铱配氮杂吡咯烷酮光诊疗试剂及其制备方法与应用与流程

文档序号:21884802发布日期:2020-08-18 17:08阅读:402来源:国知局
铱配氮杂吡咯烷酮光诊疗试剂及其制备方法与应用与流程

本发明属于有机光电、生物材料技术领域。具体涉及一种具有近红外吸收的铱配氮杂吡咯烷酮光诊疗试剂及其制备方法和其在荧光成像、光热成像、光声成像、光动力和光热联合治疗等领域中的应用。



背景技术:

肿瘤作为一种致死率较高的疾病严重威胁着人类的健康。传统的肿瘤治疗手段,如手术疗法、化疗、放射疗法等虽在肿瘤治疗方便取得了一定的成效,但是因其毒副作用大、耐药性等问题而限制了其的进一步应用。与此相对地,光动力和光热联合治疗作为一种非侵入性、无毒、靶向、高效的肿瘤治疗手段而日益受到青睐,该类疗法可以实时的进行肿瘤部位精确治疗,大大的提高了肿瘤治疗的效果。光动力和光热联合治疗材料的选择对于最终疗效具有决定性作用。因此,光动力和光热联合治疗材料的开发和利用引起大家的广泛关注。

bf2-螯合氮杂吡咯烷酮染料一般用于生物标记、成像、光动力治疗等领域,目前为止,鲜有利用有效的理论指导来设计和合成具有良好光热效果的氮杂氟硼烷染料的报道公开。而且经报道的bf2-螯合氮杂吡咯烷酮染料用于光热光动力联合治疗染料的单线态氧产率较低,往往起不到联合治疗的效果,使得光动力光热联合治疗起作用的主要是光热效果,这将会导致肿瘤复发。为了克服这一缺点,采用金属螯合的氮杂吡咯烷酮是值得尝试的。

铱配合物常被用于高效的光动力治疗,这是由于磷光过渡金属配合物具有优异的光电性质,其敏化后的三线态寿命可调控。且磷光过度金属配合物具有光稳定性好、毒性低、stokes位移大等一系列优点。但是,传统的铱配合物面临着吸收波长短,多位于紫外可见光区域,导致在应用过程中穿透深度较低,不利于活体层面的应用。



技术实现要素:

本发明的目的在于解决现有技术中的不足,提供一种铱配氮杂吡咯烷酮光诊疗试剂及其制备方法与应用,制备时,将氮杂吡咯烷酮作为辅助配体,提升铱配合物的吸收波长和光热光动力效果,从而在活体层次实现荧光成像指导的光热和光动力联合治疗。

本发明的技术方案为:一种铱配氮杂吡咯烷酮光诊疗试剂,其结构通式如下:

其中,c^n配体为下列中的任一个:

其中,r1、r2为下列中的任一个:

r1,r2可以为相同基团,可以为不同基团,其中r3为具有1至16个碳原子的直链、支链或者环状烷基链烷烃;

其中,x为h、cl、br或i。

进一步地,上述铱配氮杂吡咯烷酮光诊疗试剂的具体合成路线为:

进一步地,所述铱配氮杂吡咯烷酮光诊疗试剂的具体合成步骤为:

1)r1的醛与r2的酮溶于甲醇溶液中,在naoh存在的条件下进行醛酮缩合反应,调节ph至中性,过滤除去甲醇溶剂,洗涤后得到化合物1;

2)化合物1与硝基甲烷和二乙胺在甲醇中反应一定时间,旋干除去溶剂后溶于乙醇中,过滤,洗涤,得到化合物2;

3)将化合物2溶于正丁醇溶液中,并向其中加入醋酸铵,搅拌反应一段时间后,减压蒸馏除去正丁醇,用冷乙醇洗涤得到化合物3;

4)将干燥的化合物3溶于除水的二氯甲烷溶液,依次加入三乙胺和三氟化硼乙醚,反应一定时间,减压蒸馏,洗涤,得到化合物4;

5)将化合物4溶于氯仿溶液,依次加入醋酸和卤化剂,得到化合物5;

6)使铱二氯桥和三氟化银磺酸进行反应,除去反应液后溶于二氯甲烷,过滤,滤液悬干得到配合物6;

7)将配合物6和化合物5溶于四氢呋喃和水的混合溶液中,随后加入氢氧化钾溶液,即可得到最终产物7,经柱层析提纯得到纯的配合物7。

进一步地,所述铱配氮杂吡咯烷酮光诊疗试剂可用于生物荧光寿命成像。

进一步地,所述铱配氮杂吡咯烷酮光诊疗试剂可用于生物光热成像。

进一步地,所述铱配氮杂吡咯烷酮光诊疗试剂可用于生物光声成像。

进一步地,所述铱配氮杂吡咯烷酮光诊疗试剂经过激光照射可以产生具有细胞毒性的单线态氧。

本发明的有益效果是:

本发明公开的铱配氮杂吡咯烷酮光诊疗试剂具有较长的吸收波长,使之在活体应用领域可以具有较深的组织穿透深度,更适用于生物成像;

本发明公开的铱配氮杂吡咯烷酮光诊疗试剂在紫外区和近红外区均表现出了较强的吸收,且能够被近红外光激发,从而可减弱激发光源对生物样品的损伤;

本发明公开的铱配氮杂吡咯烷酮配合物可应用于生物成像和光热光动力联合治疗,且具有较好的光热和光动力效果;

本发明公开的制备方法具有工艺简单,反应条件温和,原料丰富的特点,适于推广应用。

附图说明

图1为实施例2制备的铱配合物irdipy-7的质谱图;

图2为实施例2制备的铱配合物irdipy-7的核磁氢谱图;

图3为实施例3中获得的铱配合物irdipy-7的紫外-可见吸收光谱图;

图4为实施例3中获得的铱配合物irdipy-7的发射光谱图;

图5为实施例4中获得的铱配合物irdipy-7的光热效果图;

图6为实施例5中获得的铱配合物irdipy-7的光动力效果图。

具体实施方式

以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。

实施例1:氮杂吡咯烷酮辅助配体的制备

化合物2的制备:化合物1(26mmol)和苯甲醛(26mmol)溶于甲醇溶液中,随后加入50%naoh水溶液,在室温下搅拌反应22小时后,调节ph至中性,过滤除去甲醇溶剂,得到浅黄色固体粉末,然后用水洗涤三次,除去盐,得到白色产物2。产率:91%。

1hnmr(400mhz,cdcl3)δ(ppm):8.01(d,j=8.4hz,2h),7.78(d,j=16.4hz,1h),7.53(d,j=8.4hz,2h),7.35(d,j=16.4hz,2h),6.98(d,j=8.4hz,2h),6.69(d,j=8.4hz,2h),3.77-3.65(s,6h).13cnmr(100mhz,cdcl3)δ(ppm):188.85,169.10,162.20,151.91,144.95,131.97,130.49,130.27,122.82,116.63,114.27.

化合物3的制备:在化合物2(5mmol)的甲醇溶液中,加入10ml二乙胺和15ml硝基甲烷,加热回流24小时后,旋干除去溶剂并将固体溶于30ml乙醇中,有大量白色固体析出,过滤得该白色固体,并用乙醚和水洗涤三次,得到白色固体化合物3。产率:83%。

1hnmr(400mhz,cdcl3)δ(ppm):8.01(d,j=8.8hz,2h),7.78(d,j=15.2hz,1h),7.55(d,j=8.8hz,2h),7.35(d,j=15.6hz,2h),6.98(d,j=8.8hz,2h),6.69(d,j=8.8hz,2h),3.70-3.65(s,6h),3.56-3.54(m,2h),3.38(s,3h),3.04(s,6h).13cnmr(100mhz,cdcl3)δ(ppm):188.85,162.20,151.91,144.95,131.97,130.49,130.27,122.82,116.63,114.27,111.83,71.92,70.81.

化合物4的制备:化合物3(2.50mmol)和20g醋酸铵溶于正丁醇溶液中,120℃搅拌回流过夜,反应结束,减压蒸馏除去正丁醇,用冷乙醇冲洗剩余固体,得到黑色固体4。产率69%。

化合物5的制备:将化合物4(0.2mmol)溶于干燥的二氯甲烷溶液中,用注射器依次加入1ml三乙胺和1.2ml三氟化硼乙醚。随后在室温下搅拌过夜。将反应夜减压蒸馏得蓝色固体,依次用水和乙醇冲洗后将得到的粗产物过柱子提纯,得黑色固体。

1hnmr(400mhz,cdcl3)δ(ppm):8.09-8.05(m,8h),7.47-7.36(m,6h),7.04-7.01(m,6h),4.22(t,j=4.0hz,4h),3.76-3.66(s,12h).13cnmr(100mhz,cdcl3)δ(ppm):161.01,158.12,145.29,143.09,132.45,131.76,128.46,124.30,118.52,114.76.

实施例2:铱配氮杂吡咯烷酮配合物的制备

化合物7的制备:将化合物6(0.14mmol)和三水合三氯化铱溶于乙二醇乙醚和水的混合溶液中,在n2氛围下110℃搅拌过夜,随后向反应液中加水,此时有大量黄色固体析出,抽滤除去溶液,随后用乙醇反复洗涤,得黄色固体7。

化合物8的制备:将化合物7(0.10mmol)和三氟甲磺酸银溶于乙醇的水溶液中,100℃回流24h。随后将反应液除去,将得到的固体溶于二氯甲烷,过滤除去滤渣,将滤液旋干得黄色固体8.

化合物irdipy-7的制备:化合物5溶于四氢呋喃溶液,随后向其中加入氢氧化钾的水溶液。将化合物8(0.05mmol)的四氢呋喃溶液加入反应液中,室温搅拌48h。最后将反应液旋干,柱层析提纯得黑色固体irdipy-7。

1hnmr(400mhz,cdcl3)δ(ppm):8.06(d,j=7.5,8h),7.90(d,j=8.5,8h),7.38(m,12h),7.13(s,4h),7.06(d,j=8.7,8h),3.92(s,12h)。maldi-tof-msm/z:理论计算值:1035.29;实际测取值:1035.68.

实施例3:铱配合物irdipy-7的吸收和发射光谱测试

采用的光谱测试浓度为10μm,测试溶剂为ch2cl2的溶液,测发射光谱时,激发波长为690nm。

irdipy-7的吸收和发射光谱如图3和图4所示。配合物在紫外区400-500nm以及近红外区600-800nm均表现出了较强的吸收,特别是该配合物能够被近红外光激发,在做细胞成像实验时大大减少了激发光源对细胞的损伤。

其发射较宽,发射峰位于730nm处,红光发射增加了生物组织的穿透深度,使之更适用于生物成像。

实施例4:irdipy-7的光热效果

将irdipy-7用thf溶解,用ph=7.4的pbs缓冲溶液将其稀释成不同浓度梯度的溶液(0、20、40、60μm),用690nm激光器照射7min(0.5w/cm2),用光热成像仪记录不同时间、不同浓度下,溶液温度的变化。图5表明,随着浓度增加,溶液温度最大变化高达23℃,具有较好的光热效果。

实施例4:irdipy-7的光动力效果

将irdipy-7用thf溶解,用单线态氧指示剂dpbf证明单线态氧的产生,用690nm激光器照射不同时间,用紫外可见光谱记录不同照射时间下dpbf吸收峰的变化。图6表明,随着照射时间的延长,指示剂dpbf被消耗,证明单线态氧的产生。

以上显示和描述了本发明的基本原理、主要特征及优点。但是以上所述仅为本发明的具体实施例,本发明的技术特征并不局限于此,任何本领域的技术人员在不脱离本发明的技术方案下得出的其他实施方式均应涵盖在本发明的专利范围之中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1