一种含1,3,4‑噁二唑核的荧光染料、制备方法及应用与流程

文档序号:11105377阅读:680来源:国知局
一种含1,3,4‑噁二唑核的荧光染料、制备方法及应用与制造工艺

本发明涉及一种噁二唑核荧光染料、制备方法及应用,具体地说是一种含1,3,4-噁二唑核和Salen型配位基的荧光染料及其制备方法,同时该荧光染料在荧光传感器中的应用以及用于检测铁离子(Fe3+或Fe2+),属于单光子荧光传感器领域。



背景技术:

荧光传感器是指能与待测的分析物发生作用并通过荧光信号的改变为信号表现形式的分子器件。由于其具有众多优点,例如选择性好、灵敏度高、响应速度快等优点,被广泛应用于生物化学、医药、工业和环境监测等一系列领域。基于小分子的荧光传感器由于结构简单易于修饰的特点,研究得更为深入。铁离子是生物体内最基本的金属离子之一,在多种生物化学过程中起着关键的作用,摄入过多或者不足都会引起生物体的生理异常,例如,贫血,肝脏和肾脏的损害,心力衰竭,糖尿病等。设计合成能够选择性检测铁离子的荧光传感器具有重要的实用价值。



技术实现要素:

本发明旨在提供一种含1,3,4-噁二唑核荧光染料及其制备方法,还包括其在传感器特别是检测铁离子(Fe3+或Fe2+)方面的应用;本发明含1,3,4-噁二唑核和Salen配位基的荧光传感器具有很好的选择性,灵敏度很高,通过荧光猝灭法可以检测铁离子(Fe3+或Fe2+),其中,含1,3,4-噁二唑核荧光染料中的Salen配位基与铁离子1:1配位络合。

为了解决上述技术问题,本发明采用的技术方案为:

一种含1,3,4-噁二唑核的荧光染料,其结构式为:

一种含1,3,4-噁二唑核的荧光染料的制备方法,包括以下步骤:

(1) 按物质的量比为2∶1称取水杨醛、二乙烯三胺分别加入无水甲醇中,混合均匀,室温搅拌1h,紧接着加热回流1h,冷却静置,滴加稀盐酸,有浅黄色片状晶体沉淀生成,然后过滤,得到中间体水杨醛缩二乙烯三胺:

(2) 含1,3,4-噁二唑核的荧光染料2a的合成:按物质的量比为1∶1∶0.02∶0.02∶2.25称取水杨醛缩二乙烯三胺、对溴硝基二芳基1,3,4-噁二唑、(±)BINAP、醋酸钯、碳酸铯加入N-甲基吡咯烷酮(NMP)中混合均匀;将反应液置于微波反应器中,氮气保护,无水无氧条件,设置微波反应器条件为:功率600W,反应温度180 oC,反应时间1.5 h;反应停止后,冷却至室温;将反应液转移到分液漏斗,加去离子水洗去无机盐,乙酸乙酯萃取,静置,分层,取上层有机相,干燥;过滤除去干燥剂,浓缩,粗产物通过硅胶柱层析纯化,得到目标产物2a;

含1,3,4-噁二唑核的荧光染料2b的合成:按物质的量比为1∶1∶0.024∶0.024∶1.7称取水杨醛缩二乙烯三胺1、对溴叔丁基二芳基1,3,4-噁二唑、(±)BINAP、醋酸钯、叔丁醇钾加入N-甲基吡咯烷酮(NMP)中混合均匀;将反应液置于微波反应器中,氮气保护,无水无氧条件,设置微波反应器条件:功率600 W,反应温度180 oC,反应时间2 h;反应停止后,冷却至室温;将反应液转移到分液漏斗,加去离子水洗去无机盐,乙酸乙酯萃取,静置,分层,取上层有机相,干燥;过滤除去干燥剂,浓缩,粗产物通过硅胶柱层析纯化,得到目标产物2b。

进一步地,一种含1,3,4-噁二唑核的荧光染料的制备方法,步骤(2)中2a硅胶柱层析纯化采用VPE:VEtOAc =1∶2→1∶4梯度洗脱;步骤(2)中2b硅胶柱层析纯化采用VPE ∶VEtOAc= 4∶1→3∶1梯度洗脱。

进一步地,一种含1,3,4-噁二唑核的荧光染料的制备方法,中间体水杨醛缩二乙烯三胺的合成在空气气氛下进行,中间体1与对溴二芳基1,3,4-噁二唑的Buchwald–Hartwig偶联反应采用微波技术在干燥的氮气氛围下进行,产物的提纯在空气气氛下进行。

一种含1,3,4-噁二唑核的荧光染料,应用于荧光传感器。

一种含1,3,4-噁二唑核的荧光染料,用于检测铁离子Fe3+或Fe2+

一种含1,3,4-噁二唑核的荧光染料识别金属离子的方法,包括以下步骤:将所述含1,3,4-噁二唑核的荧光染料溶于四氢呋喃中,浓度为1×10-4mol/L,对不同浓度的金属离子进行检测。

与已有技术相比,本发明的有益效果体现在:

本发明制备的荧光染料合成简单,结构得到核磁、红外的表征证实,具有较高的荧光量子产率,在均相体系中可高灵敏、高选择性地实现对铁离子(Fe3+或Fe2+)的检测。

附图说明

图1是荧光染料2a与不同金属离子的荧光响应曲线图;

图2是Fe3+离子滴定2a的THF溶液荧光强度变化图;

图3是常见的金属离子对Fe3+识别干扰的相对荧光强度变化图;

图4是荧光染料2b与不同金属离子的荧光响应曲线图;

图5是Fe3+离子滴定2b的THF溶液荧光强度变化图;

图6是Fe2+离子滴定2b的THF溶液荧光强度变化图;

图7常见的金属离子对Fe3+、Fe2+识别干扰的相对荧光强度变化图。

具体实施方式

下面结合实施例对本发明做进一步详细说明。

Salen指的是由两个相同的醛分子和一个二胺分子缩合而成的螯合席夫碱。在其分子中心位置有O、N、N、O四个原子,可以作为某些金属的配体,起到配位的作用。利用Salen配合物的N、O与金属离子配位选择性的特性,这类化合物在分子识别领域已经引起了广泛的关注。1,3,4-噁二唑及其衍生物具有重要的生物活性,广泛应用于医药、农药等领域。并且这类化合物是优良的电子传输材料,耐热性好,有较强的电子亲和势。有研究发现一些取代的1,3,4-噁二唑具备激发态分子内质子转移性质,能有产生大stokes位移的荧光。为此,我们通过Buchwald–Hartwig偶联反应将1,3,4-噁二唑基团和Salen配位基连接起来制备1,3,4-噁二唑核的荧光传感器。并以此传感器检测铁离子(Fe3+或Fe2+)。

本发明合成路线如下:

实施例1:

1、中间体1的合成

水杨醛12.2 g(0.1 mol),二乙烯三胺5.15 g(0.05 mol)加入无水甲醇(100 mL)中。混合均匀,磁力搅拌1 h,然后再加热回流1 h。反应结束后,冷却至室温,向反应体系中滴加稀盐酸溶液,有大量淡黄色片状晶体析出。过滤,得到淡黄色的水杨醛缩二乙烯三胺中间体10.2 g,产率为66%。

1H NMR (400MHz, CDCl3, ppm) δ 8.34 (s, 2H), 7.30-7.26 (m, 2H), 7.23 (dd, 2H), 6.86 (m, 2H), 4.33 (s, 2H),3.65 (t, 4H),2.98 (t, 1H),1.23 (t, 1D).

2、荧光染料2a的合成

中间体水杨醛缩二乙烯三胺0.622 g(2 mmol),对溴硝基二芳基噁二唑0.692 g(2 mmol),(±)BINAP 0.0249 g(2 mol%),醋酸钯0.0090 g(2 mol%),碳酸铯1.466 g(4.5 mmol)加入到溶剂N-甲基吡咯中,磁力搅拌,混合均匀;将反应液置于微波反应器中,氮气保护,无水无氧条件,设置微波反应器条件为:功率600W,反应温度180 oC,反应时间1.5 h;反应停止后,冷却至室温;将反应液转移到分液漏斗,加去离子水洗去无机盐,乙酸乙酯萃取,静置,分层,取上层有机相,干燥;过滤除去干燥剂,减压浓缩除去溶剂,粗产物通300-400目硅胶柱层析,得到淡黄色固体0.77 g,产率67%。目标产物记为2a,结构如下:

1H NMR (400 MHz, CDCl3, ppm) δ 12.8 (t, 2H), 8.71 (s, 2H), 8.54 (s, 2H), 8.40 (m, 2H), 8.23 (s, 2H), 7.65 (m, 2H), 7.37 (s, 9H), 7.29 (m, 2H), 5.87 (t, 4H), 4.95 (s, 2H), 3.02 (s, 2H), 1.28 (s, 9H).

实施例2:

1、中间体1的合成

水杨醛12.2 g(0.1 mol),二乙烯三胺5.15 g(0.05 mol)加入无水甲醇(100 mL)中。混合均匀,磁力搅拌1 h,然后再加热回流1 h。反应结束后,冷却至室温,向反应体系中滴加稀盐酸溶液,有大量淡黄色片状晶体析出。过滤,得到淡黄色的水杨醛缩二乙烯三胺中间体10.2 g,产率为66%。

1H NMR (400MHz, CDCl3, ppm) δ 8.34 (s, 2H), 7.30-7.26 (m, 2H), 7.23 (dd, 2H), 6.86 (m, 2H), 4.33 (s, 2H),3.65 (t, 4H),2.98 (t, 1H),1.23 (t, 1D).

2、荧光染料2b的合成

中间体1水杨醛缩二乙烯三胺0.13 g(0.42 mmol),对溴叔丁基二芳基噁二唑0.15 g(0.42 mmol),(±)BINAP 0.0063 g(2.4 mol%),醋酸钯0.0022 g(2.4 mol%),叔丁醇钾0.08 g(0.7 mmol)加入到溶剂N-甲基吡咯中,磁力搅拌,混合均匀;将反应液置于微波反应器中,氮气保护,无水无氧条件,设置微波反应器条件为:功率600 W,反应温度180 oC,反应时间2 h;反应停止后,冷却至室温;将反应液转移到分液漏斗,加去离子水洗去无机盐,乙酸乙酯萃取,静置,分层,取上层有机相,干燥;过滤除去干燥剂,减压浓缩除去溶剂,粗产物通300-400目硅胶柱层析,得到淡黄色固体0.22g,产率88%。目标产物记为2b,结构如下:

1H NMR (400 MHz, CDCl3, ppm) δ 9.38 (s, 2H),8.25 (s, 2H),8.12 (m, 2H),7.81 (m, 2H),7.58 (m, 2H),7.41 (m, 2H),7.23 (m, 2H),5.87 (t, 4H),4.95 (s, 2H),1.34 (s, 9H).

实施例3:传感器2a在溶液状态下对金属离子的荧光响应和对Fe3+的检测

如图1所示,荧光传感器2a与不同金属离子的荧光响应曲线,2a浓度为1×10-4 mol/L,金属离子浓度分别为2.00×10-2 mol/L,加入Fe3+后,2a的荧光强度变化明显,发生荧光猝灭。加入其他金属离子,荧光强度变化很少,可忽略不计。传感器2a的响应离子为Fe3+。如图2所示,随着Fe3+浓度的增加,传感器2a的荧光强度逐渐减弱,当Fe3+浓度达到4×10-4 mol/L时,出现荧光猝灭现象,Fe3+起到猝灭剂的作用。其他金属离子对其没有干扰作用,如图3所示。1:2a+Fe3++Na+,2:2a+Fe3++Zn2+,3:2a+Fe3++Mn2+,4:2a+Fe3++Al3+,5:2a+Fe3++Cu2+,6:2a+Fe3++Fe3+,7:2a+Fe3++Fe2+,8:2a+Fe3++Ba2+,9:2a+Fe3++Ni2+,10:2a+Fe3++Mg2+,11:2a+Fe3++Cr3+,12:2a+Fe3++Ca2+(各离子浓度为Fe3+浓度的十倍)

因此2a可以通过荧光猝灭法检测Fe3+离子。激发波长330 nm,狭缝宽度均为1.5 nm。

实施例4:传感器2b在溶液状态下对金属离子的荧光响应和对Fe3+、Fe2+的检测

如图4所示,荧光传感器2b与不同金属离子的荧光响应曲线,2b浓度为1.01×10-4mol/L,金属离子浓度分别为2.00×10-2 mol/L,加入Fe3+或Fe2+后,2b的荧光强度显著降低。加入其他金属离子,荧光强度变化很少,可忽略不计。传感器2b的响应离子为Fe3+或Fe2+。如图5所示,随着Fe3+浓度的增加,传感器2b的荧光强度逐渐减弱,当Fe3+浓度达到4×10-4mol/L时,出现荧光猝灭现象,Fe3+起到猝灭剂的作用。如图6所示,随着Fe2+的浓度不断增加,传感器2b的荧光强度会逐渐减弱。其他金属离子对Fe3+和Fe2+的检测没有明显的干扰作用,可忽略。如图7所示,1:2a+Fe3++Fe2++Na+,2:2a+Fe3++Fe2++Zn2+,3:2a+Fe3++Fe2++Mn2+,4:2a+Fe3++Fe2++Al3+,5:2a+Fe3++Fe2++Pb2+,6:2a+Fe3++Fe2++Ba3+,7:2a+Fe3++Fe2++Fe3+,8:2a+Fe3++Fe2++Fe2+,9:2a+Fe3++Fe2++Ni2+,10:2a+Fe3++Fe2++Mg2+,11:2a+Fe3++Fe2++Cr3+,12:2a+Fe3++Fe2++Ca2+(各离子浓度为Fe3++Fe2+浓度的十倍)

因此2b可以通过荧光猝灭法检测Fe3+、Fe2+离子。激发波长335 nm,狭缝宽度均为1.5 nm。

以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求保护范围由所附的权利要求书及其等同物界定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1