。
23.可以采用环境障碍涂层(ebc)和/或热障碍涂层(tbc)涂覆cmc及整料陶瓷部件,以保护其免受高温发动机部分的苛刻环境。ebc可以提供抵挡热燃烧环境中的腐蚀性气体的致密、气密密封,而tbc可以建立在涂层表面和基材之间的热梯度,可以主动冷却基材。以这种方式,可以降低部件的温度至tbc的表面温度以下。在一些例子中,tbc也可沉积在ebc的顶部,以降低ebc的表面温度至tbc的表面温度以下。该方法降低了ebc必须进行的工作温度,由此,可延长ebc的工作寿命。
24.目前,ebc可以包括多层结构,例如在共同转让的us 2011/0052925 a1中所公开的多层结构。共同地,这些层可以提供对于该部件的环境保护。
25.tbc一般由耐火氧化物材料构成,该耐火氧化物材料沉积有特殊的微结构,以减轻由于热膨胀不匹配或接触该发动机环境中的其它部件产生的热应力或机械应力。这些微结构可以包括具有垂直裂纹或微粒的致密涂层、多孔微结构及其结合。无关组分或基材,可以采用空气等离子喷涂(aps)、浆料浸渍、浆液喷涂、电泳沉积,化学气相沉积(cvd)、或电子束物理气相沉积(ebpvd)中的一种或多种来涂敷大多数的ebc和/或tbc。
26.目前,预期将熔体浸渗sic纤维增强的sic-si基质复合材料用于多种应用,包括在发电燃气轮机和包括飞机发动机的航天工业应用。这些复合材料的上限使用温度受限于约2400f。期望提高该类复合材料的温度限制至约2700f和甚至更高。
27.本公开的一个方面是可高温工作的陶瓷基质复合材料,其包括:含硅的陶瓷基材;包括硅粘合涂层的环境障碍涂层体系;及碳化物或氮化物的扩散阻碍层,该扩散阻碍层位于基材及环境障碍涂层的硅粘合涂层之间;其中该扩散阻碍层选择性地防止或减小硼及其它杂质从基材向环境障碍涂层体系的硅粘合涂层扩散。
28.该扩散阻碍层可以是碳化硅或氮化硅,且该分隔基材和环境障碍涂层的碳化硅或
氮化硅的层可以是约1μm至约150μm厚。在一个实施例中,环境障碍涂层体系的粘合涂层包括硅和氧化物的混合层,而不是环境障碍涂层的粘合涂层包括硅层,该硅层之后是硅和氧化物(例如,热生长氧化物,或硅和氧化物的混合物,或si-o化合物)的层。
29.本技术进一步教导了一种用于提高上限使用温度至2700f或更高的方法,通过提高cmc的温度限制至2550f,并采用能承受至高约2550f的界面温度的tbc体系。在一个实施例中,本公开的陶瓷基质复合材料可在至高约2550f的温度下工作,且该粘合涂层可在至高约2570f的温度下工作。此外,本公开教导了可以通过基本上消除来自硅的除硼以外的所有杂质,以提高cmc的上限使用温度。在基材中的硅是高纯的,且在相关实施例中,除硼以外的降低了硅的熔融温度的杂质的浓度小于1%。在特别的实施例中,在基材中的硅的除硼以外的杂质浓度小于1%,且优选小于0.1%。
30.在一个实施例中,可以通过以下方式来提高ebc体系的温度限制:通过采用位于cmc和粘合涂层之间的sic扩散阻碍层从而阻止硼从sic-si基质的硅向硅粘合涂层扩散,并通过采用高纯硅粘合层。在一个实施例中,采用硅和氧化物例如氧化硅和/或稀土硅酸盐的双层来替换硅粘合涂层。该基材可以包括sic-sic陶瓷基质复合材料。可以通过化学气相沉积或通过等离子喷涂或通过电子束物理气相沉积(eb-pvd)来沉积硅。
31.在一个方面,本公开涉及通过提供具有第一热膨胀系数的含硅基材来制造耐高温的涡轮发动机部件,其中已基本上从该基材中除去除硼以外的杂质;将ebc粘合涂层结合到该部件的外表面的至少一部分,其中该粘合涂层包括硅层,或其后为硅和氧化物的层的硅层,且其中该ebc粘合涂层具有第二热膨胀系数;且提供碳化物或氮化物的位于含硅基材和ebc粘合涂层之间的扩散阻碍层,使得二者彼此分隔。
32.本公开还教导了基材的热膨胀系数和环境障碍涂层的热膨胀系数之间的差异可以是不超过约20%。在一个实施例中,对于多层氧化物涂覆体系,采用更高膨胀材料的薄层,而更厚层的膨胀系数在约20%以内。进一步,该基材可以是陶瓷基质复合材料,该ebc粘合涂层可以具有约10μm至约500μm的厚度,且该扩散阻碍层的厚度可以为从约1微米至约150微米。
33.参考图1,在一个实施方案中,向硅基材料涂敷环境障碍涂层体系130,例如由cmc基材110制造的涡轮发动机部件100。可选地,由氮化硅(si3n4)基材(未示出)制造涡轮发动机部件100。根据本文提供的教导,对于本领域技术人员而言显而易见的是,涡轮发动机部件100可以由任何合适的硅基材料制造。在一个实施方案中,环境障碍涂层体系130包括位于ebc和cmc之间的硅粘合涂层。扩散阻碍层120设置在cmc 110和ebc体系130之间。在特别的实施方案中,粘合涂层具有匹配基材110和/或中间层120的热膨胀系数。
34.图2显示了依据本公开内容的一个实施方案的涂覆有环境障碍涂层和扩散阻碍层的制品的局部侧截面图。此处,向硅基材料涂敷环境障碍涂层体系230,例如由cmc基材材料210制造的涡轮发动机部件200。根据本文提供的教导,对于本领域技术人员而言显而易见的是,涡轮发动机部件200可以由任何合适的硅基材料制造。在一个实施方案中,环境障碍涂层体系230包括涂敷于或沉积在cmc基材210上的硅粘合涂层;在该特定实施例中,在ebc和cmc之间存在扩散阻碍层220。在一个实施方案中,该粘合涂层具有匹配基材210和/或中间层220的热膨胀系数。
35.图3显示了依据本公开的方面的流程图300,其阐述了用于制造可高温工作的涡轮
发动机部件的方法。该方法包括提供具有第一热膨胀系数的含硅基材,其中已基本上从该基材310中除去除硼以外的杂质。该工艺进一步包括将环境障碍涂层粘合涂层结合到该部件的外表面的至少一部分上。该制造方法进一步包括提供碳化物或氮化物的扩散阻碍层330,该扩散阻碍层位于基材及环境障碍涂层之间。
36.sic-si基质复合材料通过在包括涂覆的sic纤维和sic与碳的多孔基质的预制体中熔体浸渗硅制成。在硅浸渗中,硅与碳反应形成碳化硅,且剩余的孔由剩余的硅填充,使得剩余的硅构成约10%的基质。用于浸渗的硅包括显著浓度(例如,数个百分比)的硼,该硼是有意加入的。在硅中可以存在其它杂质。此外,在基质中也可存在一些其它掺杂物。存在于用于浸渗的硅中的包含硼的杂质浓缩进该复合材料的基质的剩余硅中。该硅杂质可以源自用于浸渗的硅源、用于浸渗酸的碳纤维/芯、及可能的炉污染。
37.在sic-si基质的硅中存在的这些杂质可降低硅的熔融温度,从而降低其使用温度。防止或减小除硼外的降低硅的熔融温度的杂质可以提高熔融温度至约2530f的在硅-硼体系中的低共熔温度。在长时间和/或高温下,在基质硅中存在的硼可以扩散至ebc体系的粘合涂层硅中。硼提高硅的氧化速率,由此给ebc的寿命带来了负面影响。通过采用位于cmc和ebc之间的碳化硅的扩散阻碍层,可以防止或减小硼和其它元素从cmc的基质向ebc的硅粘合涂层的扩散。
38.在2550f或以上的温度,且接近纯硅的熔融温度(2570f),硅粘合涂层的蠕变可能是一个潜在问题。针对该情况,本技术的发明人公开了可以通过采用硅和硅化物例如硅化钼的粘合层,或者通过采用硅和与硅相容的氧化物的粘合层来减小该蠕变。稀土硅酸盐属于此类。因此,本公开的方法可以进一步包括向该环境障碍涂层中加入至少一种稀土硅酸盐。该可高温工作的陶瓷基质复合材料可以进一步包括环境障碍涂层,该环境障碍涂层具有至少一种稀土焦硅酸盐(re2si2o7)的至少一个层,所述稀土焦硅酸盐选自sc、y、la、ce、pr、nd、pm、sm、eu、gd、tb、dy、ho、er、tm、yb和lu。
39.本公开的一个方面是采用经实质上不含有除硼以外的杂质的成分处理的cmc体系、位于cmc和ebc体系之间的碳化硅的扩散阻碍层、及高纯硅或具有硅化物或氧化物添加的高纯硅的粘合层,以减轻在2550f或更高的温度下与硅相关的潜在的蠕变问题。
40.如本文中所教导的cmc/ebc体系将该体系的温度限制从cmc基质及粘合涂层的约2400f的目前限制提高到其中上限使用温度提高到约2550f的cmc/ebc体系。ebc的表面可以在2700f以上的温度工作。该提高cmc/ebc温度限制的能力有助于改进,例如,比燃料消耗(sfc),以及飞机发动机的推重比和工业燃气轮机的效率。
41.应理解的是,上述说明旨在阐述,而非限制。例如,上述实施方案(和/或其方面)可以彼此结合使用。此外,依据本发明的教导而不偏离其范围,可以进行多种变形,以适应特定的环境或材料。虽然本文中所描述的材料的尺寸和类型意图定义本发明的参数,但是它们绝不是限制性的,并且是示例性的实施方案。对于本领域普通技术人员而言,经阅读上述说明书,许多其它实施方案将是显而易见的。因此,应参照所附的权利要求以及这些权利要求所赋予的等价物的完整范围来确定本发明的范围。
42.在所附的说明书中,术语“包含”和“在......其中”被用作与相应术语“包括”和“其中”相当的普通英语。此外,在以下权利要求中,如果存在任何术语“第一”、“第二”等,其仅被用作标记,并不意在对其对象造成数值或位置要求。进一步,以下权利要求的限制没有
写成手段+功能的格式,且不应基于35u.s.c.
§
112第六段进行解释,除非且直至这些权利要求限制清楚地使用了短语“用于......的装置”并随后是功能的陈述而没有进一步的结构。
43.该书面说明书采用实施例来公开本发明的数个实施方案,包括最佳模式,也用于使本领域普通技术人员能实践本发明的实施方案,包括制造并使用任何装置或系统,且进行任意结合的方法。本发明的可专利范围由权利要求所限定,且可以包含本领域普通技术人员想到的其它实例。如果其具有与权利要求的文字语言无差异的结构要素,或者如果其包含与权利要求的文字语言具有非实质性差异的等同结构要素,这样的其它实例预期在权利要求的范围内。
44.如同本文所采用的,以单数描述或前缀有单词“一个(a)”或“一个(an)”的要素或步骤应该被理解为不排除所述要素或步骤的复数,除非明确地陈述了这样的排除。此外,本发明中提及的“一个实施方案”并不旨在理解为排除同样结合有所述特征的其它实施方案的存在。另外,除非有明确相反的陈述,“包括”、“包含”或“具有”有特定性质的一个要素或多个要素的实施方案可以包含其它的不具有这类性质的要素。
45.尽管只结合有限数量的实施方案详细描述了本发明,但是应当容易理解的是,本发明不局限于这些公开的实施方案。相反,可以修改本发明,以结合任意数量的此前未描述但是与本发明的精神和范围等同的变化、变更、替换或等效布置。此外,虽然已描述了本发明的多种实施方案,但是应理解的是,本公开的方面可以只包含一些所描述的实施方案。由此,本发明不应视为限于前述说明书,而是只由所附权利要求的范围所限定。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1