制造具有低辐射系数的涂布的聚合物基材的方法与流程

文档序号:15302584发布日期:2018-08-31 20:32阅读:165来源:国知局

本发明涉及制造具有低辐射系数(emissivity)性质、高硬度和良好抗擦伤性的涂布的聚合物基材的方法。本发明进一步涉及涂布的聚合物基材以及这种涂布的聚合物基材作为低辐射系数基材的用途。



背景技术:

在过去的几十年中,例如建筑物和车辆的玻璃表面的热绝缘变得越来越重要。这不仅受温度控制等更多生活舒适性的要求所驱动,而且也受日益增长的限制能源消耗的顾虑所驱动。

已经开发出来low-e(低辐射系数)涂层以使可以穿过玻璃的红外(ir)光的量最小化,而不会损害传输的可见光的量。

本领域已知的第一类low-e涂层包括具有至少一个金属层的涂层。通常,这样的low-e涂层包括至少一个沉积在电介质层(例如氧化钛(tio2))之间的溅射沉积的银层。

但是,这种low-e涂层有一些缺点。银层具有低稳定性、有限的硬度、低耐久性以及差的耐湿性和耐候性。因此,这种涂层仍然相当脆弱,并且必须例如通过硬聚合物顶层来保护。然而,由于这种硬聚合物顶层的存在导致ir热的高吸收,硬质聚合物顶层对结构的辐射系数具有负面影响。

第二类low-e涂层包括沉积在玻璃基材上的陶瓷涂层。这种涂层以半熔融状态(热解涂层)结合到玻璃基材上。典型的陶瓷涂层包含氧化物如氧化铟、氧化锡、氧化铟锡或氧化锌。氧化物成为玻璃的一部分,因此low-e涂层变得更加耐用。显然,这种涂层不能沉积在聚合物基材上,因为陶瓷合成需要高温,而聚合物基材难以耐受高于150℃的温度。



技术实现要素:

本发明的目的是提供一种制造涂布的聚合物基材的方法并提供具有低辐射系数性质的涂布的聚合物基材,避免现有技术的缺点。

本发明的另一个目的是提供一种组合了高硬度、良好抗擦伤性和低辐射系数特征的涂布的聚合物基材。

本发明的另一个目的是提供一种涂布的聚合物基材,从而涂层对聚合物基材具有优异的粘合性。

本发明的另一个目的是提供一种涂布的聚合物基材,从而在足够低的温度下将二氧化硅层或基于二氧化硅的层沉积在聚合物基材上,使得聚合物基材不被损坏。

本发明的进一步的目的是提供涂布的聚合物基材作为低辐射系数膜的用途。

根据本发明的第一方面,提供了制造具有低辐射系数性质和高硬度的涂布的聚合物基材的方法。该方法包括以下步骤:

-提供聚合物基材;

-在所述聚合物基材的一侧上涂覆至少一个粘合促进层;

-从包含至少一种部分缩合的醇盐前体的混合物开始,通过溶胶-凝胶法在所述至少一个粘合促进层上涂覆至少一个二氧化硅层或基于二氧化硅的层。

作为聚合物基材,可以考虑任何聚合物基材,例如聚合物片或箔。优选地,所述聚合物基材是柔性且透明的。可以考虑常规用于聚合物基材的任何材料,特别是常规用于窗户膜或日光控制膜的任何材料。优选的基材包括包含聚对苯二甲酸乙二醇酯(pet)、聚萘二甲酸乙二醇酯(pen)、聚氨酯(pu)、聚碳酸酯(pc)、聚酰亚胺(pi)和聚醚酰亚胺(pei)的聚合物膜。典型的基材包括厚度范围在12μm和125μm之间,例如75μm的pet基材。

二氧化硅层或基于二氧化硅的层通过溶胶-凝胶法沉积。溶胶-凝胶是用于生产例如硅的氧化物的已知技术。该方法包括将单体转化成胶体溶液(溶胶)并随后进行反应以形成网络(或凝胶)。在溶胶-凝胶法中,将至少一种前体溶于合适的液体中,所述液体通常为水或有机溶剂(例如醇)。为了催化反应,优选加入催化剂,例如酸或碱。在根据本发明的溶胶-凝胶法中,溶胶-凝胶法从包含至少一种部分缩合的醇盐前体的混合物开始。

可以将溶胶沉积在聚合物基材上,并且更具体地在沉积在聚合物基材上的粘合促进层上,例如通过湿化学沉积。沉积的层可以进一步交联,例如热交联或通过使用辐射(ir和/或uv辐射)交联。通过这些处理步骤,溶剂和/或水被蒸发。

为获得无机玻璃材料,在氧气氛中将凝胶退火至450℃以上的温度。通过该煅烧步骤,将材料的有机化合物煅烧并获得纯的无机玻璃材料。

很清楚,沉积在聚合物基材上的溶胶-凝胶层可能不经受这种高温,因为聚合物基材本身不能承受这种高温。

因此,修改根据本发明的溶胶-凝胶法以获得不含或基本上不含有机材料的均匀或基本均匀的层,并且这通过使用仅涉及在相对低的温度下的处理步骤的方法,即温度足够低以不损害聚合物基材。

“不含有机材料”是指二氧化硅层或基于二氧化硅的层不包含有机材料。

“基本上不含有机材料”是指存在于二氧化硅层或基于二氧化硅的层中的有机材料的量低于几个重量百分比。

与本领域已知的具有(多)晶体结构的二氧化硅涂层或基于二氧化硅的low-e涂层相反,根据本发明的涂布的聚合物基材的二氧化硅涂层或基于二氧化硅的涂层优选具有准无定形结构。

如上所述,根据本发明的溶胶-凝胶法优选从至少一种前体、溶剂以及优选还有催化剂的混合物开始。

所述至少一种前体优选包含醇盐前体。所述醇盐前体优选至少部分缩合。

优选的醇盐前体包括烷氧基硅烷前体,例如选自以下的硅烷:四乙氧基硅烷(teos)、四甲氧基硅烷(tmos)、甲基三乙氧基硅烷(mtes)、乙烯基三甲氧基硅烷(vtms)、3-氨丙基三甲氧基硅烷(aps)、甲基丙烯酰氧基丙基三甲氧基硅烷(mapts)、双(三乙氧基甲硅烷基)己烷、1,6双(三甲氧基甲硅烷基)己烷或其任意组合。

所述硅烷前体在溶胶中的预缩合度优选是高的,即高于60%,高于70%,高于80%或高于90%。在优选的实施方案中,分别命名为q1、q2、q3和q4的单取代、二取代、三取代和四取代的硅氧烷键被完全缩合。预缩合度可以通过nmr确定。

所述溶剂优选包含有机溶剂,例如醇如甲醇或乙醇。

所述催化剂优选包含至少一种碱或至少一种酸。优选的催化剂包含盐酸、乙酸或甲酸或其任意混合物。

溶胶-凝胶涂层通过本领域已知的任何技术涂覆,例如通过浸渍、旋涂、喷涂、印刷或辊涂。

优选的技术包括辊涂。在辊涂方法中,通过使用一个或多个旋转辊在连续移动的基材上形成液膜。优选的辊涂方法包括凹版涂布方法。在凹版涂布方法中,使用图案化的辊(其是带有孔或凹槽的辊)涂覆涂层。

在涂覆涂层之后,优选例如在温度为100℃的烘箱中干燥涂布的基材。

可能地,除了干燥之外或者代替干燥,对涂布的基材进行辐射,例如红外线或uv辐射。

干燥和/或辐射进一步刺激网络的聚合并使溶剂蒸发。

为了保证二氧化硅层或基于二氧化硅的层与聚合物基材的充分粘合,在涂覆二氧化硅层或基于二氧化硅的层之前,在聚合物基材上涂覆粘合促进层。

所述粘合促进涂层可以包含任何材料。优选地,所述粘合促进层包含金属氧化物,优选选自以下的金属氧化物:掺杂或未掺杂的氧化钛、氧化铟、氧化锡、氧化锌、氧化铟锡、氧化铌、氧化锆,以及它们的任意混合物。

可通过本领域已知的任何技术来沉积所述粘合促进层。优选的技术包括化学气相沉积、溅射沉积和蒸发。

根据本发明的第二方面,提供了具有低辐射系数性质和高硬度的涂布的聚合物基材。所述涂布的聚合物基材包含

-聚合物基材;

-沉积在所述聚合物基材的一侧上的至少一个粘合促进层;

-沉积在所述粘合促进层上的至少一个二氧化硅层或基于二氧化硅的层。沉积在所述粘合促进层上的二氧化硅层或基于二氧化硅的层通过溶胶-凝胶法沉积。

根据本发明的涂布的聚合物基材的特征在于低辐射系数和高硬度。

涂布的聚合物基材的辐射系数优选低于0.2。更优选地,涂布的聚合物基材的辐射系数低于0.1,例如低于0.06或低于0.04。

涂布的聚合物基材的硬度优选高于2h铅笔硬度。更优选地,涂布的聚合物基材的硬度高于3h铅笔硬度。

如上所述,所述二氧化硅层或基于二氧化硅的层不含有机材料或基本上不含有机材料。

所述二氧化硅层或基于二氧化硅的层优选具有0.1μm至1μm的厚度。更优选地,所述二氧化硅层或基于二氧化硅的层的厚度在0.2μm和0.6μm之间,例如0.25μm或0.40μm。

所述粘合促进层优选具有0.01μm至0.1μm范围内的厚度。更优选地,所述粘合促进层的厚度在0.02μm和0.06μm之间,例如0.04μm或0.05μm。

如上所述,所述粘合促进涂层可以包含任何材料。优选地,所述粘合促进层包含金属氧化物,优选选自以下的金属氧化物:掺杂或未掺杂的氧化钛、氧化铟、氧化锡、氧化锌、氧化铟锡、氧化铌、氧化锆,以及它们的任意混合物。

根据本发明的第三方面,提供了具有如上所述的涂布的聚合物基材的玻璃基材。涂布的聚合物基材例如通过粘合剂粘附到玻璃基材上。

根据本发明的第四方面,提供了如上所述的涂布的聚合物基材作为低辐射系数基材的用途。

附图说明

通过附图将进一步解释本发明。该图示出了根据本发明的涂布的聚合物基材的横截面。

具体实施方式

将参照特定实施方案并参考某些附图来描述本发明,但是本发明不限于此,而是仅由权利要求限定。所述附图仅是示意性的而非限制性的。在附图中,为了说明的目的,一些元件的尺寸可能被放大并且没有按比例绘制。尺寸和相对尺寸并不对应于实施本发明的实际减少量。

附图显示了根据本发明的涂布的聚合物基材100的横截面。涂布的聚合物基材100包含聚合物基材102、粘合促进层104和二氧化硅层或基于二氧化硅的层106。

聚合物基材102可以包含任何聚合物基材。优选的聚合物基材102包含厚度为75μm的聚酯箔。

粘合促进层104包含例如氧化物层,例如厚度优选在0.02μm和0.04μm之间的氧化钛(tio2)层。可以通过本领域已知的任何技术来沉积tio2层。沉积tio2层的优选技术是通过溅射沉积。

在溶胶的优选制备中,使用乙醇作为溶剂并使用四乙氧基硅烷(teos)作为前体。可以加入有机连接体如双(三乙氧基甲硅烷基)己烷或1,6双(三甲氧基甲硅烷基)己烷。加入盐酸、乙酸和甲酸作为催化剂。在快速搅拌下将前体混合并加入到乙醇中。首先通过在催化剂中混合将水酸化,然后在搅拌下将水加入到前体混合物中。搅拌混合物直至获得澄清的溶胶。将混合物在一定时间内保持在预定温度下进行预缩合。例如在搅拌和回流下将混合物在60℃下保持1小时。

所述硅烷前体在溶胶中的预缩合度优选是高的,即高于60%,高于70%,高于80或高于90%。在优选的实施方案中,分别称为q1、q2、q3和q4的单取代、二取代、三取代和四取代的硅氧烷键被完全缩合。预缩合度可以通过nmr确定。

二氧化硅层或基于二氧化硅的层106优选通过辊涂并且更优选通过凹版涂布涂覆在粘合促进层的顶部上。所涂覆的层的厚度例如受基材的速度和辊的速度的影响。

二氧化硅或二氧化硅涂层的厚度优选在0.25μm和0.4μm之间。

对根据本发明的涂布的聚合物基材进行多种测试:硬度测试、粘合测试和low-e测量。下面将更详细地描述所述测试。

借助于wolff-wilborn方法(astmd3363)评价样品的硬度。使用elcometer501铅笔硬度测试仪进行测试。将涂布的基材放置在牢固的水平表面上,并且离开操作者以45°角将铅笔牢固地保持在涂层上。然后将铅笔推离操作者。铅笔的硬度会增加,直到下列一种或两种缺陷在涂层中出现:

a.塑性变形:涂层表面中的永久性凹痕,无粘结断裂(cohesivefracture)。

b.粘结断裂:涂层表面中存在可见的划伤或破裂,材料已从涂层中去除。

将损坏表面的铅笔的硬度作为划痕硬度的量度,例如,'2h'硬度。

通过交叉影线测试(cross-hatchtest)来确定涂层对基材的粘合性。交叉影线测试是一种通过利用工具在涂层中切割直角格子图案一直贯穿到基材,来确定涂层与基材分离的阻力的方法。

在交叉影线测试中,使交叉影线图案穿过涂层到达基材。在接下来的步骤中,通过用软刷刷擦除去涂层的剥离片。随后将压敏胶带施加在交叉切口上。通过在切口区域上方使用铅笔橡皮擦将胶带平滑到位。然后通过将其迅速拉回到与其自身成接近180°的角度将其撕下。粘合性评估为0至5级。表1进一步解释了0至5的等级。

表1

通过使要测量的表面在100℃的温度下短时间受到黑体的热辐射来测量样品的辐射系数。为了获得测量表面的完全均匀的照明,辐射器被设计成球形半空间的形式。一部分反射的辐射通过辐射器中的开口撞击辐射传感器。

通过比较样品的反射值和两个校准标准的储存参考值来确定辐射水平。在测试中使用tir100-2设备,校准标准为0.010和0.962。

对于以上描述和附图中所示的样品,获得了以下结果:

硬度:3h铅笔硬度

粘合测试(交叉影线测试):0级

辐射系数测试:e=0.04

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1