一种热导率随温度可调控的高熵陶瓷及其制备方法与流程

文档序号:31156040发布日期:2022-08-17 07:09阅读:400来源:国知局
一种热导率随温度可调控的高熵陶瓷及其制备方法与流程

1.本发明属于高熵材料制备技术领域,特别涉及了一种热导率随温度可调控的高熵陶瓷及其制备方法。


背景技术:

2.高熵陶瓷是近年出现的一种新型陶瓷,为元素种类为5种以上、没有主导元素、并且所有元素的含量在5%-35%之间的材料。由于陶瓷高熵化后材料晶格畸变,使得高熵陶瓷具有较低的热导率、高熔点、较好的耐蚀性、良好的生物相容性以及良好的电化学性能等性能,在超高温、生物医学和能源等领域具有较大发展潜力。
3.成分均一的高熵陶瓷体系中,其晶格结构稳定性源于体系的混合熵增加导致的系统吉布斯自由能降低,因此体系能够自发形成稳定的均一相。但是同时由于吉布斯自由能也与环境温度直接相关,温度与熵的乘积共同影响整个系统的吉布斯自由能,意味着,当环境温度较低时,系统的混合熵与温度的共同作用不足以使高熵体系形成均一的固溶体,因此体系内会存在偏析或化合物等,当环境温度再次升高,体系则自发再次固溶,即存在随温度变化的成分回复现象。陶瓷的导热机制多为声子振动传输导热,因此,高熵陶瓷随温度变化而产生的成分变化会改变声子振动模式,从而改变材料热导率,实现以成分变化控制材料热导率的目的。考虑高熵陶瓷在未来极端环境下多适应性的应用,高熵陶瓷从室温至1200℃范围内的热导率变化值得特别关注。通过调控热导率,有助于拓展核高熵结构材料的选择范围和使用场景。


技术实现要素:

4.本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种热导率随温度可调控的高熵陶瓷。该高熵陶瓷由五种金属氧化物进行高温固相反应合成得到,使得金属氧化物的点阵重新排列为最密排的立方晶格结构,在高熵陶瓷的成分回复机制作用下,当高熵陶瓷在较低温度下热处理时因晶格畸变程度降低热导率随温度升高而升高,当在较高温度下热处理时因晶格畸变程度增加热导率随温度升高而降低,从而高熵陶瓷的热导率随温度可调控。
5.为解决上述技术问题,本发明采用的技术方案为:一种热导率随温度可调控的高熵陶瓷,其特征在于,由原料hfo2、zro2、sno2、tio2与 ceo2/mno2通过高温固相反应合成得到,所述高熵陶瓷在室温至1200℃温度范围内的热导率存在极值,且热导率呈现先升高后降低的趋势。
6.本发明采用五种金属氧化物hfo2、zro2、sno2、tio2与ceo2/mno2作为原料进行高温固相反应合成得到高熵陶瓷,这五种金属氧化物在高温固溶时,构型熵增加促进金属氧化物的点阵重新排列为最密排的立方晶格结构,当高熵陶瓷置于较低温度即低于固溶温度的条件下热处理后,高熵陶瓷的构型熵不够高无法形成均一固溶体,因而体系内出现偏析、化合物甚至单一成分相,该高熵陶瓷的成分回复机制促使第二相析出,降低整个体系的晶格
畸变程度,导致高熵陶瓷的热导率随温度升高而升高,当高熵陶瓷置于较高温度即升高至固溶温度时,高熵陶瓷体系内开始固溶,导致整个体系的晶格畸变增加,导致高熵陶瓷的热导率随温度升高而下降,因此,高熵陶瓷在室温至1200℃温度范围内对应固溶开始温度处,其热导率存在极值,且热导率呈现先升高后降低的趋势,即高熵陶瓷的热导率随温度可调控,拓宽了高熵陶瓷的应用领域。
7.上述的一种热导率随温度可调控的高熵陶瓷,其特征在于,所述高熵陶瓷为萤石结构的单相陶瓷。
8.上述的一种热导率随温度可调控的高熵陶瓷,其特征在于,所述高熵陶瓷在固溶温度以下的热导率升高,在固溶温度以上的热导率降低。
9.另外,本发明还提供了一种制备如上述的热导率随温度可调控的高熵陶瓷的方法,其特征在于,该方法包括:将原料hfo2、zro2、sno2、tio2与ceo2或者与mno2置于球磨罐中,然后加入分析纯乙醇进行球磨 12h~24h,依次经干燥、研磨、过筛后烧结进行高温固相反应,得到高熵陶瓷;所述烧结的温度为1400℃~1600℃,时间为1h~4h。本发明直接将各原料进行湿法球磨以细化原料尺寸,促进原料充分混匀,并结合干燥、研磨和过筛,使得原料进一步细化混匀,再烧结进行高温固相反应成型,得到高熵陶瓷,通过控制烧结的温度和时间,使得各原料排列为最密排的立方晶格结构,并保证固溶完全,进而保证了高熵陶瓷的热导率随温度可调控的特性。
10.上述的方法,其特征在于,所述过筛后进行压制成型再烧结进行高温固相反应,得到高熵陶瓷块体制品。通过过筛后进行压制成型再烧结,满足不同尺寸、不同形状高熵陶瓷块体制品的需求,且提高了烧结致密度,改善了高熵陶瓷块体制品的质量。
11.本发明中的室温通常为25℃~35℃。
12.本发明与现有技术相比具有以下优点:
13.1、本发明通过将五种金属氧化物进行高温固相反应合成得到高熵陶瓷,使得金属氧化物的点阵重新排列为最密排的立方晶格结构,从而当高熵陶瓷在较低温度下热处理时因晶格畸变程度降低热导率随温度升高而升高,在较高温度下热处理时因晶格畸变程度增加热导率随温度升高而降低,即高熵陶瓷的热导率随温度可调控,拓宽了高熵陶瓷的应用领域。
14.2、本发明热导率随温度可调控的高熵陶瓷的制备方法简单易控,易于工业化生产和应用。
15.下面通过附图和实施例对本发明的技术方案作进一步的详细描述。
附图说明
16.图1为本发明实施例1~2的热导率随温度可调控的高熵陶瓷块体的 xrd图谱。
17.图2为本发明实施例1~2的热导率随温度可调控的高熵陶瓷块体在室温至1200℃温度范围的热导率变化趋势图。
具体实施方式
18.实施例1
19.本实施例的热导率随温度可调控的高熵陶瓷由摩尔质量比为1:1:1: 1:1的原料
hfo2、zro2、sno2、tio2与ceo2通过高温固相反应合成得到。
20.本实施例的热导率随温度可调控的高熵陶瓷的制备方法为:将原料 10.2488g的hfo2、6g的zro2、7.3380g的sno2、3.8893g的tio2与8.38g 的ceo2置于球磨罐中,然后加入分析纯乙醇进行球磨24h,依次经80℃烘箱干燥、研磨、过250目筛后进行冷等静压压制成型,在1400℃烧结 2h进行高温固相反应,得到热导率随温度可调控的(hf,zr,sn,ti,ce)o2高熵陶瓷块体。
21.实施例2
22.本实施例的热导率随温度可调控的高熵陶瓷由摩尔质量比为1:1:1: 1:1的原料hfo2、zro2、sno2、tio2与mno2通过高温固相反应合成得到。
23.本实施例的热导率随温度可调控的高熵陶瓷的制备方法为:将原料 10.2488g的hfo2、6g的zro2、7.3380g的sno2、3.8893g的tio2与4.233g 的mno2置于球磨罐中,然后加入分析纯乙醇进行球磨12h,依次经120 ℃烘箱干燥、研磨、过250目筛后进行冷等静压压制成型,在1550℃烧结4h进行高温固相反应,得到热导率随温度可调控的(hf,zr,sn,ti,mn)o2高熵陶瓷块体。
24.将本发明实施例1~实施例2的热导率随温度可调控的高熵陶瓷块体进行x射线衍射分析,得到的xrd图谱如图1所示,从图1可以看出,本发明实施例1~实施例2的热导率随温度可调控的高熵陶瓷块体均具有立方萤石结构。
25.将本发明实施例1~实施例2的热导率随温度可调控的高熵陶瓷块体进行室温至1200℃温度范围的热导率测试,结果如图2所示,从图2可以看出,实施例1的高熵陶瓷块体的热导率在900℃以下缓慢上升,至900 ℃开始热导率开始下降,即该高熵陶瓷块体在固溶温度900℃对应的热导率为极值;实施例2的高熵陶瓷块体的热导率在1000℃以下缓慢上升,至 1000℃开始热导率开始下降,即该高熵陶瓷块体在固溶温度1000℃对应的热导率为极值。
26.实施例3
27.本实施例的热导率随温度可调控的高熵陶瓷由摩尔质量比为1:1:1: 1:1的原料hfo2、zro2、sno2、tio2与ceo2通过高温固相反应合成得到。
28.本实施例的热导率随温度可调控的高熵陶瓷的制备方法为:将原料 10.2488g的hfo2、6g的zro2、7.3380g的sno2、3.8893g的tio2与8.38g 的ceo2置于球磨罐中,然后加入分析纯乙醇进行球磨24h,依次经80℃烘箱干燥、研磨、过250目筛后进行冷等静压压制成型,在1400℃烧结 1h进行高温固相反应,得到热导率随温度可调控的(hf,zr,sn,ti,ce)o2高熵陶瓷块体。
29.经检测,本实施例的热导率随温度可调控的高熵陶瓷块体的晶格结构为单相萤石结构,在室温至1200℃温度范围内的热导率呈现先升高后降低的趋势,该高熵陶瓷块体在固溶温度900℃对应的热导率为极值。
30.实施例4
31.本实施例的热导率随温度可调控的高熵陶瓷由摩尔质量比为1:1:1: 1:1的原料hfo2、zro2、sno2、tio2与ceo2通过高温固相反应合成得到。
32.本实施例的热导率随温度可调控的高熵陶瓷的制备方法为:将原料 10.2488g的hfo2、6g的zro2、7.3380g的sno2、3.8893g的tio2与8.38g 的ceo2置于球磨罐中,然后加入分
析纯乙醇进行球磨24h,依次经80℃烘箱干燥、研磨、过250目筛后进行冷等静压压制成型,在1600℃烧结 1h进行高温固相反应,得到热导率随温度可调控的(hf,zr,sn,ti,ce)o2高熵陶瓷块体。
33.经检测,本实施例的热导率随温度可调控的高熵陶瓷块体的晶格结构为单相萤石结构,在室温至1200℃温度范围内的热导率呈现先升高后降低的趋势,该高熵陶瓷块体在固溶温度900℃对应的热导率为极值。
34.以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1