一种用于生物成像的黑磷纳米片复合材料的制备

文档序号:32163113发布日期:2022-11-12 03:21阅读:242来源:国知局
一种用于生物成像的黑磷纳米片复合材料的制备

1.本发明属于纳米材料在生物医药领域的应用,涉及黑磷纳米片复合材料的制备及生物成像性能研究。


背景技术:

2.癌症作为最致命的疾病之一,一直令人闻之色变。过去几十年间,人们做出了巨大努力与癌症抗争。由于癌症的复杂性和不可控性,每年有上百万人因癌症而失去生命。许多癌症一经发现就是晚期,治疗难度增加的同时治愈几率也极小。这就迫切需要及早发现及早治疗,采用更加先进的生物成像技术对癌症进行诊断,以便更精确更及时地进行治疗。先进纳米材料的开发与应用为生物医学领域提供了进一步发展的可能。二维纳米材料具有超薄的生物医学结构、大的表面体积比、优异的热导和电子导电性、灵敏的光响应性和强大的机械灵活性等优点。此外,二维材料因其载流子迁移和热量扩散都被限制在二维平面内,使得这种材料展现出许多奇特的性质。二维材料具有独特的理化性质,包括易于表面修饰特性、导电性和强光响应性等,被广泛应用于各个领域。
3.层状黑磷(bp)是二维纳米材料家族的新秀,在能量存储与转换,光电器件,生物医学和生物传感等领域引起了人们的极大兴趣。相比于其他材料,黑磷可生物降解,并生成对正常细胞无毒性的降解产物,这种良好的生物相容性使得黑磷在生物医学方面得到广泛研究。在癌症治疗方面,黑磷可作为光热转换试剂用于光热治疗、光声造影剂用于光声成像、药物递送载体用于光热、化疗、成像的诊疗一体化、兼任光热、光动力敏化剂或药物载体等多重功效用于光热、光动力、化疗协同治疗、甚至直接作为新型化疗剂用于化学治疗。由于其高量子率、稳定性和简单的结构,鲁米诺是最广泛使用的化学发光试剂之一。目前,鲁米诺的化学发光特性已被应用于体内炎症成像,癌症环境中产生的活性氧(ros)可以与鲁米诺反应产生化学发光,由此可以测定炎症以及肿瘤的不同阶段。但是由于其在体内的组织穿透能力有限,使得在体内成像监测的过程中,不能检测到灵敏的发光信号。另外,体内普遍存在较强的背景荧光信号,使得待测物质的信号分辨率不高,为体内检测带来一定难度,还存在发光持续时间短等弊端,这些都使得成像效果欠佳。


技术实现要素:

4.在本发明中,通过黑磷纳米片与鲁米诺和荧光染料的连接制备出复合纳米材料,复合纳米材料的化学发光强度明显提升,并可利用生物共振能量转移与荧光共振能量转移实现穿透更深组织的成像。所制备的纳米复合材料具有良好的生物相容性,不会对正常的生理系统造成生物毒性。
5.本发明为制备黑磷纳米片复合材料,并将其应用于生物成像,具体是按下述步骤进行的:
6.步骤一、取50ml去离子水于密封瓶中,通入氮气20分钟。
7.步骤二、放入50mg块状黑磷,将整个密封瓶全部置于冰水中,接着通入氮气,期间
用细胞破碎仪进行破碎。破碎8h,期间不断通氮气,通过超声破碎得到黑鳞纳米片溶液。
8.步骤三、取制备好的纳米黑磷溶液30ml加入50ml离心管中,称取90~120mg聚乙二醇(nh
2-peg-cooh,分子量为2000)于离心管中,置于摇床内,避光反应4h,多次用水离心清洗后,加入30ml水,得到bp-peg溶液。
9.步骤四、取制备好的bp-peg溶液1ml于10ml离心管中,加入0.6~0.9mg n-羟基琥珀酰胺(nhs),1.5~3mg 1-乙基(3-二甲基胺丙基)(edc)超声混合均匀。
10.步骤五、取一个10ml离心管加入10mg鲁米诺和dmso,超声完全溶解后加入去离子水混合均匀得到鲁米诺溶液,固定于磁力搅拌器上,将之前活化后的bp-peg溶液一滴一滴滴入鲁米诺溶液中。
11.步骤六、移取0.1mg/ml rhb溶液100~300ul,0.1mg/ml cy5.5溶液50~200ul于步骤五制备的溶液中,用锡纸包好,反应16h,反应结束后以15000r/min离心10min,用水离心清洗两次,即得bp-peg-lu-rhb-cy5.5纳米片复合材料。
12.步骤七、用小动物ivis成像仪,对所制备bp纳米片复合材料的化学发光强度进行检测,通过穿透深度体外模拟测试,确定bp-lu-rhb-cy5.5纳米复合材料所产生化学发光的组织穿透效果。
13.本发明经过多次实验确定了纳米复合材料的最佳合成方式,采用一锅法制备的bp纳米复合材料的发光效果较好。
14.本发明优化了黑鳞纳米片复合材料制备中,鲁米诺溶液中dmso和水的最佳配比,确定了rhb及cy5.5的最佳用量。
15.本发明中制备的黑磷纳米片复合材料具有良好的生物相容性、较高的光稳定性,bp-lu-rhb-cy5.5纳米复合材料在小动物成像仪中显示出最强的发光信号。
16.本发明中鲁米诺产生的化学发光可以通过鲁米诺和rhb之间的bret以及rhb和cy5.5之间的fret过程而红移到近红外区域,能实现更深层次的组织成像。在穿透深度体外模拟测试中,bp-lu-rhb-cy5.5纳米复合材料的最大穿透深度能达到7.5mm以上,与bp-lu纳米复合材料产生的化学发光信号在猪肉组织中的最大穿透深度为4.5mm相比,bp-lu-rhb-cy5.5纳米复合材料能实现更深层的组织内成像。
附图说明:
17.图1是bp纳米片的tem图及hrtem图。
18.图2是bp纳米片的xrd图谱。
19.图3是bp和bp-lu纳米片的afm图。
20.图4是bp纳米复合材料的荧光光谱图。
21.图5是不同纳米复合材料的溶液覆盖不同厚度的猪肉组织后产生化学发光的穿透情况。
具体实施方式
22.实施1:
23.本发明为制备黑磷纳米片复合材料,并将其应用于生物成像,具体是按下述步骤进行的:
24.步骤一、取50ml去离子水于密封瓶中,通入氮气20分钟。
25.步骤二、放入50mg块状黑磷,将整个密封瓶全部置于冰水中,接着通入氮气,期间用细胞破碎仪进行破碎。破碎8h,期间不断通氮气,通过超声破碎得到黑鳞纳米片溶液。
26.步骤三、取制备好的纳米黑磷溶液30ml加入50ml离心管中,称取90~120mg聚乙二醇(nh
2-peg-cooh,分子量为2000)于离心管中,置于摇床内,避光反应4h,多次用水离心清洗后,加入30ml水,得到bp-peg溶液。
27.步骤四、取制备好的bp-peg溶液1ml于10ml离心管中,加入0.6~0.9mg n-羟基琥珀酰胺(nhs),1.5~3mg 1-乙基(3-二甲基胺丙基)(edc)超声混合均匀。
28.步骤五、取一个10ml离心管加入10mg鲁米诺和dmso,超声完全溶解后加入去离子水混合均匀得到鲁米诺溶液,固定于磁力搅拌器上,将之前活化后的bp-peg溶液一滴一滴滴入鲁米诺溶液中。
29.步骤六、移取0.1mg/ml rhb溶液100~300ul,0.1mg/ml cy5.5溶液50~200ul于步骤五制备的溶液中,用锡纸包好,反应16h,反应结束后以15000r/min离心10min,用水离心清洗两次,即得bp-peg-lu-rhb-cy5.5纳米片复合材料。
30.步骤七、用小动物ivis成像仪,对所制备bp纳米片复合材料的化学发光强度进行检测,通过穿透深度体外模拟测试,确定bp-lu-rhb-cy5.5纳米复合材料所产生化学发光的组织穿透效果。
31.采用下述试验验证发明效果:
32.1.黑磷纳米片及其复合材料的表征
33.从bp纳米片的tem图(图1a)可以看出制备的黑磷纳米片呈薄层片状结构,其hrtem图(图1b)可以看出其晶格间距为0.26nm,对应于bp的(040)晶面。
34.薄层bp的xrd图谱(图2)显示在2θ=16.9
°
、34.2
°
和52.4
°
处有强烈的衍射峰,分别归属于bp的(020),(040)和(060)晶面,且峰型都很尖锐,这些峰值与标准卡(jcpds no.76-1957)一致,表明所制备的黑磷纳米片具有良好的结晶性和纯度。
35.通过afm来比较探究bp-lu复合材料和bp纳米片的微观表面形貌。如图3a所示,bp纳米片的高度为11.8nm,由于bp单层的厚度约为0.9nm,由此表明bp纳米片由大约13个bp单层组成。此外,图3b所示,得到的bp-lu复合材料的平均高度为16.0nm,厚度的增加跟peg修饰以及鲁米诺的负载有关。
36.黑磷纳米片复合材料的荧光光谱图(图4)中有两个明显的特征峰,在580nm处是rhb的特征峰,710nm处是cy5.5的特征峰。荧光光谱结果表明rhb和cy5.5在黑鳞纳米片上的成功连接。
37.2.黑磷纳米片复合材料在生物成像方面的应用
38.在避光条件下,分别将去离子水,浓度为3mg/ml的bp溶液、bp-lu溶液和bp-lu-rhb-cy5.5(简写为bp-l-r-c)溶液各50μl,浓度为30%的h2o2溶液50μl及浓度为1m的na2co3溶液50μl添加到黑色的96孔板中,混合25分钟后,用ivis小动物成像仪内测试其化学发光情况,在黑色的96孔板表面覆盖一层1.5mm厚度的猪肉组织,在ivis小动物成像仪内测试,重复以上实验过程,逐渐增加覆盖的猪肉片层数,直至小动物成像系统无法捕捉到化学发光信号,记录此时覆盖猪肉片的层数,并计算厚度。
39.如图5所示,去离子水和bp纳米片没有化学发光信号产生,bp-lu-rhb-cy5.5纳米
复合材料显示出比bp-lu纳米复合材料更强的化学发光信号。随着猪肉组织层厚度的增加,达到4.5mm厚度时,ivis小动物成像系统已经几乎捕捉不到bp-lu纳米复合材料产生的化学发光信号,但是bp-lu-rhb-cy5.5纳米复合材料产生的化学发光信号还非常强,研究结果表明,bp-lu-rhb-cy5.5纳米复合材料所产生的化学发光信号的穿透深度能达到7.5mm以上,这也验证了bp-lu-rhb-cy5.5纳米复合材料可以实现更深层次的组织内成像。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1