一种水相悬浮聚合制备PAN-富勒烯纳米复合颗粒的方法

文档序号:30054805发布日期:2022-05-17 17:16阅读:215来源:国知局
一种水相悬浮聚合制备PAN-富勒烯纳米复合颗粒的方法
一种水相悬浮聚合制备pan-富勒烯纳米复合颗粒的方法
技术领域
1.本发明涉及聚丙烯腈复合材料的制备,尤其涉及一种水相悬浮聚合制备pan-富勒烯纳米复合颗粒的方法。


背景技术:

2.20世纪60年代以来,聚丙烯腈(pan)基碳纤维凭借其高强高模、质轻、导电导热性好等一系列优异的性能在各个领域获得了长足的发展。然而,因为聚合体系、制备工艺等因素的限制,目前所制备的碳纤维内部缺陷较多,石墨化晶格结构较不完善,取向性也较差,这使得碳纤维的性能与其理论值相去甚远,而更高性能的碳纤维也成为越来越多科研人员坚持不懈的追求。
3.目前一种较为流行的思路是通过添加改性剂来优化碳纤维的结构和性能,其中最热门的改性剂是有着跟理想碳纤维结构一致的碳质材料,如石墨烯、碳纳米管等,研究人员通过大量研究发现这些碳质材料可以在碳纤维热处理过程中起到模板剂和成核剂的作用,诱导pan分子链形成更完善的石墨晶格结构并使这些结构排列的更加整齐。截至目前,石墨烯、碳纳米管在作为添加剂增强pan基碳纤维及碳纳米纤维领域获得了长足的发展,而富勒烯作为碳材料家族的一员却鲜有研究,相比之下,富勒烯在同样拥有sp2杂化碳原子组成的蜂窝状石墨晶格结构的同时,其尺寸较石墨烯和碳纳米管而言更小,在纤维基质中的弥散性更好,且其有着良好的抗压性、韧性及硬度,其导电导热性也较为优异,可以作为纳米填料来提升碳纤维的性能。已有研究表明富勒烯在复合材料中可以起到阻碍裂纹扩展的作用。然而,将富勒烯引入碳纤维中最大的问题是分散性问题,纳米级的富勒烯有着巨大的比表面积,容易相互团聚并最终演变成纤维中的缺陷,且富勒烯在相互缠结的pan分子链中难以分散均匀,严重限制了其提升纤维性能的作用。


技术实现要素:

4.针对现有的问题本发明提供一种水相悬浮聚合制备pan-富勒烯纳米复合颗粒的方法:按重量配比称取丙烯腈单体、十二硫醇、富勒烯和偶氮二异丁腈,将丙烯腈单体、富勒烯和十二硫醇分散在水中,升温至40-80℃,加入偶氮二异丁腈,反应1-3h,将产物过滤,用去离子水洗涤之后80-100℃烘干,即得。
5.本发明所用富勒烯是一种主要由sp2杂化的碳原子组成的中空分子,形状呈球形、椭球形或柱形,可以是单层,也可以是多层,粒径为0.5-500nm,碳原子以五元环、六元环或七元环的形式构成该中空分子。还可以是富勒烯衍生物,即在富勒烯基础上表面含有羧基、羟基或其他官能团及无机颗粒的衍生物。
6.在本发明所用的水相悬浮聚合体系中,富勒烯分布在油状丙烯腈单体与水的分界面,在超声或搅拌的辅助作用下富勒烯可以包裹丙烯腈单体形成稳定的小液滴,在加入引发剂后单体液滴内的丙烯腈单体发生聚合,最终得到表面分布有富勒烯颗粒、内部为pan的纳米复合材料。为了得到性能均衡的纳米复合材料,本发明控制各组分的用量如下:1)丙烯
腈单体和十二硫醇的体积比为100:(0-5);2)丙烯腈单体和富勒烯的用量比为100ml:(0.8-8g);3)丙烯腈单体和偶氮二异丁腈的用量比为100ml:(0.8-2.4g)。
7.本发明所得复合材料可以作为前驱体将富勒烯高效且均匀的引入到pan基碳纳米纤维的内部,优化纳米纤维的石墨晶格结构。该复合材料溶解后可以直接实现富勒烯在相互缠结的pan分子链间的均匀分散,pan与富勒烯之间的相互作用有效避免了富勒烯因相互吸引而发生严重的团聚,得到富勒烯均匀分散的pan基纤维,在纺成碳纳米纤维后富勒烯可以优化纤维的石墨化结构,获得高强高韧的碳纳米纤维。
8.本发明的有益效果是:1、本发明依据原位聚合的原理制备pan-富勒烯纳米复合颗粒,通过简单的工艺实现了pan与富勒烯的均匀混合,将pan-富勒烯纳米复合材料溶解后可以直接实现富勒烯在pan之间的均匀分散,有限避免了二者直接混合情况下因分子缠结导致富勒烯分散困难且分布不均的情况,极大地提高了生产效率;2、本发明所采用的水相悬浮聚合方案中,富勒烯分散在丙烯腈与水的表面以保持丙烯腈悬浮小液滴的稳定,不需要使用额外的分散剂,产物更加纯净,同时富勒烯的添加量可以根据工艺方便的调整;3、本发明所制备的pan-富勒烯复合颗粒可以作为碳纤维的前驱体进行纺丝,所得复合纤维中富勒烯与pan基质之间存在一定的相互作用,可以使最终碳纤维的石墨化结构得到优化提升,同时纤维中的富勒烯可以阻碍裂纹的扩展,使纤维的抗拉强度和断裂伸长率都得到一定程度的提高。
附图说明
9.图1-图3依次为实施例1-3所得复合颗粒的sem图;
10.图4和图5为实施例1聚合前未加搅拌及超声处理状态下反应物的照片。
具体实施方式
11.以下结合实例对本发明进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
12.实施例1
13.一种水相悬浮聚合制备pan-富勒烯纳米复合颗粒的方法,包括以下操作:控制聚合体系温度为50℃,将10ml丙烯腈单体、0.08g富勒烯、0.15ml十二硫醇通过超声和机械搅拌混合均匀,之后在15min内滴加完10ml含0.08g偶氮二异丁腈的二甲基亚砜溶液引发聚合反应,滴加完成后保温120min,最后将得到的产物水洗并于80℃下烘干,即得。
14.实施例2
15.一种水相悬浮聚合制备pan-富勒烯纳米复合颗粒的方法,包括以下操作:控制聚合体系温度为80℃,将20ml丙烯腈单体、1.6g富勒烯、0.15ml十二硫醇通过超声和机械搅拌混合均匀,之后在30min内滴加完10ml含0.16g偶氮二异丁腈的二甲基亚砜溶液引发聚合反应,滴加完成后保温60min,将得到的产物水洗并于95℃下烘干,即得。
16.实施例3
17.一种水相悬浮聚合制备pan-富勒烯纳米复合颗粒的方法,包括以下操作:控制聚合体系温度为40℃,将30ml丙烯腈、1.2g富勒烯、0.15ml十二硫醇通过超声和机械搅拌混合均匀,之后在45min内滴加完10ml含0.24g偶氮二异丁腈的二甲基亚砜溶液引发聚合反应,
滴加完成后保温180min,将得到的产物水洗并于100℃下烘干,得到最终的复合材料,即得。
18.图1-图3为实施例1-3所得pan-富勒烯纳米复合颗粒的sem图,从图中可以看出实施例1-3制备出的颗粒粒度均匀,富勒烯均匀分散在pan基体中,未见团聚的富勒烯大颗粒。图4和图5为实施例1中聚合前未加搅拌及超声处理状态下反应物的照片,可以看到富勒烯稳定分散在油状的丙烯腈单体(上层)及水(下层)之间。
19.以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。


技术特征:
1.一种水相悬浮聚合制备pan-富勒烯纳米复合颗粒的方法,其特征在于,包括以下步骤:按重量配比称取丙烯腈单体、十二硫醇、富勒烯和偶氮二异丁腈,将丙烯腈单体、富勒烯和十二硫醇分散在水中,升温至40-80℃,加入偶氮二异丁腈,反应1-3h,将产物过滤,用去离子水洗涤之后80-100℃烘干,即得。2.根据权利要求1所述的方法,其特征在于,所述富勒烯的粒径为0.5-500nm。3.根据权利要求1所述的方法,其特征在于,所述丙烯腈单体和十二硫醇的体积比为100:(0-5)。4.根据权利要求1所述的方法,其特征在于,所述丙烯腈单体和富勒烯的用量比为100ml:(0.8-8g)。5.根据权利要求1所述的方法,其特征在于,所述丙烯腈单体和偶氮二异丁腈的用量比为100ml:(0.8-2.4g)。6.根据权利要求1所述的方法,其特征在于,先将所述偶氮二异丁腈溶解于二甲基亚砜中再加入。

技术总结
本发明公开了一种水相悬浮聚合制备PAN-富勒烯纳米复合颗粒的方法:按重量配比称取丙烯腈单体、十二硫醇、富勒烯和偶氮二异丁腈,将丙烯腈单体、富勒烯和十二硫醇分散在水中,升温至40-80℃,加入偶氮二异丁腈,反应1-3h,将产物过滤,用去离子水洗涤之后80-100℃烘干,即得。本发明所得复合材料可以作为前驱体将富勒烯高效且均匀的引入到PAN基碳纳米纤维内部,优化纳米纤维的石墨晶格结构,将该复合材料溶解后可直接纺丝,得富勒烯均匀分散的PAN基纤维,预氧化和碳化后获得高强高韧的碳纳米纤维。纤维。纤维。


技术研发人员:朱波 张烨 蔡珣 赵圣尧 袁晓敏 孙娜
受保护的技术使用者:山东大学
技术研发日:2022.03.24
技术公布日:2022/5/16
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1