一种以9‑芴酮为核心的有机电致发光材料及其应用的制作方法

文档序号:12151320阅读:287来源:国知局
本发明涉及半导体
技术领域
,尤其是涉及一种以9-芴酮为核心的化合物,以及其作为发光层材料在有机发光二极管上的应用。
背景技术
:有机电致发光(OLED:OrganicLightEmissionDiodes)器件技术既可以用来制造新型显示产品,也可以用于制作新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。OLED发光器件犹如三明治的结构,包括电极材料膜层,以及夹在不同电极膜层之间的有机功能材料,各种不同功能材料根据用途相互叠加在一起共同组成OLED发光器件。作为电流器件,当对OLED发光器件的两端电极施加电压,并通过电场作用有机层功能材料膜层中的正负电荷,正负电荷进一步在发光层中复合,即产生OLED电致发光。有机发光二极管(OLEDs)在大面积平板显示和照明方面的应用引起了工业界和学术界的广泛关注。然而,传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。外量子效率普遍低于5%,与磷光器件的效率还有很大差距。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间窜越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达100%。但磷光材料存在价格昂贵,材料稳定性较差,器件效率滚落严重等问题限制了其在OLEDs的应用。热激活延迟荧光(TADF)材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(△EST),三线态激子可以通过反系间窜越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子,器件的内量子效率可以达到100%。同时,材料结构可控,性质稳定,价格便宜无需贵重金属,在OLEDs领域的应用前景广阔。虽然理论上TADF材料可以实现100%的激子利用率,但实际上存在如下问题:(1)设计分子的T1和S1态具有强的CT特征,非常小的S1-T1态能隙,虽然可以通过TADF过程实现高T1→S1态激子转化率,但同时导致低的S1态辐射跃迁速率,因此,难于兼具(或同时实现)高激子利用率和高荧光辐射效率;(2)即使已经采用掺杂器件减轻T激子浓度猝灭效应,大多数TADF材料的器件在高电流密度下效率滚降严重。就当前OLED显示照明产业的实际需求而言,目前OLED材料的发展还远远不够,落后于面板制造企业的要求,作为材料企业开发更高性能的有机功能材料显得尤为重要。技术实现要素:针对现有技术存在的上述问题,本申请人提供了一种以9-芴酮为核心的有机电致发光材料及其应用。本发明化合物基于TADF机理以9-芴酮为核心,作为发光层材料应用于有机发光二极管,本发明制作的器件具有良好的光电性能,能够满足面板制造企业的要求。本发明的技术方案如下:本申请人提供了一种以9-芴酮为核心的有机电致发光材料,所述有机电致发光材料的结构如通式(1)所示:通式(1)中,R表示为-Ar-R1或-R2;其中,Ar表示为苯基、C1-10直链或支链烷基取代的苯基、联苯基、三联苯基、萘基、蒽基、菲基、苯并菲基、呋喃基、噻吩基或吡啶基;n=1或2;通式(1)中,R1、R2分别独立的表示为氢原子、通式(2)或通式(3)所示结构,且R1、R2不同时为氢原子:其中,X表示为氧原子、硫原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基或芳基取代的叔胺基中的一种R3表示为氢原子、通式(3)或通式(4)所示结构;其中,a选自X1、X2、X3、X4分别独立的表示为氧原子、硫原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基或芳基取代的叔胺基中的一种;通式(4)、通式(5)通过CL1-CL2键、CL2-CL3键、CL3-CL4键或CL4-CL5键和通式(2)连接;R4、R5分别独立的表示为苯基、萘基、联苯基、通式(6)、通式(7)、通式(8)或通式(9)所示结构;其中,X5为氧原子、硫原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基或芳基取代的叔胺基中的一种;R6、R7分别独立的表示为苯基、萘基、二联苯基、三联苯基、二苯并呋喃、二苯并噻吩、9,9-二甲基芴或咔唑。优选的,所述通式(2)表示为:中的任意一种。优选的,所述通式(3)表示为:中的任意一种。优选的,所述有机电致发光材料的具体结构式为:中的任意一种。本申请人还提供了一种制备所述有机电致发光材料的方法,制备过程中发生的反应方程式是:当R表示为-R2时,具体制备方法为:称取以9-芴酮为核心的溴代化合物和R2-H,用甲苯溶解;再加入Pd(dppf)Cl2、叔丁醇钠;在惰性气氛下,将上述反应物的混合溶液于反应温度95-100℃,反应10-24小时,冷却、过滤反应溶液,滤液旋蒸,过硅胶柱,得到目标产物;所述以9-芴酮为核心的溴代化合物与R2-H的摩尔比为1:1.0-3.0;Pd(dppf)Cl2与以9-芴酮为核心的溴代化合物的摩尔比为0.006-0.02:1,叔丁醇钠与以9-芴酮为核心的溴代化合物的摩尔比为2.0-5.0:1;当R表示为-Ar-R1时,具体制备方法为:称取以9-芴酮为核心的硼酸化合物和R1-Ar-Br,用体积比为2:1的甲苯乙醇混合溶剂溶解;再加入Na2CO3水溶液、Pd(PPh3)4;在惰性气氛下,将上述反应物的混合溶液于反应温度95-100℃,反应10-24小时,冷却、过滤反应溶液,滤液旋蒸,过硅胶柱,得到目标产物;所述以9-芴酮为核心的硼酸化合物与R1-Ar-Br的摩尔比为1:1.0~3.0;Pd(PPh3)4与以9-芴酮为核心的硼酸化合物的摩尔比为0.006-0.02:1,Na2CO3与以9-芴酮为核心的硼酸化合物的摩尔比为2.0-5.0:1。本申请人还提供了一种包含所述有机电致发光材料的发光器件,所述有机电致发光材料作为发光层材料,用于制作OLED器件。本发明有益的技术效果在于:本发明化合物以9-芴酮为母核,破坏了分子的结晶性,避免了分子间的聚集作用,具有好的成膜性;分子中多为刚性基团,提高材料的热稳定性;具有良好的光电特性,合适的HOMO和LUMO能级,本发明化合物HOMO和LUMO能级电子云有效分离,可实现较小的S1-T1态能隙,可有效提高激子利用率和高荧光辐射效率,降低高电流密度下的效率滚降,降低器件电压,改善器件在高电流密度下效率滚降问题。本发明所述化合物可应用于OLED发光器件制作,并且可以获得良好的器件表现,所述化合物作为OLED发光器件的发光层材料使用时,器件的电流效率,功率效率和外量子效率均得到很大改善。本发明所述化合物在OLED发光器件中具有良好的应用效果,具有良好的产业化前景。附图说明图1为本发明化合物应用的器件结构示意图;其中,1为透明基板层,2为ITO阳极层,3为空穴注入层,4为空穴传输层,5为发光层,6为电子传输层,7为电子注入层,8为阴极反射电极层。具体实施方式下面结合附图和实施例,对本发明进行具体描述。实施例1:化合物11的合成:合成路线:250mL的三口瓶,在通入氮气的气氛下,加入0.01mol2-溴-9-芴酮,0.015mol中间体A1,0.03mol叔丁醇钠,1×10-4molPd(dppf)Cl2,180mL甲苯,加热回流10小时,取样点板,原料反应完全;自然冷却至室温(20~25℃),过滤,收集滤液进行减压旋蒸(-0.09MPa,85℃),进行柱层析,得到目标产物,HPLC纯度99.1%,收率73.2%。元素分析结构(分子式C46H30N2O2):理论值C,85.96;H,4.70;N,4.36;O,4.98;测试值:C,85.95;H,4.71;N,4.35;O,4.99。HPLC-MS:材料理论分子量为642.74,实测分子量642.97。实施例2:化合物17的合成:合成路线:250mL的三口瓶,在通入氮气的气氛下,加入0.01mol2-溴-9-芴酮,0.015mol中间体B1,0.03mol叔丁醇钠,1×10-4molPd(dppf)Cl2,180mL甲苯,加热回流10小时,取样点板,原料反应完全;自然冷却至室温(20~25℃),过滤,收集滤液进行减压旋蒸(-0.09MPa,85℃),进行柱层析,得到目标产物,HPLC纯度99.3%,收率74.8%。元素分析结构(分子式C46H30N2O2):理论值C,85.96;H,4.70;N,4.36;O,4.98;测试值:C,85.94;H,4.72;N,4.37;O,4.97。HPLC-MS:材料理论分子量为642.74,实测分子量642.95。实施例3:化合物38的合成:合成路线:250mL的三口瓶,在通入氮气的气氛下,加入0.01mol2-溴-9-芴酮,0.015mol中间体C1,0.03mol叔丁醇钠,1×10-4molPd(dppf)Cl2,180mL甲苯,加热回流10小时,取样点板,原料反应完全;自然冷却至室温(20~25℃),过滤,收集滤液进行减压旋蒸(-0.09MPa,85℃),进行柱层析,得到目标产物,HPLC纯度99.5%,收率74.2%。元素分析结构(分子式C49H36N2O2):理论值C,85.94;H,5.30;N,4.09;O,4.67;测试值:C,85.95;H,5.31;N,4.08;O,4.66。HPLC-MS:材料理论分子量为684.82,实测分子量685.04。实施例4:化合物47的合成:合成路线:化合物47的制备方法同实施例1,不同之处在于采用中间体D1替换中间体A1。元素分析结构(分子式C46H32N2O2):理论值C,85.69;H,5.00;N,4.34;O,4.96;测试值:C,85.67;H,5.01;N,4.35;O,4.97。HPLC-MS:材料理论分子量为644.76,实测分子量644.95。实施例5:化合物64的合成:合成路线:化合物64的制备方法同实施例1,不同之处在于采用中间体E1替换中间体A1。元素分析结构(分子式C46H29NO3):理论值C,85.83;H,4.54;N,2.18;O,7.46;测试值:C,85.82;H,4.55;N,2.17;O,7.45。HPLC-MS:材料理论分子量为643.73,实测分子量643.91。实施例6:化合物78的合成:合成路线:250mL的三口瓶,在通入氮气的气氛下,加入0.01mol3-溴-9-芴酮,0.015mol中间体F1,0.03mol叔丁醇钠,10-4molPd(dppf)Cl2,180mL甲苯,加热回流10小时,取样点板,原料反应完全;自然冷却至室温(20~25℃),过滤,收集滤液进行减压旋蒸(-0.09MPa,85℃),进行柱层析,得到目标产物,HPLC纯度99.2%,收率72.9%。元素分析结构(分子式C52H35N3O2):理论值C,85.11;H,4.81;N,5.73;O,4.36;测试值:C,85.12;H,4.82;N,5.72;O,4.34。HPLC-MS:材料理论分子量为733.85,实测分子量734.08。实施例7:化合物87的合成:合成路线:化合物87的制备方法同实施例1,不同之处在于采用中间体G1替换中间体A1。元素分析结构(分子式C49H36N2O2):理论值C,85.94;H,5.30;N,4.09;O,4.67;测试值:C,85.95;H,5.31;N,4.08;O,4.66。HPLC-MS:材料理论分子量为684.82,实测分子量685.08。实施例8:化合物102的合成:合成路线:化合物102的制备方法同实施例1,不同之处在于采用中间体H1替换中间体A1。元素分析结构(分子式C52H42N2O2):理论值C,85.92;H,5.82;N,3.85;O,4.40;测试值:C,85.91;H,5.84;N,3.84;O,4.41。HPLC-MS:材料理论分子量为726.90,实测分子量727.11。实施例9:化合物108的合成:合成路线:化合物108的制备方法同实施例1,不同之处在于采用中间体I1替换中间体A1。元素分析结构(分子式C52H42N2O):理论值C,87.85;H,5.95;N,3.94;O,2.25;测试值:C,87.84;H,5.97;N,3.95;O,2.24。HPLC-MS:材料理论分子量为710.90,实测分子量711.13。实施例10:化合物121的合成:合成路线:化合物121的制备方法同实施例6,不同之处在于采用中间体J1替换中间体F1。元素分析结构(分子式C49H37N3O):理论值C,86.06;H,5.45;N,6.14;O,2.34;测试值:C,86.07;H,5.47;N,6.13;O,2.33。HPLC-MS:材料理论分子量为683.84,实测分子量684.07。实施例11:化合物127的合成:合成路线:化合物127的制备方法同实施例1,不同之处在于采用中间体K1替换中间体A1。元素分析结构(分子式C52H35N3O):理论值C,87.00;H,4.91;N,5.85;O,2.23;测试值:C,87.01;H,4.90;N,5.84;O,2.25。HPLC-MS:材料理论分子量为717.85,实测分子量718.03。实施例12:化合物129的合成:合成路线:化合物129的制备方法同实施例1,不同之处在于采用中间体L1替换中间体A1。元素分析结构(分子式C52H33NO3):理论值C,86.77;H,4.62;N,1.95;O,6.67;测试值:C,86.75;H,4.63;N,1.96;O,6.66。HPLC-MS:材料理论分子量为719.82,实测分子量720.06。实施例13:化合物130的合成:合成路线:化合物130的制备方法同实施例1,不同之处在于采用中间体M1替换中间体A1。元素分析结构(分子式C52H39N3O):理论值C,86.52;H,5.45;N,5.82;O,2.22;测试值:C,86.50;H,5.46;N,5.84;O,2.20。HPLC-MS:材料理论分子量为721.89,实测分子量722.16。实施例14:化合物165的合成:合成路线:250mL的三口瓶,在通入氮气的气氛下,加入0.01mol2,7-二溴-9-芴酮,0.025mol中间体N1,0.04mol叔丁醇钠,1×10-4molPd(dppf)Cl2,180mL甲苯,加热回流10小时,取样点板,原料反应完全;自然冷却至室温(20~25℃),过滤,收集滤液进行减压旋蒸(-0.09MPa,85℃),进行柱层析,得到目标产物,HPLC纯度98.6%,收率67.5%。元素分析结构(分子式C61H36N4O3):理论值C,83.93;H,4.16;N,6.42;O,5.50;测试值:C,83.94;H,4.14;N,6.40;O,5.52。HPLC-MS:材料理论分子量为872.96,实测分子量873.15。实施例15:化合物176的合成:合成路线:化合物176的制备方法同实施例1,不同之处在于采用中间体O1替换中间体A1。元素分析结构(分子式C49H38N2O):理论值C,87.73;H,5.71;N,4.18;O,2.38;测试值:C,87.71;H,5.72;N,4.17;O,2.40。HPLC-MS:材料理论分子量为670.84,实测分子量670.98。实施例16:化合物210的合成:合成路线:250mL的三口瓶,在通入氮气的气氛下,加入0.01mol9-芴酮-2-硼酸,0.015mol中间体P1,用混合溶剂溶解(180ml甲苯,90ml乙醇),然后加入0.03molNa2CO3水溶液(2M),通氮气搅拌1小时,然后加入0.0001molPd(PPh3)4,加热回流15小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,HPLC纯度98.8%,收率75.2%。元素分析结构(分子式C52H34N2O2):理论值C,86.88;H,4.77;N,3.90;O,4.45;测试值:C,86.87;H,4.78;N,3.91;O,4.44。HPLC-MS:材料理论分子量为718.84,实测分子量719.04。实施例17:化合物221的合成:合成路线:化合物221的制备方法同实施例16,不同之处在于采用中间体Q1替换中间体P1。元素分析结构(分子式C52H34N2O3):理论值C,84.99;H,4.66;N,3.81;O,6.53;测试值:C,84.98;H,4.68;N,3.82;O,6.52。HPLC-MS:材料理论分子量为734.84,实测分子量735.07。实施例18:化合物251的合成:合成路线:化合物251的制备方法同实施例16,不同之处在于采用中间体R1替换中间体P1。元素分析结构(分子式C52H33NO4):理论值C,84.88;H,4.52;N,1.90;O,8.70;测试值:C,84.86;H,4.51;N,1.92;O,8.71。HPLC-MS:材料理论分子量为735.82,实测分子量736.08。实施例19:化合物274的合成:合成路线:化合物274的制备方法同实施例16,不同之处在于采用中间体S1替换中间体P1。元素分析结构(分子式C55H40N2O3):理论值C,85.03;H,5.19;N,3.61;O,6.18;测试值:C,85.04;H,5.17;N,3.62;O,6.17。HPLC-MS:材料理论分子量为776.92,实测分子量777.11。实施例20:化合物290的合成:合成路线:250mL的三口瓶,在通入氮气的气氛下,加入0.01mol9-芴酮-3-硼酸,0.015mol中间体T1,用混合溶剂溶解(180ml甲苯,90ml乙醇),然后加入0.03molNa2CO3水溶液(2M),通氮气搅拌1小时,然后加入0.0001molPd(PPh3)4,加热回流15小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,HPLC纯度98.7%,收率70.7%。元素分析结构(分子式C58H43N3O):理论值C,87.30;H,5.43;N,5.27;O,2.00;测试值:C,87.31;H,5.42;N,5.25;O,2.02。HPLC-MS:材料理论分子量为797.98,实测分子量798.15。实施例21:化合物318的合成:合成路线:化合物318的制备方法同实施例20,不同之处在于采用中间体U1替换中间体T1。元素分析结构(分子式C55H42N2O):理论值C,88.44;H,5.67;N,3.75;O,2.14;测试值:C,88.44;H,5.67;N,3.75;O,2.14。HPLC-MS:材料理论分子量为746.93,实测分子量747.18。本发明化合物可以作为发光层材料使用,对本发明化合物17、化合物62、化合物127、现有材料CBP进行热性能、发光光谱及循环伏安稳定性的测试,测试结果如表1所示。表1化合物Td(℃)λPL(nm)循环伏安稳定性化合物17401615优化合物62417611优化合物127406618优材料CBP353369差注:热失重温度Td是在氮气气氛中失重1%的温度,在日本岛津公司的TGA-50H热重分析仪上进行测定,氮气流量为20mL/min;λPL是样品溶液荧光发射波长,利用日本拓普康SR-3分光辐射度计测定;循环伏安稳定性是通过循环伏安法观测材料的氧化还原特性来进行鉴定;测试条件:测试样品溶于体积比为2:1的二氯甲烷和乙腈混合溶剂,浓度1mg/mL,电解液是0.1M的四氟硼酸四丁基铵或六氟磷酸四丁基铵的有机溶液。参比电极是Ag/Ag+电极,对电极为钛板,工作电极为ITO电极,循环次数为20次。由上表数据可知,本发明化合物具有较好的氧化还原稳定性,较高的热稳定性,合适的发光光谱,使得应用本发明化合物作为发光层材料的OLED器件效率和寿命得到提升。以下通过实施例22~25和比较例1详细说明本发明合成的OLED材料在器件中作为发光层主体材料的应用效果。本发明所述23~25、比较例1与实施例22相比器件的制作工艺完全相同,并且所采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是对器件中的发光层5的主体材料做了变换。各实施例所得器件的结构组成如表2所示。所得器件的测试结果见表3所示。实施例22ITO阳极层2/空穴注入层3(三氧化钼MoO3,厚度10nm)/空穴传输层4(TAPC,厚度140nm)/发光层5(化合物314和Ir(pq)2acac按照100:5的重量比混掺,厚度30nm)/电子传输层6(TPBI,厚度40nm)/电子注入层7(LiF,厚度1nm)/Al。相关材料的分子结构如下所示:具体制备过程如下:透明基板层1为透明基材,如透明PI膜、玻璃等。对ITO阳极层2(膜厚为150nm)进行洗涤,即依次进行碱洗涤、纯水洗涤、干燥,再进行紫外线-臭氧洗涤以清除透明ITO表面的有机残留物。在进行了上述洗涤之后的ITO阳极层2上,利用真空蒸镀装置,蒸镀膜厚为10nm的三氧化钼MoO3作为空穴注入层3使用。紧接着蒸镀140nm厚度的TAPC作为空穴传输层4。上述空穴传输材料蒸镀结束后,制作OLED发光器件的发光层5,其结构包括OLED发光层5所使用材料化合物314作为主体材料,Ir(pq)2acac作为掺杂材料,掺杂材料掺杂比例为5%重量比,发光层膜厚为30nm。在上述发光层5之后,继续真空蒸镀电子传输层材料为TPBI。该材料的真空蒸镀膜厚为40nm,此层为电子传输层6。在电子传输层6上,通过真空蒸镀装置,制作膜厚为1nm的氟化锂(LiF)层,此层为电子注入层7。在电子注入层7上,通过真空蒸镀装置,制作膜厚为80nm的铝(Al)层,此层为阴极反射电极层8使用。如上所述地完成OLED发光器件后,用公知的驱动电路将阳极和阴极连接起来,测量器件的电流效率以及器件的寿命。所制作的OLED发光器件的测试结果见表3。表2表3器件代号电流效率LT95寿命实施例221.32.8实施例231.43.5实施例241.13.2实施例251.23.7比较例11.01.0说明:器件测试性能以比较例1作为参照,比较例1器件各项性能指标设为1.0。比较例1的电流效率为14.8cd/A(@10mA/cm2);CIE色坐标为(0.66,0.33);3000亮度下LT95寿命衰减为11Hr。寿命测试系统为本发明所有权人与上海大学共同研究的OLED器件寿命测试仪。表3的结果可以看出本发明所述化合物作为发光层主体材料可应用与OLED发光器件制作,并且与比较例1相比,无论是效率还是寿命均获得较大改观,特别是器件的驱动寿命获得较大的提升。以下通过实施例26~32和比较例2说明本发明合成的化合物在器件中作为发光层掺杂材料的应用效果。本发明所述26~32、比较例2与实施例22相比所述器件的制作工艺完全相同,并且所采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是器件中的空穴传输层材料及发光层5的掺杂材料不同,掺杂浓度为3%。各器件的结构组成如表4所示。所得器件的测试结果见表5所示。表4表5器件代号电流效率驱动电压实施例263.60.81实施例273.20.75实施例283.80.78实施例292.70.72实施例303.30.68实施例312.90.77实施例323.70.64比较例21.01.0注:器件测试性能以比较例2作为参照,比较例2器件各项性能指标设为1.0。比较例2的电流效率为2.3cd/A;CIE色坐标为(0.64,0.37);驱动电压为5.2v(@10mA/cm2)。表5的结果可以看出本发明所述化合物作为发光层掺杂材料可应用与OLED发光器件制作,并且与比较例2相比,无论是效率还是启动电压均比已知OLED材料获得较大改观,特别是器件高电流密度下的效率滚降获得改善。从以上数据应用来看,本发明所述具有TADF特性材料在OLED发光器件中具有良好的应用效果,具有良好的产业化前景。虽然已通过实施例和优选实施方式公开了本发明,但应理解,本发明不限于所公开的实施方式。相反,本领域技术人员应明白,其意在涵盖各种变型和类似的安排。因此,所附权利要求的范围应与最宽的解释相一致以涵盖所有这样的变型和类似的安排。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1