一种聚酰亚胺及其在金属层叠板中的应用的制作方法

文档序号:27144527发布日期:2021-10-30 01:17阅读:163来源:国知局
一种聚酰亚胺及其在金属层叠板中的应用的制作方法

1.本发明属于高分子材料技术领域,具体涉及一种聚酰亚胺及其在金属层叠板中的应用。


背景技术:

2.随着5g通讯的迅速普及,具备高频低介电损耗的柔性覆铜板在电子与信息领域的应用越来越广泛,兼具良好耐热性、介电性能和优异粘结性的柔性覆铜板成为当下的研发热点。
3.柔性覆铜板(fccl)是指在聚合物基膜上覆以铜箔而形成的可弯曲的层状复合材料,因其具有轻薄、高耐热、以及柔软可弯曲等优点,广泛应用在手机、笔记本电脑、及可穿戴电子产品上,传统fccl采用聚酰亚胺/胶黏剂/铜箔三层结构,其中胶黏剂为丙烯酸树脂、环氧树脂、酚醛树脂等低tg(玻璃化温度)胶层,其耐热性和尺寸稳定性较差,在高温时,容易发生脱胶、翘曲等问题。
4.近年来发展的新型fccl不再使用胶黏剂,仅有绝缘复合膜层和金属层构成,这种无胶黏剂的fccl不仅耐热性好,而且尺寸稳定性更佳,厚度更薄,在先进的集成电路及高频通讯领域得到了广泛应用,cn101786354a公布了一种两层法双面挠性覆铜板的制作方法,其提供的双面挠性覆铜板,具有良好的耐热性和剥离强度,其制备工艺简单,具有良好的工业化前景。但是,如何获得耐热性能、剥离性能以及介电性能优异的聚酰胺酸、聚酰亚胺及由其制备的金属层叠板,成为亟待解决的技术问题。
5.cn108699243a公开了一种热塑性聚酰亚胺,及由其制备的金属包覆层叠板及电路基板,文中开发出的热塑性聚酰亚胺具备优异的剥离强度和介电损耗,但是其320℃以内的tg限制了其只能作为绝缘层和金属层中间的胶层,无法发挥出聚酰亚胺做为基板材料的优势。cn109843588a中公开了一种耐高温金属层叠用聚酰亚胺膜及其金属层叠体,应用高比例的长链芳香环,极大的提高了聚酰亚胺的耐热性,但是还是存在介电损耗过大,粘结性下降的问题,其需要与热熔融性聚酰亚胺树脂进行附着从而提高剥离力,然而热熔融胶层又进一步降低了其耐热性和使用温度。
6.鉴于以上原因,特提出本发明。


技术实现要素:

7.为了解决现有技术存在的以上问题,本发明提供了一种聚酰亚胺及其在金属层叠板中的应用,本发明所述的聚酰亚胺具有良好的耐热性,具有规整有序的联苯、三联苯等长链结构,在保持了聚酰亚胺良好耐热性的同时,促进了酰亚胺环中的c=o与金属表面的结合,从而有效提高了聚酰亚胺与金属层的粘结性,可以直接涂覆在金属层上形成挠性覆铜板,所述的覆铜板具有优异的耐热性、剥离强度和介电性能。
8.本发明的第一目的,提供了一种聚酰亚胺,所述的聚酰亚胺的结构通式如式(i)所示:
[0009][0010]
其中,a代表四价残基,b代表二价残基;
[0011]
式(i)中b包括化学式b1和b2,b1和b2的结构式如下:
[0012][0013]
b1中n1为0或1,b2中x1独立的选自
[0014]
中的一种或多种,r1、r2和r3独立的选自氢、卤原子、具有1

3个碳原子的烷烃、卤代烷烃中的一种或多种;
[0015]
式(i)中a包括化学式a1和a2,a1和a2的结构式如下所示:
[0016][0017]
其中,a1中n2为0或1,x2独立的选自

ch3‑


o



c(o)



c(o)o



c(cf3)2‑


s



c(ch3)2‑


s(o)o

、苯中的一种或多种,r4选自氢、卤原子、1

3碳原子的烷烃或卤代烷烃中的一种。
[0018]
进一步的,b1占二胺总量的40

90%,b2占二胺总量的10

60%,且b1和b2之和占二胺总量的90%及其以上;a1占二酐总量的50

100%,a2占二酐总量的0

50%。
[0019]
进一步的,b1独立的选自以下化学式中的一种或多种:
[0020][0021]
b2独立的选自以下化学式中的一种或多种:
[0022][0023]
进一步的,a1独立的选自以下化学式中的一种或两种:
[0024][0025]
a2由2,2'3,3'

联苯四甲酸二酐、2,3,3'4

联苯四甲酸二酐、3,3'4,4'

二苯基硫醚四羧酸二酐、3,3'4,4'

二苯醚四羧酸二酐、2,3,3'4

二苯醚四羧酸二酐、2,2'3,3'

二苯醚四羧酸二酐、2,2'

双(3,4

二羧酸)六氟丙烷二酐、联苯二醚二酐、4,4'

对苯二氧双邻苯二甲酸酐、3,3'

间苯二氧双邻苯二甲酸酐、3,3',4,4
’‑
二苯酮四酸二酐中的一种或多种组合而成。
[0026]
进一步的,所述的聚酰亚胺还包括占总二胺总量≤10%的如下二胺制成:4,4'

二氨基二苯醚、4,4'

二氨基二苯甲烷、1,3

双(3

氨基苯氧基)苯、1,4

双(3

氨基苯氧基)苯、1,4

双(4

氨基苯氧基)苯、2,2'

双(三氟甲基)

4,4'

二氨基苯基醚、2,2'

双[4

(4

氨基苯氧基苯基)]丙烷、2,2

双[4

(4

氨基苯氧基)苯基]

1,1,1,3,3,3

六氟丙烷、1,4

双(4

氨基
‑2‑
三氟甲基苯氧基)苯中的一种或多种。
[0027]
进一步的,所述的聚酰亚胺为热固性聚酰亚胺,且tg≥360℃。
[0028]
本发明中所述的聚酰亚胺是由二酐与二胺在溶剂中反应而得到的,所用溶剂并无
限制,可列举如n,n

二甲基甲酰胺、n,n

二甲基乙酰胺、n,n

二乙基乙酰胺、n

甲基吡咯烷酮、n

乙基吡咯烷酮、n

甲基
‑2‑
吡咯烷酮、γ

丁内酯等,优选n,n

二甲基乙酰胺,聚酰胺酸固含并无特别限制,固含可在5%

30%之间。粘度并无特别限制,可根据实际需求进行调节,优选为1000

200000cp,树脂反应温度可在10℃

100℃的范围下,搅拌1h

24h来进行聚合,从而获得聚酰胺酸。
[0029]
所合成的聚酰胺酸可视需要进行稀释或置换溶剂,制膜方式可根据公知的方法进行制膜,例如在80

400℃范围内的条件下,直接加热制膜。或者加入公知的脱水剂和促进剂,如乙酸酐、丙酸酐、苯甲酸酐(脱水剂)中的一种或多种。如吡啶、甲基吡啶、异喹啉、三乙胺(促进剂)中的一种或多种。
[0030]
本发明的第二目的,提供了一种所述的聚酰亚胺在金属层叠板中的应用,所述的聚酰亚胺涂覆在金属层的表面,剥离强度≥0.8n/mm,50

200℃下,热膨胀系数≤35ppm,介电常数dk≤3.4,df≤0.005。
[0031]
进一步的,所述的金属层叠板应用于高频柔性电路基板或高频通讯领域。
[0032]
本发明的金属层叠板是由聚酰胺酸树脂直接涂覆在金属板的一面,然后进行烘干及亚胺化,制备成单面覆铜板。或者将聚酰胺酸树脂分别涂覆在两张金属板的一面,然后进行预烘干,形成凝胶膜,然后将两张涂覆有聚酰亚胺树脂的一面进行热压合形成双面覆铜板,树脂膜厚度可根据需要进行调节,优选5

100um的范围,热压合温度和压力可根据实际需要进行调整,温度区间为150℃

380℃,压强3mpa

7mpa之间,高温热压合时需为无氧环境下,所述金属板并无特别限制,优选铜箔,其与树脂层接触面的表面粗糙度优选为十点平均粗糙度rz为2.0um以内。
[0033]
本发明的聚酰亚胺合成中根据实际需要,加入少量无机或有机添加剂,具体而言,例如二氧化硅、三氧化二铝、氧化钙、氟化钙(无机类)等,或乙烯基三甲氧基硅烷、六甲基二硅氧烷、3

氨基丙基三甲氧基硅烷、氨丙基甲基二乙氧基硅烷等(有机类)中的一种或多种组成。
[0034]
与现有技术相比,本发明的有益效果为:
[0035]
本发明制备的聚酰亚胺具有良好的规整性和有序的联苯、三联苯等长链结构,在保持了聚酰亚胺良好耐热性的同时,促进了酰亚胺环中c=o与金属表面的结合,从而有效提高了聚酰亚胺与金属层的粘结性能,同时,通过含苯酯基单体的引入,可进一步降低介电损耗,本发明所述的聚酰亚胺可以直接涂覆在金属层上形成挠性覆铜板,不需要涂覆粘结层材料,所制备的挠性覆铜板,具有优异的耐热性、剥离强度和介电性能,可适用于柔性电路基板材料和通讯领域。
具体实施方式
[0036]
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。
[0037]
本发明中各物质的具体名称如下:
[0038]
pda:对苯二胺
[0039]
1,3,3

apb:1,3

双(4
’‑
氨基苯氧基)苯
[0040]
bapp:2,2

双(4

(4

氨基苯氧基)苯基)丙烷
[0041]
tfmb:2,2
’‑
双(三氟甲基)

4,4
’‑
二氨基联苯
[0042]
m

tb:2,2
′‑
二甲基

4,4
′‑
二氨基联苯
[0043]
datp:4,4
’‑
二氨基

对三联苯
[0044]
apab:对氨基苯甲酸对氨基苯酯
[0045]
bpbt:1,4

亚苯基双(4

氨基苯甲酸酯)
[0046]
abhq:对苯二甲酸二对氨基苯酯
[0047]
s

bpda:3,3’,4,4
’‑
联苯四甲酸二酐
[0048]
odpa:4,4
’‑
氧双邻苯二甲酸酐
[0049]
pmda:均苯四甲酸二酐
[0050]
tpda:5

[4

(1,3

二氧
‑2‑
苯并呋喃
‑5‑
基)苯基]
‑2‑
苯并呋喃

1,3

二酮
[0051]
性能测试的具体方法如下:
[0052]
(1)线性热膨胀系数(cte)
[0053]
根据热机械分析法,使用热机械分析仪(ta instrument公司,型号q400)测量聚酰亚胺膜的热膨胀系数。测量的条件如下:试片尺寸:8mm
×
3~5mm,气氛:氮气气氛下;温度:加热率10℃/min,扫描范围50至300℃;拉伸力:0.05n,取值范围50℃至200℃;
[0054]
(2)玻璃化转变温度(tg)
[0055]
利用热机械分析仪(ta instrument公司,型号q400)测得的。气氛:氮气气氛下;温度:加热速率10℃/min;拉伸力:0.05n;样品尺寸:8mm
×
3~5mm。
[0056]
(3)dk&df
[0057]
利用keysight n5224b矢量网络分析仪(空腔共振器法)进行测试,测试频率10ghz,试样大小分别为6*6cm。
[0058]
(4)剥离强度
[0059]
将单面流延侧的铜箔或者两面流延树脂热压结合侧的单面铜箔使用氯化铁水溶液刻蚀成测试样品,按照ipc

tm

650 2.4.9进行测试,测试机台为岛津ez

lx 500n。
[0060]
实施例1
[0061]
将反应容器提前加热干燥,并进行氮气置换,30min后,加入150g的n,n

二甲基乙酰胺溶剂,再分别加入11.763g的datp和6.7457g的bptp,25℃下搅拌至溶解,再加入18.9913g的bpda,室温下搅拌12h,从而得到含量为20%的聚酰亚胺溶液。
[0062]
实施例2

9和参照例1
‑6[0063]
参照实施例1聚酰亚胺的方法,将二胺、二酐替换为表1中所示的原料,添加比例见表1。
[0064]
表1
[0065][0066]
试验例1
[0067]
将实施例1制备的聚酰亚胺溶液硬化后为25um厚度的方式涂布于铜箔上,在120℃下加热,去除部分溶剂,使其成为凝胶膜,进而在120℃

360℃的阶段下进行热处理,加热环境为氮气气氛下。将得到的金属层叠板,制备测试样品,使用氯化铁水溶液将多余铜箔刻蚀去除,进行各项性能测试,结果见表2。
[0068]
试验例2

9和对比例1
‑6[0069]
参照试验例1的方法,利用实施例2

9和参照例1

6制备的聚酰亚胺,结果见表2。
[0070]
表2
[0071][0072]
表2为试验例与对比例所形成的覆铜单面板的特性值,经过试验例与对比例的数据比较可知,对比例1、对比例2中非本专利申请所限定的联苯、三联苯单体时,导致其剥离强度明显偏低,对比例3、对比例6中当为非本专利申请所限定的柔性单体比例时,其剥离强
度虽然足够,但是明显tg过低,会影响到覆铜板的耐热性和热尺寸稳定性。其次,当苯酯基单体比例不足或超出保护范围时,会导致介电性能下降或剥离性能不足等问题。
[0073]
试验例10
[0074]
在铜箔上,以硬化后的厚度为12.5um的方式,将实施例1制备的聚酰亚胺溶液分别涂布在两张铜箔上,在120℃下加热,去除部分溶剂,使其成为凝胶膜,进而使其涂覆树脂正对的一面互相接触,进行高温热压合,温度为120℃

360℃,在氮气气氛下进行,然后将得到的双面金属层叠板,制备成测试样品,使用氯化铁水溶液将多余铜箔刻蚀去除,测试金属层与树脂的剥离强度1,以及树脂与树脂之间的剥离强度2,具体性能见表3。
[0075]
试验例11

13
[0076]
使用实施例2

4制备的聚酰亚胺树脂,其他均与试验例10相同制备双面覆铜板,性能见表3。
[0077]
对比例7
[0078]
使用参照例1制备的聚酰亚胺树脂,其他均与试验例10相同制备双面覆铜板,性能见表3。
[0079]
表3
[0080][0081]
从表3的数据可以看出,利用本发明所述的聚酰亚胺制备的单面覆铜板经热压合而成的双面覆铜板,剥离强度均可以达到0.8n/mm以上,远远高于对比例7,因此利用本发明聚酰亚胺制备的金属层叠板可适用于高频柔性电路基板或者高频通讯领域。
[0082]
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1