微流控芯片、混匀装置、分子诊断设备及样本检测方法与流程

文档序号:27627745发布日期:2021-11-29 15:35阅读:162来源:国知局
微流控芯片、混匀装置、分子诊断设备及样本检测方法与流程

1.本发明属于体外检测技术领域,特别是涉及一种微流控芯片、混匀装置、分子诊断设备及样本检测方法。


背景技术:

2.分子诊断是指应用分子生物学方法检测患者体内遗传物质的结构或表达水平的变化而做出诊断的技术,是预测诊断的主要方法,既可以进行个体遗传病的诊断,也可以进行产前诊断。但目前主流的pcr(polymerase chain reaction,聚合酶链反应)设备的微流控芯片结构复杂、成本高,操作繁琐、用户体验较差。


技术实现要素:

3.鉴于以上所述现有技术的缺点,本发明的目的在于提供一种微流控芯片、混匀装置、分子诊断设备及样本检测方法,用于解决现有技术中微流控芯片结构复杂、成本高,操作繁琐、用户体验较差的问题。
4.为实现上述目的及其他相关目的,本发明提供一种微流控芯片,微流控芯片上开设有固定孔,微流控芯片能够绕固定孔旋转,微流控芯片上还开设有进样腔、混匀腔以及pcr反应腔;
5.进样腔用于样本和/或试剂的进样;
6.混匀腔与进样腔相连通,用于对样本和/或试剂进行旋转混匀以获得混匀后的待检测样本或废液,且混匀腔到固定孔中心的距离大于进样腔到固定孔中心的距离;
7.pcr反应腔与混匀腔相连通,用于接收从混匀腔排出的处理后的待检测样本,且pcr反应腔到固定孔中心的距离大于混匀腔到固定孔中心的距离。
8.此外,为了实现上述目的,本技术还提供了一种混匀装置,包括如上述的微流控芯片,还包括容置于混匀腔内的磁性件以及设置于微流控芯片外的磁吸组件,混匀腔在微流控芯片带动下转动至与相对磁吸组件的预设位置时,磁吸组件能够作用于磁性件使其运动至混匀腔内的预设区域。
9.此外,为了实现上述目的,本技术还提供了一种分子诊断设备,包括如上述的微流控芯片和检测机构,检测机构用于对微流控芯片中的待检测样本进行检测。
10.本技术还提供了一种样本检测方法,应用于分子诊断设备,分子诊断设备包括开设有固定孔的微流控芯片,样本检测方法包括:
11.在混匀腔中对样本和试剂进行混匀,以获得第一废液和清洗前的待检测样本,并将混匀腔中的第一废液排出混匀腔;
12.向混匀腔中添加清洗液对混匀腔中清洗前的待检测样本进行清洗,以获得第二废液和清洗后的待检测样本,并将混匀腔中的第二废液排出混匀腔;
13.向混匀腔中添加洗脱液以对清洗后的待检测样本进行洗脱处理,以获得处理后的溶有样本核酸的待检测样本液;
14.将待检测样本液排入pcr反应腔内进行pcr扩增反应以进一步通过光学检测装置进行检测;
15.其中,pcr反应腔到固定孔中心的距离大于混匀腔到固定孔中心的距离。
16.本发明的微流控芯片、混匀装置、分子诊断设备及样本检测方法至少具备以下有益效果是:结构简单、降低了成本,操作简单方便,改善了用户的使用体验。
附图说明
17.为了更清楚地说明申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的情况下,还可以根据这些附图获得其他的附图,其中:
18.图1为本技术提供的微流控芯片一实施例的结构示意图;
19.图2为图1所示的微流控芯片的分液组件的结构示意图;
20.图3为图1所示的微流控芯片处于第一工作状态时的状态示意图;
21.图4为图3中局部a的放大示意图;
22.图5为图1所示的微流控芯片处于第二工作状态时的状态示意图;
23.图6为图5中局部b的放大示意图;
24.图7为图1所示的微流控芯片处于第三工作状态时的状态示意图;
25.图8为图1所示的微流控芯片处于第四工作状态时的状态示意图;
26.图9为本技术提供的混匀装置一实施例的结构示意图;
27.图10为图9所示的混匀装置处于第一工作状态时的状态示意图;
28.图11为图9所示的混匀装置处于第二工作状态时的状态示意图;
29.图12为本技术提供的样本检测方法实施方式的流程示意图;
30.图13为本技术提供的样本检测方法一实施例的状态变化示意图。
31.零件标号说明
32.100

微流控芯片;101

进样腔;102

混匀腔;1021

上腔体;1022

下腔体;1023

支撑柱;103

第一废液腔;104

pcr反应腔;105

固定孔;106

试剂腔;107

第一管道;108

第二管道;109

分液组件;1091

毛细管;10911

弯折段;10912

虹吸段;1092

分液腔;10921

第一分液孔;10922

第二分液孔;10923

挡板;10924

进液孔;110

第四管道;1101

第一环段;1102

第一连接段;1103

第二连接段;111

第五管道;1111

第二环段;1112

第三连接段;112

第六管道;113

第二废液腔;114

油相腔;115

第三管道;200

磁吸组件;201

第一磁吸组件;202

第二磁吸组件;300

磁性件;400

吸水纸。
具体实施方式
33.下面将结合本技术实施例中的附图,对本技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本技术一部分实施例,而不是全部的实施例。基于本技术中的实施例,本领域普通技术人员在没有做出创造性劳动情况下所获得的所有其他实施例,均属于本技术保护的范围。
34.需要说明,若本技术实施例中有涉及方向性指示(诸如上、下、左、右、前、后
……
),
则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
35.另外,若本技术实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本技术要求的保护范围之内。
36.请参阅图1,本技术实施例提供了一种微流控芯片,微流控芯片100上开设有固定孔105,微流控芯片100能够绕固定孔105旋转,微流控芯片100上还开设有进样腔101、混匀腔102以及pcr反应腔104;
37.进样腔101用于样本和/或试剂的进样;
38.混匀腔102与进样腔101相连通,用于对样本和/或试剂进行旋转混匀以获得混匀后的待检测样本或废液,且混匀腔102到固定孔105中心的距离大于进样腔101到固定孔105中心的距离;
39.pcr反应腔104与混匀腔102相连通,用于接收从混匀腔102排出的处理后的待检测样本,且pcr反应腔104到固定孔105中心的距离大于混匀腔102到固定孔105中心的距离。
40.上述微流控芯片100的结构简单,降低了成本,并且操作更加简单方便,改善了用户的使用体验。
41.可选的,固定孔105可以为设置在微流控芯片100一侧的安装槽,也可以为贯穿微流控芯片100的贯通孔,只要能使得微流控芯片能够在外力作用下进行旋转即可。通过固定孔105与驱动装置连接,通过驱动装置驱动微流控芯片100绕固定孔105旋转。
42.在本技术的另一实施例中,参见图1,进样腔101可以根据需求设置为一个或多个,以便适应不同种类样本的需求,各个进样腔101分别与混匀腔102连通,各个进样腔101的形状和大小可以相同也可以相异,以便适应不同样品的检测需求。当进样腔101的数量为多个时,多个进样腔101可以围设在固定孔105外周。
43.可选的,微流控芯片100上设有两个进样腔101,两个进样腔101到固定孔105中心的距离相等,其中一个进样腔101可以通过第一管道107与混匀腔102相连通,另一个进样腔101可以通过第二管道108与第一管道107相连通。两个进样腔101中的其中一个为空置的腔体,另一个为含有试剂的腔体。当加入的样本为液体时,例如咽拭子洗脱液、唾液、血液、或尿液等液体样本,直接加入空置的腔体;当用拭子进行现场采样时,将拭子在含有试剂的腔体内清洗。
44.进一步的,进样腔101的顶部设有可打开和关闭的密封盖,通过密封盖使进样腔101能够保持密闭,有利于防止样本外泄,避免造成污染。
45.进一步的,一个或多个进样腔101上的密封盖设有进样孔,液体样本可以通过进样孔进入进样腔101内,操作简单方便。
46.在本技术的另一实施例中,参见图1,微流控芯片100上还设有试剂腔106,混匀腔102到固定孔105的中心的距离大于试剂腔106到固定孔105的中心的距离,试剂腔106横截面的形状可以为扇环形、方形、梯形、圆形或其它形状。其中,试剂腔106的数量可以根据需
求设置为多个,每个试剂腔106的横截面形状可以相同也可以相异,以便放置不同的试剂,多个试剂腔106围设在固定孔105的外周。
47.可选的,微流控芯片上设有6个试剂腔106,试剂腔106的横截面呈扇环形且与固定孔105同心设置,各试剂腔106远离固定孔105的一侧通过第二管道108与第一管道107连通,第二管道108环设在试剂腔106外周并且与固定孔105同心设置。其中,6个试剂腔内分别装有裂解液、蛋白酶k、磁性件、一次清洗液、二次清洗液和洗脱液,可以根据需求在每个试剂腔106内装入一种所需的试剂。
48.进一步的,6个试剂腔106内依次装有裂解液、蛋白酶k、磁性件、一次清洗液、二次清洗液和洗脱液。其中,裂解液、蛋白酶k和磁性件所在的试剂腔106的位置可以相互交换,一次清洗液和二次清洗液所在的试剂腔106的位置可以相互交换,该结构布局与样本检测过程中进样腔101加入的试剂种类顺序相匹配,操作更加简单方便。
49.在本技术的另一实施例中,参见图1,混匀腔102的底部向内收缩使其底部横截面积减小。
50.可选的,混匀腔102包括相互连通的上腔体1021和下腔体1022,下腔体1022到固定孔105的中心的距离大于上腔体1021到固定孔105的中心的距离,下腔体1022的横截面积小于上腔体1021的横截面积,以便一些工序中体积较少的液体能够更好的反应和磁性件混匀。例如,在核酸洗脱工序中,通过下腔体1022这样的设计,可以使得体积较少的的洗脱液能够集中在体积较小的下腔体1021内,有利于洗脱液与磁性件充分接触混匀。
51.进一步的,上腔体1021和下腔体1022的横截面为与固定孔105同心设置的扇环形。其中,下腔体1022的两端或其中一端向内侧收缩,以使下腔体1022的长度小于上腔体1021的长度,有利于液体集中蓄积。
52.可选的,混匀腔102可以呈扇形、圆形、椭圆形、梯形、方形或其它形状中的任意一种,混匀腔102内设有支撑柱1023,支撑柱1023的顶端和底端分别与混匀腔102的顶面和底面相连。通过在混匀腔102中设置支撑柱1023,可以防止试剂如裂解液、清洗液等有机溶剂或样本液的体积较少时,会因表面张力较大液滴聚集形成气泡形状的液流,从而导致磁性件无法与试剂或样本液充分接触,影响检测结果。通过在混匀腔102中设置支撑柱1023,可以使得裂解液、清洗液吸附在支撑柱1023上,使得裂解液、清洗液更容易浸润混匀腔102的四周壁面,从而避免出现以上不利情况,使得磁性件能够充分混匀。
53.在本技术的另一实施例中,参见图1

图2,混匀腔102的侧壁上设有出液孔,出液孔连接有分液组件109。其中,出液孔可以设置在下腔体1022底部靠近分液组件109的一侧。分液组件109包括毛细管1091和分液腔1092,毛细管1091的进液端和出液端分别与出液孔和分液腔1092的进液孔连通。
54.可选的,毛细管1091上设有弯折段10911,以避免混匀腔102中的液体在旋转混匀过程中经毛细管1091排出混匀腔102。通过弯折段10911增加阻力,降低微流控芯片旋转混匀时液体进入分液腔1092的风险。其中,弯折段10911可以为波浪形或u型等具有弯折结构的管路。
55.可选的,毛细管1091的出液端所在的平面低于与分液腔1092的进液孔所在的平面,以避免混匀腔102中的液体在旋转混匀过程中排出混匀腔102。通过将毛细管1091的出口端与进液孔设置在具有高度差的不同平面内,可以使得微流控芯片在混匀过程中,毛细
管1091中的液体受到的离心力作用沿进液孔向分液腔1092的方向运动时,毛细管1091内的液体还需要垂直向上的重力,从而可以避免微流控芯片100旋转运动时,混匀腔102中的液体经进液孔不易进入分液腔1092。
56.在本技术的一个具体实施例中,参见图1,微流控芯片100包括顶面和底面,顶面和底面通过过孔(图未示出)相连,分液腔1092设置于顶面上,毛细管1091设置于底面上,毛细管1091的出口端与分液腔1092的进液孔通过过孔相连,以避免在旋转混匀的过程中液体经毛细管1091和分液腔1092排出混匀腔102。其中,过孔可以垂直设置在微流控芯片100上,即过孔的轴心线与顶面和底面垂直,结构简单,生产加工方便。
57.在本技术的另一实施例中,参见图1和图2,混匀腔102的侧壁上设有出液孔,出液孔连接有毛细管1091,毛细管1091的进液端与出液孔连通,毛细管1091的进液端与出液端之间设有虹吸段10912,虹吸段10912在微流控芯片旋转离心作用下形成虹吸效应以排出混匀腔102中的液体。通过设置具有虹吸段10912的毛细管1091,使得混匀腔102内的待排液体在毛细力及离心力作用下形成虹吸效应从而提高排液效率,减少混匀腔102内待排液体的残余,减少试剂消耗量。
58.可选的,虹吸段10912呈u型,且u型虹吸段的开口方向背离固定孔105。其中,虹吸段10912远离开口一侧到固定孔105的最小距离小于混匀腔102到固定孔105的最小距离,以便形成虹吸效应。
59.进一步的,在本技术一具体实施例中,参见图3

图6,通过外部驱动装置驱动微流控芯片100旋转,当样本、裂解液、蛋白酶k和磁性件300都进入混匀腔102混合获得待排液体,微流控芯片100还在旋转时,待排液体到达毛细管1091的a2位置,此时毛细管1091内最高液面a2到固定孔105中心的距离等于混匀腔102内最高液面a1到固定孔105中心的距离。当微流控芯片100停止旋转时,在毛细管1091的毛细力作用下,待排液体填充毛细管1091,待排液体到达毛细管1091的b2位置,毛细管1091内最低液面b2比混匀腔102内最低液面b1低,即此时液面b2到固定孔105中心的距离大于液面b1到固定孔105中心的距离。通过这样的结构布局,可以使得微流控芯片100能够在旋转离心的作用下形成虹吸作用,能够提升微流控芯片混匀腔102内的待排液体的排液效率,减少混匀腔102内残余液体的存留,改善用户的使用体验。
60.在本技术的另一实施例中,参见图1,微流控芯片100上还开设有第一废液腔103,第一废液腔103与混匀腔102相连通,用于容纳从混匀腔102排出的废液。
61.可选的,第一废液腔103远离混匀腔102的一端与进样腔101相连通以形成用于气溶胶循环流动的第一循环回路;pcr反应腔104远离混匀腔102的一端与进样腔101相连通以形成用于气溶胶循环流动的第二循环回路。利用微流控芯片上的第一循环回路和第二循环回路使气溶胶能在微流控芯片内循环流动,避免污染环境,并且无需外接管道,简化了气溶胶处理装置的结构、占用空间减小,操作也更加简单方便,降低了维护成本。
62.可选的,微流控芯片100内的气体也能够在第一循环回路和/或第二循环回路中循环流动。
63.进一步的,第一循环回路与第二循环回路相互连通形成分布在微流控芯片上的循环封闭回路,其中,第一循环回路和第二循环回路共用部分管路。微流控芯片在旋转过程,微流控芯片内的液体和气体混合还易形成气溶胶,第一循环回路为气溶胶可沿进样腔101、
混匀腔102、第一废液腔103循环流动的回路,使得第一废液腔103内气溶胶能够排入进样腔101从而形成内循环,避免外泄造成污染;第二循环回路为气溶胶可沿进样腔101、混匀腔102、pcr反应腔104循环流动的回路,使得pcr反应腔104内的气溶胶能够排入进样腔101从而形成内循环,避免外泄造成污染。
64.可选的,混匀腔102通过分液组件109分别与第一废液腔103和pcr反应腔104连通。其中,分液组件109包括毛细管1091和分液腔1092,混匀腔102通过毛细管1091与分液腔1092相连通,分液腔1092两端分别设有第一分液孔10921和第二分液孔10922。第一分液孔10921与第一废液腔103连通,用于气溶胶或液体进入第一废液腔103;第二分液孔10922与pcr反应腔104连通,用于气溶胶或液体进入pcr反应腔104。当微流控芯片正向旋转时,通过分液组件109能够将混匀腔102中的废液或气溶胶排入第一废液腔103;当微流控芯片反向旋转时,通过分液组件能够将混匀腔102中的待检测样本液或气溶胶排入pcr反应腔104中。其中,当正向旋转为顺时针方向时,反向旋转为逆时针方向;当正向旋转为逆时针方向时,反向旋转为顺时针方向。通过简单的结构,便使得混匀腔102内在不同工序时得到的反应产物能够及时根据需求排入指定位置。
65.进一步的,第一废液腔103的横截面呈扇环形,且与固定孔105同心设置,第一废液腔103远离混匀腔102的一端靠近固定孔105的一侧通过第四管道110与进样腔101靠近固定孔105的一侧相连通,使得微流控芯片在旋转排废时,第一废液腔103中的气溶胶可以排入进样腔101,在微流控芯片内循环流动,避免气溶胶外泄污染环境。
66.可选的,pcr反应腔104可以为多个,具体数量可以根据需求设置,pcr反应腔104内可以根据需求放置如酶、引物、荧光物质等冻干试剂。pcr反应腔104通过第五管道111分别与第二分液孔10922和第四管道110相连,pcr反应腔104环绕第五管道111设置且通过第六管道112与第五管道111相连通。
67.进一步的,pcr反应腔104的数量为8个,pcr反应腔104的横截面呈圆形,8个pcr反应腔104环设在第五管道111的外周,pcr反应腔104靠近固定孔105的一侧通过第六管道112与第五管道111相连通,结构简单,布局紧凑,能够解决多联检的问题,降低了成本。
68.进一步的,第四管道110包括第一连接段1102、第二连接段1103以及与固定孔105同心设置的第一环段1101,第一环段1101的一端通过第一连接段1102与第一废液腔103相连通,第一环段1101的另一端通过第二连接段1103与进样腔101相连通。第五管道111包括第三连接段1112以及与固定孔105同心设置的第二环段1111,第二环段1111的一端与第二分液孔10922相连通,第二环段1111的另一端通过第三连接段1112与第一环段1101相连通。第二环段1111到固定孔105的中心的距离大于第一环段1101到固定孔105的中心的距离,使得第一废液腔103中的气溶胶和pcr反应腔104中的气溶胶到第四管道110的第一环段1101中汇集排入进样腔101中,共用部分管路,简化了管路结构,有利于气溶胶平稳顺利的排入进样腔101内。
69.进一步的,第二环段1111围设在第一环段1101的外周,多个pcr反应腔104环设在第二环段1111的外周,结构简单、布局紧凑,减少占用空间。
70.可选的,在样本检测过程中,样本裂解或磁性件清洗等工序在混匀腔102内产生废液,当微流控芯片逆时针旋转排废时,混匀腔102内的废液能够沿第一循环回路进入第一废液腔103,第一废液腔103内的气溶胶能够沿第一循环回路的第四管道110排入进样腔101
内,形成内循环,防止外漏,避免环境污染。完成核酸洗脱工序后需要将混匀腔102内溶有样本核酸的洗脱液排入pcr反应腔104内,当微流控芯片顺时针旋转时,混匀腔102内溶有样本核酸的洗脱液能够沿第二循环回路进入pcr反应腔104,pcr反应腔104内的气溶胶能够依次沿第二循环回路的第五管道111、第四管道110排入进样腔101内,形成内循环,防止外漏,避免环境污染。
71.在本技术的另一实施例中,参见图2、图7和图8,分液腔1092内远离固定孔105的一侧上还设有挡板10923,挡板10923与分液腔1092的顶壁、底壁以及外环面固定相连。通过设置挡板10923可以避免微流控芯片旋转以进行排废液的过程中,从混匀腔102中排出的液体经第二分液孔10922流入pcr反应腔104。
72.进一步的,挡板10923相对进液孔10924错位设置,挡板10923与第一分液孔10921之间的垂直距离大于挡板10923与第二分液孔10922之间的垂直距离,挡板10923偏移设置使得微流控芯片在旋转速度达到稳定前,裂解液、清洗液等废液不易进入pcr反应腔104。
73.可选的,第一分液孔10921和第二分液孔10922相对于进液孔10924对称分布,挡板10923相对于第一分液孔10921更加靠近第二分液孔10922。当微流控芯片100逆时针旋转时,受到科里奥利力的作用,液体的流动方向向左偏移靠近第一分液孔10921,液体位于挡板10923靠近第一分液孔10921的一侧进入第一分液孔10921,通过挡板10923能够降低裂解液、清洗液等废液流入第二分液孔10922的风险,尤其是在微流控芯片100的旋转速度达到稳定前,通过挡板10923能有效降低废液进入pcr腔104的风险;当微流控芯片100顺时针旋转时,受到科里奥利力的作用,液体的流动方向向右偏移靠近第二分液孔10922,液体位于挡板10923靠近第二分液孔10922的一侧进入第二分液孔10922。
74.可选的,第一废液腔103内铺设有吸水纸400。通过吸水纸400把液体水吸附,防止微流控芯片100在旋转摆动时液体回流进入分液腔1092内。
75.参见图1,在本技术的另一实施例中,微流控芯片100上还开设有第二废液腔113,第二废液腔113与pcr反应腔104远离混匀腔102的一端连通,用于接收从pcr反应腔104溢出的液体。
76.参见图1,在本技术的另一实施例中,微流控芯片100上还开设有油相腔114,油相腔114可以通过第三管道115与pcr反应腔104相连通,并通过油相腔114内的油液油封pcr反应腔104。
77.可选的,油相腔114到固定孔105的中心的距离小于pcr反应腔104到固定孔105的中心的距离。微流控芯片旋转,在离心力的作用下,油相腔内的油液排入pcr反应腔104内。其中,油相腔114内的油液可以为矿物油或硅油等比pcr腔104内的试剂密度小的油液,使得油液能够覆盖在试剂的上方,在高温过程中能够有效防止试剂蒸发。当pcr反应腔104的数量为多个时,通过油相作为隔离屏障,也能防止各个pcr反应腔104交叉污染,进一步保证了检测的效果。
78.另一方面,本技术实施例还公开了一种混匀装置,参见图9

图11,该混匀装置包括如上任一实施例中的微流控芯片,还包括容置于混匀腔102内的磁性件300以及设置于微流控芯片100外的磁吸组件200,混匀腔102在微流控芯片100带动下转动至与相对磁吸组件200的预设位置时,磁吸组件200能够作用于磁性件300使其运动至混匀腔102内的预设区域。通过微流控芯片100与磁吸组件200的相互配合控制调整磁性件300在混匀腔102内位
置,以便根据需求控制调整磁性件300的运动轨迹,提高混匀效果。
79.可选的,混匀腔102转动至相对磁吸组件200的第一预设位置时,磁性件300在磁吸组件200的作用下停留于混匀腔102的中心;其中,第一预设位置为磁吸组件200中心的正投影与混匀腔102中心的正投影相重叠的位置。混匀腔102转动至相对磁吸组件200的第二预设位置时,磁性件300在磁吸组件200的作用下停留于混匀腔102内远离出液孔的一侧;其中,第二预设位置为磁吸组件200临近混匀腔102远离出液孔1021一侧的位置,由此,可以使得磁性件300在磁吸组件200的作用下停留于混匀腔102远离出液孔1021的一侧,避免磁性件300随着混匀腔102内的待排液体一起排出混匀腔102或堵塞出液孔。
80.在本技术另一实施例中,参见图9

图11,磁吸组件200包括间隔设置的第一磁吸组件201和第二磁吸组件202,混匀腔102上还开设有出液孔。当混匀腔102转动至相对第一磁吸组件201的第一预设位置时,磁性件300在第一磁吸组件201的作用下停留于混匀腔102的中心,使得磁性件300在混匀腔102内充分混匀;当混匀腔102转动至相对第二磁吸组件202的第二预设位置时,磁性件300在第二磁吸组件202的作用下停留于混匀腔102远离出液孔的一侧,能够避免磁性件300随混匀腔102内的待排液体一起排出混匀腔102。
81.可选的,第一磁吸组件201到固定孔105中心的距离小于第二磁吸组202件到固定孔105中心的距离。
82.可选的,混匀腔102内的待排液体可以为废液或为溶有核酸样本的待检测样本液,废液通过出液孔由混匀腔102排入第一废液腔103,溶有核酸样本的待检测样本液通过出液孔由混匀腔102排入pcr反应腔104。
83.可选的,磁性件300可以为磁珠,磁吸组件200可以为永磁体或电磁铁。
84.在本技术一具体实施例中,参见图9

图11,在样本检测过程中,包括样本裂解、吸磁、磁性件300清洗、核酸洗脱及pcr反应等工序。其中,在样本裂解、吸磁工序中,磁性件300需要与样本、试剂在混匀腔102内充分混匀,以获得吸附有样本核酸的磁性件300和第一废液;在磁性件300清洗工序中,吸附有样本核酸的磁性件300需要与清洗液在混匀腔102内充分混匀,以获得第二废液和清洗后的吸附有样本核酸的磁性件300;在核酸洗脱及pcr反应工序中,吸附有样本核酸的磁性件300需要与洗脱液在混匀腔102内充分混匀,以获得溶有样本核酸的待检测样本液。当磁性件300在混匀腔102内混匀动作时,旋转微流控芯片100调整混匀腔102与磁吸组件200的相对位置,先通过第一磁吸组件201将磁性件300吸附至混匀腔102的中心,再往复摆动微流控芯片100,可以加快磁性件300的混匀速度以及提高磁性件300的混匀效果;当混匀腔102需要排液时,旋转微流控芯片100调整混匀腔102与磁吸组件200的相对位置,通过第二磁吸组件202将磁性件300吸附至混匀腔102远离出液孔的一侧,避免混匀腔102排液时,磁性件300随待排液体一起排出混匀腔102。
85.可选的,在吸磁工序中,驱动装置驱动微流控芯片100转动,使混匀腔102转动至相对第一磁吸组件201的第一预设位置,在第一磁吸组件201的作用下,便于快速把磁性件300吸附于混匀腔102中心,磁性件300聚集于混匀腔102中心,以获得吸附有样本核酸的磁性件300和第一废液。接着驱动装置驱动微流控芯片100转动,使混匀腔102转动至相对第二磁吸组件202的第二预设位置,在第二磁吸组件202的作用下,磁性件300移动至混匀腔102远离出液孔的一侧,使得微流控芯片100在高速旋转排出第一废液时防止磁性件300排出混匀腔102。
86.具体的,在磁性件300清洗工序中,向混匀腔102内加入清洗液,驱动装置驱动微流控芯片100转动,使混匀腔102转动至相对第一磁吸组件201的第一预设位置,在第一磁吸组件201的作用下,将停留在混匀腔102底部的磁性件300吸附至混匀腔102中心。然后驱动装置驱动微流控芯片100转动,使混匀腔102远离磁吸组件200的作用区域,以防止磁力干扰,驱动装置驱动微流控芯片100往复摆动。先通过第一磁吸组件201将磁性件300吸附至混匀腔102的中心,再往复摆动微流控芯片100,可以加快磁性件300的混匀速度以及提高磁性件300的混匀效果,从而快速完成磁性件300的清洗,以获得第二废液和清洗后的吸附有样本核酸的磁性件300。然后驱动微流控芯片100转动,使混匀腔102转动至相对第二磁吸组件202的第二预设位置,在第二磁吸组件202的作用下,磁性件300移动至混匀腔102远离出液孔的一侧,使得微流控芯片100在高速逆时针旋转排出第一废液、第二废液时防止磁性件300排出混匀腔102或堵塞出液孔。
87.另一方面,本技术的实施例还公开了一种分子诊断设备,包括如上任一实施例中的微流控芯片和检测机构,检测机构用于对微流控芯片中的待检测样本进行检测。
88.另一方面,参见图1

图8和图12,本技术的实施例还公开了一种样本检测方法,应用于分子诊断设备,分子诊断设备包括如上述任一实施例中的开设有固定孔105的微流控芯片100,样本检测方法包括:
89.在混匀腔102中对样本和试剂进行混匀,以获得第一废液和清洗前的待检测样本,并将混匀腔102中的第一废液排出混匀腔102;
90.向混匀腔102中添加清洗液对混匀腔102中清洗前的待检测样本进行清洗,以获得第二废液和清洗后的待检测样本,并将混匀腔中的第二废液排出混匀腔102;
91.向混匀腔102中添加洗脱液以对清洗后的待检测样本进行洗脱处理,以获得处理后的溶有样本核酸的待检测样本液;
92.将待检测样本液排入pcr反应腔104内进行pcr扩增反应以进一步通过光学检测装置进行检测;
93.其中,pcr反应腔104到固定孔105中心的距离大于混匀腔102到固定孔105中心的距离。
94.上述样本检测方法步骤简单,操作方便,提高了样本检测的效率。
95.参见图1

图12,在本技术另一实施例中,该样本检测方法应用于分子诊断设备,其中,分子诊断设备包括如上任一实施例中的混匀装置。在混匀腔102中对样本和试剂进行混匀,以获得第一废液和清洗前的待检测样本,并将混匀腔102中的第一废液排出混匀腔102,包括:
96.在混匀腔102中将样本、试剂与置于混匀腔102内的磁性件300进行混匀,以获得裂解后的待检测样本,并对裂解后的待检测样本进行磁吸分离,以获得第一废液和吸附有样本核酸的磁性件300;其中,清洗前的待检测样本为吸附有样本核酸的磁性件300。
97.进一步的,在混匀腔102中将样本、试剂与置于混匀腔102内的磁性件300进行混匀,以获得裂解后的待检测样本包括:
98.通过驱动装置驱动微流控芯片100转动从而带动混匀腔102转动至磁吸组件200的第一预设位置,通过磁吸组件200作用于磁性件300使磁性件300停留于第一预设区域,通过驱动装置驱动微流控芯片100摆动以使样本、磁性件300和试剂在混匀腔102中混匀;
99.并对裂解后的待检测样本进行磁吸分离,以获得第一废液和吸附有样本核酸的磁性件300包括:
100.通过驱动装置驱动微流控芯片100转动从而带动混匀腔102转动至磁吸组件200的第二预设位置,通过磁吸组件200作用于磁性件300使磁性件300停留于第二预设区域,以防止在将第一废液排出混匀腔102时磁性件300随第一废液排出。
101.可选的,第一预设区域为混匀腔102的中心,第二预设区域为混匀腔102远离混匀腔102内出液孔的一侧。
102.进一步的,第一预设区域到固定孔105中心的距离小于第二预设区域到固定孔105中心的距离,固定孔105中心为微流控芯片100在驱动装置驱动旋转或摆动时的中心点。
103.可选的,通过磁吸组件200作用于磁性件300使磁性件300停留于第二预设区域,包括:
104.通过磁吸组件200作用于磁性件300使磁性件300停留于远离混匀腔102内出液孔的一侧第二预设时长后,通过驱动装置驱动微流控芯片100转动以将第一废液排出混匀腔102。
105.进一步的,第二预设时长可以为1分钟。
106.在本技术另一实施例中,在混匀腔102中将样本、试剂与置于混匀腔102内的磁性件300进行混匀之后,还包括:
107.将混匀腔102内的温度升高至第一预设温度,将混匀后的样本、磁性件300和试剂在第一预设温度环境中静置孵育裂解第一预设时长。
108.可选的,第一预设温度可以为37℃,第一预设时长可以为4分钟。
109.在本技术另一实施例中,将混匀腔102中的第一废液排出混匀腔102和将混匀腔102中的第二废液排出混匀腔102包括:
110.通过驱动装置驱动微流控芯片100转动,使得混匀腔102内的第一废液和第二废液在毛细管1091的毛细力以及离心力作用下形成虹吸效应从而排出混匀腔102。
111.在本技术另一实施例中,在混匀腔102中将样本、试剂与置于混匀腔102内的磁性件300进行混匀,包括:
112.通过设置于微流控芯片100外的超声探头作用于混匀腔102内的磁性件300,通过超声探头驱动磁性件300在混匀腔内震动,以使磁性件混匀。
113.在本技术另一实施例中,向混匀腔102中添加清洗液对混匀腔102中清洗前的待检测样本进行清洗,以获得第二废液和清洗后的待检测样本,包括:
114.至少注入两次清洗液以对清洗前的待检测样本进行至少两次清洗,以获得第二废液和清洗后的待检测样本;其中,清洗后的待检测样本为清洗后的吸附有样本核酸的磁性件300。
115.在本技术另一实施例中,向混匀腔102中添加洗脱液以对清洗后的待检测样本进行洗脱处理,以获得处理后的溶有样本核酸的待检测样本液,包括:
116.通过驱动装置带动微流控芯片100上的混匀腔102转动至磁吸组件200的第一预设位置,通过磁吸组件200作用于磁性件300使磁性件300停留于混匀腔102的中心,通过驱动装置驱动微流控芯片100摆动以使磁性件300在混匀腔102内与洗脱液混匀;
117.将待检测样本液排入pcr反应腔104内进行pcr扩增反应,包括:
118.通过驱动装置驱动微流控芯片100上的混匀腔102转动至磁吸组件200的第二预设位置,通过磁吸组件200作用于磁性件300使磁性件300停留于远离混匀腔102内出液孔的一侧,通过驱动装置驱动微流控芯片100转动以将溶有样本核酸的待检测样本液排入pcr反应腔104。
119.在本技术另一实施例中,向混匀腔102中添加洗脱液以对清洗后的待检测样本进行洗脱处理,以获得处理后的溶有样本核酸的待检测样本液,还包括:
120.将洗脱液蓄积在混匀腔102的底部与磁性件300混匀使磁性件300吸附的核酸释放于洗脱液中,其中,混匀腔102远离旋转中心的一侧向内收缩使其横截面减小。
121.在本技术另一实施例中,向混匀腔102中添加洗脱液以对清洗后的待检测样本进行洗脱处理后,还包括:
122.将混匀腔102内的温度升高至第二预设温度,将混匀后的磁性件300和洗脱液在第二预设温度环境中静置孵育第三预设时长。
123.可选的,第二预设温度可以为55℃,可以通过空气加热或磁感加热等方式来升高混匀腔102内的温度;第三预设时长可以为2分钟。
124.在本技术另一实施例中,将溶有样本核酸的待检测样本液排入pcr反应腔104之后,还包括:
125.通过驱动装置驱动微流控芯片100中油相腔114内的油液覆盖pcr反应腔104内的表面油封pcr反应腔104后进行pcr扩增反应。
126.参见图1

图13,在本技术一具体实施中,通过移液器或移液管吸取200ul样本,并加入进样腔101中,将微流控芯片100放入分子诊断设备的仪器托盘,运行驱动微流控芯片100沿顺时针和逆时针交替快速摆动10s,使得试剂腔106内沉淀的磁性件300混匀。释放试剂腔106内的磁性件、蛋白酶k、裂解液,微流控芯片100以3000rpm转速旋转5秒,以使磁性件300、样本、裂解液、蛋白酶k、裂解液进入混匀腔102内。驱动装置驱动微流控芯片100旋转使混匀腔102转动至磁吸组件200的第一预设位置,第一磁吸组件201将磁性件300吸附到混匀腔102的中部,再驱动微流控芯片100往复旋转摆动,以使磁性件300、样本、裂解液、蛋白酶k、裂解液混匀。将混匀腔102内的温度升高至37℃,微流控芯片100静置4分钟,以获得裂解后的待检测样本。驱动装置驱动微流控芯片100旋转使混匀腔102转动至磁吸组件200的第二预设位置,第二磁吸组件202将磁性件300吸附到混匀腔102远离出液孔的一侧,磁吸1分钟使裂解后的待检测样本进行磁吸分离,以获得第一废液和吸附有样本核酸的磁性件300。驱动装置驱动微流控芯片100以3000rpm的转速逆时针旋转10s,以使混匀腔102中的第一废液排入第一废液腔103,第一废液腔103内中铺设有用于吸附第一废液的吸水纸400。释放试剂腔106内的第一清洗液,驱动装置驱动微流控芯片100以3000rpm的转速旋转5s,以使第一清洗液进入混匀腔102内,驱动装置驱动微流控芯片100旋转使混匀腔102转动至磁吸组件200的第一预设位置,第一磁吸组件201将磁性件300吸附到混匀腔102的中部,再驱动微流控芯片100往复旋转摆动,以使第一清洗液对混匀腔102内吸附有样本核酸的磁性件300进行清洗,以获得第二废液和清洗后吸附有样本核酸的磁性件300,驱动装置驱动微流控芯片100旋转使混匀腔102转动至磁吸组件200的第二预设位置,第二磁吸组件202将磁性件300吸附到混匀腔102远离出液孔的一侧,驱动装置驱动微流控芯片100以3000rpm的转速逆时针旋转10s,以使混匀腔102中的第二废液排入第一废液腔103;释放试剂腔106内第二清洗
液,并重复上述清洗操作完成磁性件300的第二次清洗及排废。释放试剂腔106内的洗脱液,以使洗脱液进入混匀腔102内,升高混匀腔102内的温度至55℃,微流控芯片100静置2分钟。驱动装置驱动微流控芯片100旋转使混匀腔102转动至磁吸组件200的第一预设位置,第一磁吸组件201将磁性件300吸附到混匀腔102的中部,再驱动微流控芯片100往复旋转摆动,以使洗脱液对清洗后吸附有样本核酸的磁性件300进行洗脱,以获得溶有样本核酸的待检测样本液,驱动装置驱动微流控芯片100旋转使混匀腔102转动至磁吸组件200的第二预设位置,第二磁吸组件202将磁性件300吸附到混匀腔102远离出液孔的一侧,驱动装置驱动微流控芯片100以3000rpm的转速顺时针旋转10s,以使混匀腔102中的溶有样本核酸的待检测样本液进入pcr反应腔104。释放油相腔114中的油液,驱动装置驱动微流控芯片100以3000rpm的转速顺时针旋转10s,油液进入pcr反应腔104油封各个pcr反应腔,多余的油液进入第二废液腔113内,填充完成后,进行pcr扩增反应。
127.本发明的微流控芯片、混匀装置、分子诊断设备及样本检测方法,通过简单的结构,简化了操作步骤,提高了检测效率,并且能够解决多联检的问题,降低了成本,改善了用户的使用体验。
128.以上仅为本技术的实施方式,并非因此限制本技术的专利范围,凡是利用本技术说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本技术的专利保护范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1