细胞培养装置的制作方法

文档序号:19733659发布日期:2020-01-18 04:13阅读:179来源:国知局
细胞培养装置的制作方法

说明书

本发明涉及细胞培养装置。

使用体外活细胞的研究取决于下述假设:实验条件与所检查的体内系统的条件类似。

出于很明显的原因,该假设必须对与所调查的现象有关的所有实验参数都是有效的。

对于这些细胞中的某些细胞,诸如内皮细胞,已经表明它们的适当功能取决于机械刺激。为了研究这些细胞,体外模型不仅需要复制基本条件,诸如温度和代谢,还需要复制机械因素,以便产生可靠的数据。为了做到这一点,将细胞放置在被称为流室(flowchamber,流动室)、流池(flowcell,流动池)、灌注池或生物反应器的装置中,并且使细胞经受由泵送系统(通常为蠕动泵)生成的流。机械刺激的水平——被表示为剪切应力、应变和压力——是通过调节流室的流速或尺寸来改变的。

然而,制备这种用于使用光学显微镜进行观察的细胞培养物常常是一项繁琐的任务,尤其是在一个人想要与另一个人交换细胞培养物时并且/或者需要将细胞培养物运送到显微镜用于观察时。

基于以上所述,本发明要解决的问题是提供允许容易地且有效地观察上述种类的细胞培养物的经改进的细胞培养装置。

该问题通过具有权利要求1的特征的细胞培养装置得以解决。优选的实施方式在从属权利要求中陈述并且在下面描述。

根据权利要求1,公开了一种用于与光学显微镜一起使用的细胞培养装置,包括:

-壳体,特别地,该壳体被构造以放置在光学显微镜的载物台上位于该显微镜的物镜的下方和/或上方(即在显微镜的光路径中),壳体封围出该壳体的内部空间,其中,壳体还包括顶壁,该顶壁包括窗口,并且其中,壳体包括与顶壁相反的底壁,

-可移除的流室,该可移除的流室封围出用于容纳包括活生物细胞的细胞培养物的内部空间,其中,流室被构造以(例如手动地或自动地)插入壳体的内部空间中以及从壳体(例如手动地或自动地)被移除,以用于将细胞培养物布置在流室中,其中,流室还被构造用于引导流体介质(诸如,例如dmem、rpmi或人工csf)的流通过流室的内部空间,使得流体介质可以接触细胞培养物并沿细胞培养物流动,并且其中,流室还包括第一和第二透明壁区域,以用于观察被布置在流室的内部空间中位于所述透明壁区域之间的细胞培养物,其中,当流室插入到所述壳体的所述内部空间中时,透明壁区域面向所述窗口,

-加热器,该加热器布置在壳体的内部空间中,该加热器用于对待被引导通过流室的所述流体介质进行加热,

-第一流路径和第二流路径,该第一流路径布置在壳体的内部空间中,以用于引导所述流体介质经由所述加热器朝向流室,该第二流路径布置在壳体的内部空间中,以用于引导所述流体介质离开流室,

-泵,该泵用于在流室插入到壳体的内部空间中时,泵送所述流体介质通过第一流路径进入流室的内部空间,并泵送所述流体介质通过第二流路径离开流室的内部空间。

特别地,流室可以(例如手动地或自动地)插入壳体或从壳体被移除的事实意味着可以在不使用工具的情况下并且以非破坏性的方式来完成流室的安装或移除。因此,可以在不显著影响壳体的情况下多次地将流室布置在壳体中以及从壳体移除。

因此,有利地,本发明提供了一种流室系统,该流室系统不仅提供了集成到单个壳体中的重要功能,而且特别地,还可以装配在标准显微镜载物台上,例如在实施方式中,该流室系统可以小到典型显微镜载物台的大小110mm×160mm×25mm,并且因此,不仅允许对体外实验进行持续观察,还允许通过从细胞培养装置的壳体——特别是以不使用工具的方式(例如手动地或自动地)——移除流室来容易地交换细胞培养物。为此,可以将流室简单地设计成滑入和滑出细胞培养装置的壳体(也参见下文)。

第一和第二流路径可以包括被布置在壳体的内部空间中的导管,特别是柔性导管。特别地,加热器形成第一流路径的一区段,其中,加热器被构造成在所述流体介质经过所述区段时对所述流体介质进行加热。

根据实施方式,加热器包括多个平行的加热板。特别地,每个加热板包括导体。特别地,相应的导体由相应的加热板的包层覆盖,优选地,该包层由生物相容性材料例如硅树脂形成。此外,特别地,相应的导体包括曲折形状,并且该相应的导体在电压被施加到该导体的相反的端部时生成焦耳热(欧姆加热)。特别地,相应的导体由金属箔特别是nicr箔形成,该金属箔可以通过激光切割从坯件切下。特别地,所述电压被施加到平行的导体。流过导体的电流由控制单元(也参见下文)控制,该控制单元可以控制来自导体的电流经其流过的晶体管,特别是mosfet晶体管。特别地,晶体管允许调节经过晶体管的电流的量,并因此调节由导体生成的、对加热板进行加热的焦耳热。

此外,特别地,加热板彼此间隔开,使得在每两个相邻的加热板之间提供间隙,其中,第一流路径的由加热器形成的区段从加热器的用于将所述流体介质供给到加热器中的入口处开始,延伸通过间隙,并在加热器的出口处结束,流体介质从加热器的该出口被引导朝向流室的入口(也参见下文)。

根据本发明的实施方式,细胞培养装置还包括温度传感器,该温度传感器布置在壳体的内部空间中,使得该温度传感器与被引导通过第一流路径的流体介质热接触,以用于测量流体介质的温度。

在实施方式中,细胞培养装置还可以包括多个温度传感器,特别地,该多个温度传感器布置在沿流体介质的流路径的不同位置。使用若干这种传感器可以使控制单元较快/较稳健。

特别地,温度传感器布置成沿第一流路径位于加热器的下游和流室的上游。

此外,根据本发明的实施方式,细胞培养装置还包括控制单元,该控制单元被配置成控制加热器(例如,通过控制流过加热器的电流,例如经由上述晶体管来控制流过加热器的电流),使得利用温度传感器测量到的流体介质的温度的实际值接近流体介质的温度的期望值。

此外,根据本发明的实施方式,细胞培养装置还包括用于确定流体介质的流速的流量传感器。特别地,流量传感器可以布置在第二流路径中位于流室的下游。

特别地,控制单元被配置成控制所述泵,使得利用流量传感器测量到的流体介质的流速的实际值接近流体介质的流速的期望值。

此外,根据本发明的实施方式,泵布置在壳体的内部空间中(例如,在第一或第二流路径中)。替代性地,泵是被布置在壳体的所述内部空间的外部的外部泵。然后,特别地,泵可以连接至导管,流体介质被引导经由该导管到细胞培养装置的入口。

此外,根据本发明的实施方式,壳体包括用于将流室插入壳体的内部空间中的凹部。

特别地,壳体包括将壳体的顶壁与壳体的底壁连接的侧壁,其中,所述凹部形成到壳体的底壁和侧壁中。

此外,根据本发明的实施方式,流室被构造以滑入凹部中,以用于将流室插入到壳体的内部空间中,并且流室被构造以从凹部滑出,以用于将流室从壳体的内部空间移除。因此,有利地,可以通过简单的线性滑动运动使流室进入和离开其运行位置。

此外,为了促进所述滑动运动,根据另外的实施方式,流室包括至少两个导轨,该至少两个导轨各自被构造成与形成到壳体中的相关联的凹槽接合,使得可以在将流室滑入和滑出所述凹部时引导流室。因此,特别地,导轨沿滑动方向纵向地延伸。

此外,根据本发明的实施方式,流室包括铰接到流室的(例如透明的)本体的门,特别是铰接到所述本体的第一横向侧的门,该本体具有在面向(关闭的)门的那侧形成在该本体中的凹部,该凹部形成流室的所述内部空间并且可以用所述门关闭和密封。特别地,所述门包括所述第一透明壁区域,并且其中,特别地,流室的所述本体包括或形成所述第二透明壁区域。此外,特别地,门在流室被插入到壳体的内部空间中时与壳体的底侧齐平。特别地,底侧在细胞培养装置相对于显微镜的物镜布置在显微镜的载物台上时背离所述物镜。由于壳体的顶侧上的窗口以及两个透明的壁区域的布置,因此人们能够利用所述显微镜仔细查看流室(和细胞培养装置的壳体),以便适当地观察驻留在流室中的细胞培养物。

特别地,该至少两个导轨中的一个导轨从流室的所述本体的所述第一横向侧突出,而所述至少两个导轨中的另一个导轨从所述本体的第二横向侧突出,该第二横向侧背离第一横向侧。

此外,根据实施方式,所述门包括用于关闭门的闩锁,特别地,该闩锁被构造成与形成在本体中的凹部接合,以用于关闭门(并且,特别地,还用于对流室的内部空间进行密封),其中,所述凹部形成到本体的所述第二横向侧中。

此外,根据本发明的实施方式,流室包括:入口端口,该入口端口用于将所述流体介质注入到流室中;以及出口端口,该出口端口用于将所述流体介质从流室排出。特别地,所述入口端口和所述出口端口布置在流室的所述本体的背侧上,该背侧将流室的本体的所述第一横向侧与所述第二横向侧连接。

此外,根据本发明的实施方式,流室还包括用于将泡(bubble,泡沫、泡状物)冲出流室的机构。

在实施方式中,流室包括:第一单向阀,该第一单向阀用于将流体介质填充到流室中;以及第二单向阀,该第二单向阀用于将液体介质以及其中包含的泡冲出流室,其中,特别地,所述单向阀也布置在所述背侧上。

此外,根据本发明的实施方式,流室被构造成以入口端口和出口端口朝前的方式滑入所述凹部中,使得当流室适当地插入/滑入壳体的内部空间中时,入口端口与第一流路径的连接器接合且出口端口与第二流路径的连接器接合,并且在入口端口与第一流路径之间建立流连接以及在出口端口与第二流路径之间建立流连接。

此外,在本发明的实施方式中,第一流路径连接至被布置在壳体上、特别是被布置在壳体的顶壁上的入口,而第二流路径特别地连接至被布置在壳体上、特别是被布置在壳体的顶壁上的出口。此外,特别地,入口被构造成连接至用于引导所述流体介质经由所述入口到第一流路径中的第一导管,而出口特别地被构造成连接至用于将来自流室的所述流体介质排出第二流路径的第二导管。

根据实施方式,第一导管可以连接至用于储存所述流体介质的容器,而第二导管可以连接至用于丢弃流体介质的废物箱。替代性地,两个导管都可以连接至所述容器,以用于使流体介质循环,即,使流体介质被泵送经由第一流路径进入流室的内部空间,并被泵送经由第二流路径离开流室的内部空间且返回到容器中。特别地,泵可以布置在壳体的内部空间内的第一或第二流路径中,或者布置在细胞培养装置的壳体的外部至第一导管。

此外,根据本发明的又一实施方式,壳体的高度小于或等于25mm。这允许人们将细胞培养装置装配到常规光学显微镜的载物台上。因此,有利地,本发明可以与标准显微镜一起使用,并且不需要专用的光学仪器来观察驻留在流室中的细胞培养物。

此外,在实施方式中,壳体的宽度小于或等于160mm。此外,在实施方式中,壳体的深度小于或等于110mm。

此外,根据本发明的细胞培养装置的实施方式,细胞培养装置包括泡捕集器,该泡捕集器被构造用于从流体介质移除气相的泡(例如,空气或其组分)。

特别地,根据实施方式,泡捕集器包括第一和第二体积体,其中,第一和第二体积体通过半渗透膜隔开,流体介质不能透过该半渗透膜,但所述气相能透过该半渗透膜,使得气相的泡可以从第一体积体经由该膜上升到第二体积体中,以便将气相的泡从流体介质移除。特别地,该膜可以包括ptfe。

此外,根据实施方式,第一体积体形成第一流路径的一区段,使得在第一流路径中,即在加热器的下游和流室的上游,将气泡从流体介质移除。

此外,根据实施方式,泡捕集器的第一体积体包括与加热器的出口连接的入口。此外,根据实施方式,第一体积体包括与第一流路径的所述连接器连接的出口,流室可以经由该出口连接至第一流路径。因此,流体介质可以从加热器被传送到泡捕集器的第一体积体并从第一体积体被传送到流室,其中,在流体介质经过第一体积体时,所述气相的泡可以从第一体积体经由膜上升到第二体积体中,以便将所述气相的泡从流体介质/第一流路径移除。

此外,根据实施方式,泡捕集器的第二体积体小于第一体积体。

此外,根据实施方式,泡捕集器的第二体积体包括比第一体积体小的压力。特别地,第二(例如较小的)体积体处于真空,因此增加了可以穿过半渗透膜的气体(例如空气)的量。

此外,根据实施方式,泡捕集器的第二体积体包括用于从泡捕集器移除所述气相的出口。特别地,根据实施方式,泵,特别是真空泵,连接至所述出口,以用于经由泵移除所述泡。

此外,根据本发明的又一方面,公开了一种用于使用根据本发明的细胞培养装置和显微镜观察细胞培养物的方法,其中,将细胞培养物布置在流室中并且将流室插入到细胞培养装置的壳体的内部空间中,并且其中,将细胞培养装置的壳体布置在显微镜的载物台上位于显微镜的物镜的下方和/或前方。此外,特别地,引导流体介质通过被布置在细胞培养装置的壳体的内部空间中的流室,其中,特别地,将温度调节至期望值并且/或者将流速调节至期望值。

下面参考附图描述本发明的另外的特征以及实施方式,在附图中

图1示出了根据本发明的细胞培养装置的立体视图,该细胞培养装置包括已插入的流室,其中,省略了该装置的壳体的周向侧壁和顶壁的部分,以使该装置的壳体的内部空间可视化;

图2a至图2b示出了具有被安装的部件诸如温度传感器和控制单元的壳体的图示,其中,在图2a中,未示出控制单元,使得可以看到用于与控制单元进行电接触的连接器;图2b示出了具有被插入的控制单元的壳体;

图2a还表明了被引导通过流室的流体介质的流路径;

图3示出了根据本发明的细胞培养装置的壳体的底壁的平面视图;

图4示出了壳体的侧壁的侧视图,该侧壁与底壁一起包括用于将流室插入壳体的内部空间中的凹部;

图5示出了根据本发明的细胞培养装置的壳体的顶壁的平面视图,其中,顶壁被移除,以便示出被布置在所述内部空间内的部件,诸如加热器和流室;

图6示出了流室的立体视图;

图7示出了流室的立体截面视图;

图8示出了流室的侧视图(流室的本体的背侧的侧视图);

图9示出了根据本发明的细胞培养装置的加热器的立体视图;

图10示出了加热器的立体截面视图;

图11示出了加热器的俯视图,其中,表明了用于对加热器的上部加热板进行欧姆加热的导体;

图12示出了在图11中示出的加热器的加热板;

图13示出了被布置在显微镜的载物台上的细胞培养装置的壳体的侧向视图;

图14示出了在图13中示出的细胞培养装置和显微镜的前视图;

图15示出了流室被插入到细胞培养装置的壳体中或流室从细胞培养装置的壳体被移除;

图16示出了细胞培养装置的内部泵;

图17示出了包括泡捕集器的细胞培养装置的实施方式;

图18示出了图17的泡捕集器的侧视图;

图19示出了在图17和图18中示出的泡捕集器的立体视图;以及

图20示出了被记录在根据本发明的细胞培养装置上的放大20倍的原代神经元。

图1结合图2a和图2b以及图3至图16示出了与光学显微镜40一起使用的细胞培养装置1。根据图1,细胞培养装置1包括壳体10,该壳体被构造以放置在光学显微镜40的载物台43上,使得该壳体被布置在显微镜40的光路径l中(即,位于显微镜40的物镜41前方),如图13和图14中示意性地示出的。壳体10可以布置在显微镜40的物镜41下方。替代性地,物镜41也可以布置在壳体10的下方,如图11中由虚线所表示的。

壳体10封围出内部空间11,其中,壳体10还包括:顶壁12(图1中未示出),该顶壁包括用于观察可移除的流室的窗口13;以及相反的底壁14(参见图14)。可移除的流室2(特别是参见图6至图8)封围出用于容纳包括活生物细胞(例如:内皮细胞;上皮细胞;神经胶质细胞;神经元;共培养物,即被同时培养的若干细胞类型,例如,神经元细胞和神经胶质细胞、内皮细胞和成纤维细胞等等)在内的细胞培养物cc以及流体介质m的流(同样参见上文)的内部空间20,其中,流室2被构造以插入壳体10的内部空间11中以及从壳体10被移除,以用于将待被检查的细胞培养物cc布置在流室2中。为了将细胞培养物cc保持在适当的条件下,流室2还被构造用于引导所述流体介质m的流通过流室2的内部空间20,使得流体介质m可以接触细胞培养物cc并沿该细胞培养物流动。特别地,人们由此以下述作为目的:对细胞培养物施加限定的力/应力以便更准确地复制细胞培养物cc的体内条件。此外,流室2包括第一和第二透明壁区域21、22,以用于观察被布置在流室2的内部空间20中的细胞培养物cc,其中,当流室2插入到所述壳体10的所述内部空间11中时,透明壁区域21、22面向所述窗口13,使得在可以例如经由第一壁区域21(例如图3)从下方施加适当照明的同时,可以适当地通过窗口13和第二透明壁区域22观察细胞培养物cc。优选地,选择如在图1中示出的尺寸h×d×b,使得壳体10装配在普通显微镜40的载物台43上(并且同时位于所述显微镜40的物镜41的下方和/或前方)。因此,在实施例中,所述尺寸h×d×b可以小于或等于25mm×110mm×116mm。

此外,为了将流体介质m的温度调节到期望值,装置1还包括被布置在壳体10的所述内部空间11中的加热器3。加热器3形成被布置在壳体10的内部空间11中的第一流路径p1的一部分(参见图2a),以用于引导所述流体介质m(经由所述加热器3)朝向流室2。装置1还包括被布置在壳体2的内部空间11中的第二流路径p2(参见图2a),以用于引导所述流体介质m离开流室2。所述流路径p1、p2可以包括被布置在壳体10的所述内部空间11中(例如,在加热器3和流室2外部沿着图2a或图16的虚线布置)的导管,特别是柔性导管。

此外,装置1包括(内部或外部)泵4,该泵用于在流室2插入到壳体10的内部空间11中时,泵送所述流体介质m通过第一流路径p1进入流室2的内部空间20中,以及泵送所述流体介质通过第二流路径p2离开流室2的内部空间20。特别地,流体介质m可以以环形流的方式被泵送并被连续地循环通过所述加热器3和流室2。特别地,如在图16中示出的,泵4可以布置在壳体10的内部空间11中并且可以形成第二流路径p2的一部分。特别地,泵4可以布置在流室2的下游。

为了控制(例如闭环)流体介质m的温度,细胞培养装置1还可以包括用于测量流体介质m的温度的温度传感器5,温度传感器5布置在壳体10的内部空间11中,使得该温度传感器与被引导通过第一流路径p1的流体介质m热接触。特别地,温度传感器5被布置成沿第一流路径p1位于加热器3的下游和流室2的上游,使得该温度传感器可以测量在流体介质m离开加热器3时该流体介质的实际温度。

该闭环控制由控制单元6执行,该控制单元被配置成对加热器3进行控制,使得利用温度传感器5测量到的流体介质m的温度的实际值接近流体介质m的温度的期望值。因此,控制单元接收来自温度传感器5(或来自若干个温度传感器)的流体介质m的当前温度作为输入。

图2a示出了细胞培养装置1的俯视图,其中,控制单元6的电路板6a从装置1的内部空间11被移除,使得可以看到用于印刷电路板6a/控制单元6的连接器60。图2b示出了在其上安装有电路板6a和控制单元6的装置1,该电路板6a还包括:显示器61,该显示器用于例如显示被选择的期望温度(或其他被选择的期望量,诸如流体介质的期望流速);以及操作元件(例如按钮62),该操作元件用于对控制单元6进行手动操作(例如,以用于选择期望量,诸如期望温度或期望流速)。

为了对流体介质m进行欧姆加热,加热器3可以包括如在图9至图12中示出的多个平行的加热板30,该多个平行的加热板包括由例如生物相容性材料形成的包层31c。导体31嵌入在相应的加热板30的所述包层31c中,其中,特别地,相应的导体31包括如在图11和图12中示出的曲折形状,并且相应的导体31在电压(例如,直流电压,例如19v)被施加到该相应的导体的相反的端部或接触件(contact,触点、触头)31a、31b时生成焦耳热(欧姆加热)。特别地,相应的导体31由金属箔特别是nicr箔形成,该金属箔可以通过激光切割从坯件切下。特别地,所述电压被施加到平行的导体31。流过导体31的电流由上述控制单元6控制,特别地,该控制单元可以控制来自导体31的电流经其流过的晶体管,特别是mosfet晶体管。特别地,晶体管允许调节经过晶体管的电流的量,并因此调节由导体31生成的、对加热板30进行加热的焦耳热。特别地,图12示出了加热板30中的一个加热板,表明了所述包层31c和被所述包层31c覆盖的导体31。此外,所述接触件31a、31b从所述包层31a突出,使得电流可以被施加至接触件31a、31b。如图12中还表明的,加热板30包括凹部,该凹部形成第一流路径p1的一部分(也参见图10)。

如在图9和图10中可以看出的,加热板30彼此间隔开,使得在每两个相邻的加热板30之间提供间隙32,其中,第一流路径p1的由加热器3形成的区段从加热器3的用于将所述流体介质m供给到加热器3中的入口33处开始,沿图10中的虚线延伸通过堆叠的间隙32,并在加热器3的出口34(参见例如图9)处结束,流体介质m从加热器的该出口被引导朝向流室2的特别是在图6和图8中示出的入口200。

此外,细胞培养装置1还包括用于确定流体介质m的流速的流量传感器7(参见图1)。可以将这种流量传感器7放置在流室2的上游和/或下游。在这里,作为实施例,流量传感器7布置在壳体10的内部空间11中的第二流路径p2中位于流室2的下游。确定流速允许人们精确地调整经由流动的介质m作用在细胞培养物cc上的剪切力。为此,控制单元6被配置成控制所述泵4,使得利用流量传感器7测量到的流体介质m的流速的实际值接近流体介质m的流速的期望值。

为了使流室滑入和滑出壳体10的内部空间11,该滑动在图15中示出,壳体10特别地包括凹部15,该凹部例如形成到壳体10的将该壳体的相反的顶壁12和底壁14连接的侧壁16中并形成到底壁14中,如例如在图4和图15中表明的。

为了使流室2易于滑动,该流室包括至少两个导轨23,如例如在图6中示出的。可以通过将在下面更详细地描述的其他部件诸如闩锁27使导轨23不连续。每个导轨23被构造成接合到形成在壳体10中的凹槽17中(参见图4),使得通过接合的导轨23和凹槽17促进受引导的滑动运动。

特别地,根据图6,流室2可以包括在流室2的本体26的第一横向侧26a上的单个导轨23以及在所述本体26的第二横向侧26b上的两个平行的(不连续的)导轨23,该第二横向侧26b背离第一横向侧26a。如在图7中示出的,所述本体26包括凹部20,该凹部在本体26的面向门24的那侧形成流室2的内部空间20,该门可以(经由铰链25)铰接至本体26的所述第一横向侧26a。门24可以使用所述闩锁27来关闭(例如,以便密封内部空间20),该闩锁被构造成与形成到第二横向侧26b中的凹部28接合,以便关闭门24并对流室2的内部空间20进行密封。

特别地,为了观察驻留在流室2的内部空间20中的细胞培养物cc,门24包括所述第一透明壁区域21(例如,以门24的窗口的形式),而流室2的相对的本体26包括或形成所述第二透明壁区域22。特别地,整个本体26可以是透明的。

此外,特别地,在门24关闭并且流室2滑入凹部15中时,门24与壳体10的底侧14齐平或相对于底侧14稍微凹陷。

此外,如上面已经陈述的,流室2包括用于将所述流体介质m注入到流室2中的入口端口200以及用于将所述流体介质m从流室2排出的出口端口201,其中,特别地,所述端口200、201布置在所述本体26的背侧26c,该背侧26c将流室2的本体26的所述第一横向侧26a与所述第二横向侧26b连接(参见图6和图8)。

此外,如在图6和图8中表明的,流室2在本体26的背侧26c包括第一单向阀202和第二单向阀203(例如,以用于将空气泡从流室2推出)。特别地,第一阀202可以用于将流体介质填充到流室2中,并且第二阀203可以用于将液体介质从流室2冲出且随后将空气泡从流室2推出。

为了在流室2的内部空间20与细胞培养装置1的壳体10的内部空间11内的第一和第二流路径p1、p2之间建立流连接,流室2还被构造成以入口端口200和出口端口201朝前的方式滑入壳体10的所述凹部15中,使得当流室2完全滑入到凹部15中时,入口端口200与第一流路径p1的连接器204接合且出口端口201与第二流路径p2的连接器205接合(参见例如图1和图6),并且在入口端口200与第一流路径p1之间建立流连接以及在出口端口201与第二流路径p2之间建立流连接。

此外,如在图2a中表明的,第一流路径p1连接至被布置在壳体10上、特别是被布置在壳体10的顶壁12上的入口18,而第二流路径p2连接至被布置在壳体10上、特别是被布置在壳体10的顶壁12上的出口19。在这里,入口18被构造成连接至用于将所述流体介质m引导到第一流路径p1中的第一导管,而出口19被构造成连接至用于将来自流室2的所述流体介质m从第二流路径p2排出的第二导管。

第一导管可以连接至用于储存所述流体介质m的容器,而第二导管可以连接至用于丢弃该流体介质的废物箱。替代性地,两个导管都可以连接至所述容器用于使流体介质循环,即,使流体介质m被泵送经由第一流路径p1进入流室2的内部空间20,并被泵送经由第二流路径p2离开流室2的内部空间20且返回到容器中。特别地,泵4可以布置在位于壳体10的内部空间11的内部或外部的第一流路径p1和/或第二流路径p2中。

此外,如在图17至图19中示出的,细胞培养装置1可以包括气泡捕集器50,该气泡捕集器布置在壳体10的内部空间11中并且被构造用于从流体介质m移除气相g的泡。

泡捕集器50可以包括被布置在所述内部空间11中的单独的泡捕集器壳体,并且特别地,该泡捕集器包括第一体积体51和在第一体积体51的顶部的相邻的第二体积体52,其中,第一和第二体积体51、52通过半渗透膜53分开,流体介质m不能透过该半渗透膜,但所述气相g能透过该半渗透膜,使得气相g的泡可以从第一体积体51经由膜53上升到第二体积体52中并因此从流体介质m被移除。

如从图17可以看出的,泡捕集器50的第一体积体51形成第一流路径p1的一区段。

特别地,第一体积体51包括与加热器3的出口34连接的入口51a以及与连接器204连接的出口51b,使得流体介质m可以从加热器3被传送到泡捕集器50的第一体积体51并从第一体积体51被传送到流室2,其中,所述气相g的泡从第一体积体51经由膜上升到第二体积体52中,以便在介质m的液相被膜53保留住的同时将所述气相的泡从第一流路径移除。

此外,特别地,第二体积体52小于第一体积体51,并且特别地,该第二体积体包括在细胞培养装置1的运行期间比第一体积体51小的压力。特别地,第二体积体52处于真空,因此增加了可以穿过半渗透膜53的气体(例如空气)的量。此外,为了从泡捕集器50的第二体积体52移除气相g,第二体积体包括用于从泡捕集器50移除所述气相g的出口52a。特别地,可以将泵连接至所述出口52a,使得可以经由泵移除泡/气相g。

最后,作为实施例,图20示出了在经受2.5dyn/cm2的剪切应力时使用根据本发明的细胞培养装置被记录的放大20倍的原代神经元。示出了经受800s的剪切之后的相对比图像(phasecontrastimage,位相衬度图像、相位对比图像、相差图像)(a)、gfp信号(b)和两者的叠加图(c)。分离的海马神经元培养物从c57b6/jjrj(janvierlabs,法国)小鼠获得。在妊娠的第16.5天(e16.5)对时间上匹配的小鼠进行安乐死,并且在无菌条件下对胚胎、它们的大脑然后是海马体进行解剖,并使用trypleselect试剂(gibco)在37c处消化(digest,酶切、溶解)25min。将获得的海马神经元以在补充有2%的gibcob-27的neurobasal培养基(gibco)中为50,000/cm2的密度涂覆在涂有聚-d-赖氨酸(100ug/ml;sigma)的载玻片上。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1