用作粘合剂和密封剂的不同臂不对称辐射形或星形的嵌段共聚物的制作方法

文档序号:3702890阅读:424来源:国知局
专利名称:用作粘合剂和密封剂的不同臂不对称辐射形或星形的嵌段共聚物的制作方法
技术领域
本发明涉及粘合剂和密封剂组合物。该组合物包含不同臂不对称辐射形嵌段共聚物。更明确说,本发明涉及这样的组合物包含不对称嵌段共聚物,具有氢化的和未氢化的臂。
嵌段共聚物作为粘合剂组合物已使用多年,主要是因为它们内聚强度高,无需化学硫化即能交联。如在美国专利3,239,478描述那样。嵌段共聚物或是线形或是辐射形或是星形的苯乙烯-丁二烯或是苯乙烯-异戊二烯的嵌段共聚物。这些聚合物的高内聚强度在某些应用中常常是一有害的参数。过去,将苯乙烯-异戊二烯的二嵌段共聚物加入到初级嵌段共聚物中以降低内聚强度。得到较低的弹性和更好的一致性。美国专利4,391,949建议了另一种方法使用具有苯乙烯-二烯和二烯均聚物臂的星形不对称嵌段共聚物。
这些常规的嵌段共聚物在用作粘合剂时,在加工过程中和/或在一定的时间内趋向于降解,这是因为它们的主要橡胶链是不饱和的。这些不饱和位置是反应活性位置,易于受攻击,如由氧化、紫外光或机械作用产生的自由基的攻击。结果,聚合物链由于链断裂而被切断,降低了分子量和对分子量敏感的性能。另外,不饱和位置可进行接枝和交联反应,提高分子量,不必要地使聚合物僵硬,使得它无法加工或不能用作粘合剂。
给常规不饱和原料聚合物加氢制得非极性聚合物。该聚合物尽管更稳定,但不易和树脂添加剂粘接。因此在一些应用中,包括压敏粘合剂,不如普通的聚合物。
本发明提出了这些问题中的一些解决方法,而不牺牲不饱和嵌段共聚物的粘合剂的性质。提供具有不饱和和饱和臂的聚合物可达此目的。
本发明提供具有下式的一种改进的辐射形或星形不对称的嵌段共聚物(Ⅰ)(A-HD)x-Y-(UD)z或(Ⅱ)(UD-A-HD)x-Y或(Ⅲ)((UD)y-A-HD)x-Y-(UD)z或(Ⅳ)(A-HD1)x-Y-(HD2)z或(Ⅴ)-(HD2-A-HD1)x-Y或(Ⅵ)((HD2)y-A-HD1)x-Y-(HD2)z这里A是聚(乙烯基芳烃),特别地,聚(苯乙烯)嵌段,具有4000-20,000的分子量,HD是氢化聚(共轭二烯)嵌段,具有10,000-100,00的分子量,Y是多官能偶合剂,UD是未氢化的(共轭二烯)嵌段,具有1000-80,000的分子量,HD1是氢化共轭二烯嵌段,具有10,000-100,000的分子量,HD2是氢化的共轭二烯嵌段,具有1000-80,000的分子量,x是2-20的整数,2-4更好,Y为0或1,z是1-10的整数,1-4更好,x+z的范围为3-30,3-6更好,还提供了用增加粘性的极性基团官能化的上述嵌段共聚物的衍生物;及包括上述嵌段共聚物的和另外还包括20-400份的粘结树脂(每百份上述共聚物)的粘合剂和密封剂组合物。上述组合物也可包含延长二烯相的树脂、加强和/或延长乙烯基芳香相的树脂、聚烯烃、填料、蜡、稳定剂和设计用来交联聚合物和/或树脂的活性组份。
本发明的粘合剂和密封剂组合物中主要新组份是上述具有饱和和不饱和臂的嵌段共聚物。乙烯基芳香烃-氢化二烯臂(A-HD)提供了粘合剂和密封剂组合物主要载荷承受能力。给这些臂加氢使得即使外力使不饱和侧链降解,聚合物仍保持结构的完整,这点很重要。不饱和二烯均聚物臂是重要的组成,它们给组合物提供充足的粘着性和/或被粘着性而制得有效的组合物,如压敏粘合剂组合物。
A嵌段是乙烯基芳烃聚合物嵌段,乙类基芳烃最好是苯乙烯。其它有用的乙烯基芳烃包括α-甲基苯乙烯、多种烷基取代的苯乙烯、烷氧基取代的苯乙烯、乙烯萘、乙烯甲苯等等。HD和UD嵌段是共轭二烯的聚合物嵌段。对于HD嵌段,优选的二烯是丁二烯。对于UD嵌段,优选的是异戊二烯。其它的二烯也可使用,包括1,3-戊二烯、甲基戊二烯、苯基丁二烯、3,4-二甲基-1,3-己二烯、4,5-二乙基-1,3-辛二烯等等。那些包含4-8个碳原子的共轭二烯更好。在HD嵌段中使用的共轭二烯不同于UD嵌段中使用的共轭二烯更受欢迎,尤其在加氢容易程度方面。
HD嵌段的二烯最好应比UD嵌段中的二烯氢化更快更完全。反应后不饱和(UD)嵌段中氢化量应该是这样至少50%,更好为至少75%,最好为至少90%的原始不饱和二烯仍然保持没有反应。
A-HD臂或嵌段可按先有技术中描述的一般方法氢化以减少聚合物链中烯双键。原始烯不饱和度中至少50%、优选至少70%、至少90%更好、最好至少95%被氢化。
本发明中使用的聚(共轭二烯)最好在使用温度(通常10℃-40℃)下很大程度上是无定形的,不含干扰柔性的过量结晶度。例如,对于聚(丁二烯),在氢化为乙烯-丁烯(EB)橡胶后,1,2加成的百分数最好应在30-65%之间以阻止过量的结晶度形成。低于30%结晶度太高,得到刚性聚合物,不适于作压敏粘合剂;大于65%,聚合物的Tg(玻璃化转变温度)太高,不易形成可接受的压敏粘合剂。
制取本发明嵌段共聚物的较好方法在欧洲专利申请0,314,256中作了基本描述公开了两步法生产不对称辐射形聚合物的方法,避免了不需要的均聚二烯聚合物的产生。该过程包括分别聚合单体,制造两个不同类型的臂。然后将一聚合物臂偶合到偶合试剂上,当偶合反应完成时,将第二个聚合物臂偶合到偶合试剂上。这保证了最终聚合物上没有多少均聚二烯。例如在本发明中,阴离子聚合异戊二烯臂,并通过偶合试剂偶合。随后或平行地,阴离子聚合苯乙烯-丁二烯(SB)臂,然后通过偶合试剂,至少2个臂偶合到异戊二烯臂上。就它们自身来说,这些未氢化的前体可作为粘合剂和密封剂,但是它们将遇到具有高度不饱和(如(SB)2-Y-I2)的聚合物所共有的稳定性问题。随后,将偶合的聚合物在这样的条件下加氢最好仅给A-HD臂(或嵌段)的聚(二烯)加氢,留下实质上不饱和的UD臂(或嵌段)的聚(二烯)。
一般来说,可以任何包含将与所选择的偶合试剂中所含一个或多个官能团反应的反应端基的聚合物用上述方法制备不对称辐射形或星形聚合物。该法特别适用于从含有单末端金属离子的所谓“活性”聚合物制备不对称辐射形聚合物。如先有技术中已知的那样,“活性”聚合物包含诸如直接与一碳原子键合的金属原子等的至少一种活泼基团。“活性”聚合物很易通过阴离子聚合制得。因为本发明特别适于使用“活性”聚合物形成相应臂的不对称辐射形聚合物的制备,所以本发明将引用这样的聚合物加以描述。可是,对于具有不同反应基团的聚合物,只要所选择的偶合试剂包含能够与包含在聚合物中的活性位置反应的官能团。本发明将同等有效,这是令人欣赏的。
当然,包含单末端基团的活性聚合物在先有技术中是已知的。例如美国专利3,150,209、3,496,154、3,498,960、4,145,298和4,238,202中给出了制备这些聚合物的方法。例如美国专利3,231,635、3,265,765和3,322,856中也给出了在本发明方法中优选使用的那些嵌段共聚物的制备方法。当活性聚合物产品是无规的或锥形的共聚物时,一般地,在相同的时间加入单体,尽管在某些情况下,也可慢慢地加入反应较快的单体;而当产品是嵌段共聚物时,随后加入用来形成隔离嵌段的单体。
一般来说,本发明的不对称辐射形聚合物中适于作臂的聚合物可通过在合适的溶剂中,在-150℃-300℃的温度范围内,最好在0-100℃之间,单体或多个单体与有机碱金属化合物接触制得。特别有效的聚合引发剂是具有下列通式的有机锂化合物RLi这里R是脂族,环脂族烷基取代的环脂族,芳香或烷基取代的芳香烃基,具有1-20个碳原子,最好为叔丁基。
一般来说,在不对称辐射形聚合物中用作臂的活性聚合物将在0-100℃的温度范围内,在0-7bar的压力范围内与偶合试剂接触,维持该接触,直到臂和偶合试剂间的反应完全或至少基本完全。一般一周期为1-180分钟。
一般来说,在本发明的不对称辐射形聚合物中适于作臂的活性聚合物将在溶液中与偶合试剂接触。合适的溶剂包括适于聚合物的溶液聚合的那些溶剂,包括脂肪的、环脂肪的、烷基取代的环脂肪的、芳香的和烷基取代的芳香烃、醚和其相应的混合物。相应的合适的溶剂包括脂肪烃如丁烷、戊烷、己烷、庚烷等,环脂肪烃如环己烷、环戊烷、环庚烷等,烷基取代的环脂肪烃如甲基环己烷、甲基环庚烷等。芳烃如苯,烷基取代的芳烃如甲苯、二甲苯等,醚如四氢呋喃、二乙醚、二正丁基醚等。因为很适于制造本发明的不对称辐射形聚合物的聚合物将包含一单末端反应基团,所以用于制备不对称辐射形聚合物的聚合物在制备后仍将保留在溶液中而不使反应(活性)位置失活。一般来说,可将偶合试剂加到聚合物溶液中或聚合物溶液也可加入到偶合试剂中。
可使用任何先有技术中已知的将其与活性聚合物接触很适于形成辐射形聚合物的偶合剂用于本发明的方法中和本发明的不对称辐射形聚合物。合适的偶合试剂将包含三个或更多的官能团,它们将在金属-碳键上与活性聚合物反应。在本发明的方法将改善具有任何数目臂的不对称辐射形聚合物中的不同臂的相对分布的同时,该法对当偶合试剂包含3-约20个与“活性”聚合物的金属-碳键具有反应性的官能团时是十分有效。合适的偶合试剂包括SiX4、RSiX3、HSiX3、X3Si-SiX3、RX2Si-(CH2)x-SiX2R、RX2Si(CH2)x-SiX2-(CH2)x-SiX2R、X3Si-(CH2)x-SiX3、R-C(SiX3)3、R-C(CH2SiX3)3、C(CH2SiX3)4等等,特别是那些包含3-约6个官能团的偶合试剂。在前式中,每个X是独立的,可以是氟、氯、溴、碘、醇盐基、羧酸盐基、氢化物等,R是具有1-约10个碳原子的,最好为1-约6个碳原子的烃基,x是1-约6的整数。特别有用的偶合试剂包括四卤化硅,如四氟化硅、四氯化硅、四溴化硅等,双(三卤)硅烷如双(三卤)甲硅烷基乙烷和六卤二硅烷,这里卤素可以是氟、氯、溴或碘。
就本身而论,偶合过程在美国专利4,096,203中有详细阐述。本文中很有用的具体多官能偶合试剂在该专利中也有叙述,但其它的偶合试剂在本文中也是有用的。
使用多官能偶合试剂或偶合单体偶合聚合物臂可制得星形聚合物。一种优选的偶合试剂是多链烯基芳香偶合试剂,如美国专利4,010,226、4,391,949和4,444,953中描述的那些。美国专利5,104,921,在第12和13栏中包含这样的聚链烯基芳族化合物的完全描述。每个分子包含最多26个碳原子的二乙烯基芳烃是较好的,尤其是二乙烯苯的间位或对位异构体,商业二乙烯苯是上述异构体的混合物,也是十分满意的。最好在聚合反应充分完成后,向活性聚合物中加入偶合试剂。偶合试剂的数量在宽范围内变化,但最好是每一当量需偶合的不饱和活性聚合物至少使用一当量的偶合试剂。偶合反应一般在与聚合反应相同的溶剂中进行。温度在宽范围内变动,如从25℃到95℃。
这些共聚物臂的氢化可通过许多已建立好的过程进行,包括在如Raney镍、贵金属如铂、钯等的催化剂和可溶性的过度金属催化剂存在下加氢。可使用的合适的加氢过程是将含二烯的聚合物或共聚物溶于惰性烃稀释剂(如环己烷)中。在可溶性加氢催化剂存在下与氢反应加氢。这样的过程在美国专利3,113,986、4,226,952和再颁专利27,145中已公开。以这种方式氢化聚合物产生氢化的聚合物,该聚合物的聚二烯嵌段中残余的不饱和量少于氢化前的初始不饱和量的约20%,最好尽可能地接近于0%。象在美国专利5,039,755公开的那样,Ti催化剂也可用于加氢过程。
在本发明的优选方面中,通过在分子中引入自由旋转的橡胶链末端,使不对称/不同臂结构提供了增加饱和聚合物粘着性的可能性。该橡胶链末端比以刚性(聚苯乙烯)嵌段为末端的链更易被树脂添加剂粘附。例如一种6臂聚合物,其中4臂是聚异戊二烯,另二臂是聚(苯乙烯-乙烯/丁烯)。聚(苯乙烯-乙烯/丁烯)是一选择性氢化聚(苯乙类-丁二烯)。该聚合物是在上述式(Ⅰ)范围内的优选的辐射形聚合物的例子,这里A是苯乙烯,HD是乙烯/丁烯(EB),x为2,z为4,Y是六官能团偶合试剂,UD是聚异戊二烯。自由旋转的均聚物链末端易被粘附,而共聚物臂提供了载荷。
本发明尤其推荐具体实施方案是(I-S-EB)x-Y,这里I是聚异戊二烯嵌段,S是聚苯乙烯嵌段,EB是聚(乙烯/丁烯)橡胶嵌段,x和Y的含意如上文所述。在这具体实施方案中,聚丁二烯嵌段的氢化形成聚(乙烯/丁烯)嵌段是在下列条件下进行的对聚丁二烯反应是选择性的,实质上不包括聚异戊二烯嵌段的氢化。不饱和聚异戊二烯嵌段对赋予粘合剂组合物粘着性和剥离强度特别有效。
本发明也仔细考虑了本文描述的不对称/不同臂结构的辐射形和星形聚合物,它们是完全饱和的。通过在分子中引入自由旋转的橡胶链末端(尽管是饱和链末端),使这些聚合物提供了增加饱和聚合物的粘着性的可能性,该橡胶链末端比以刚性(聚苯乙烯)嵌段为末端的链更易被树脂添加剂粘附。例如,一种4臂聚合物,其中2臂是氢化聚异戊二烯,另2臂是氢化聚(苯乙烯-丁二烯)。自由旋转的饱和均聚物链末端更易被粘附,而饱和共聚物臂提供载荷。
一般来说,本发明聚合物A嵌段含量(如果A是苯乙烯,那就是聚苯乙烯的含量)将为4-35%,最好为12-25%,该范围提供了达到可接受的粘着性和特别应用中所要求的剪切性能的设计范围。本发明聚合物的分子量最好为35,000-300,000。A嵌段的分子量为4000-20,000。低于4000的A嵌段不形成纯A区域,因此不能载荷。大于20,000的A嵌段赋予其过量的刚性,因此阻止了粘合剂的压力敏感性。HD嵌段的分子量应为10,000-100,000。低于10,000的HD嵌段提供了内聚强度差、剪切性能低的弱聚合物。大于100,000的HD嵌段使橡胶和粘合剂组合物不易加工。UD嵌段的分子量应为1000-80,000。低于1000的UD嵌段,不能显示出粘合剂的粘着性和剥离强度的改善,因为它们与底物表面相互作用的长度不够。大于80,000的UD嵌段使粘合剂组合物过份柔软,降低内聚强度和握力。
一般可用凝胶渗透色谱(GPC)法测定分子量。这里GPC系统已经适当校正。使用分子量已知的聚合物校正,这些聚合物必须与待测未知嵌段聚合物具有相同的分子结构和化学组成。阴离子聚合的线性嵌段聚合物接近单分散,报告出所测定的窄分子量分布的“峰”分子量十分方便详细。相应地,“峰”分子量近于与嵌段聚合物的重均分子量相同。对于多分散的嵌段聚合物,可通过光散射测定或根据GPC数据计算得出重均分子量。使用GPC测定最终偶合的辐射形或星形聚合物的真正分子量并不那么直接或容易。这是因为辐射形或星形分子不会以校正用的线性聚合物在预装的GPC柱上的相同方式那样分离洗脱,因此,到达UV或折光率检测器的时间不是最好的分子量的表示物。用于辐射形或星形聚合物的好方法是用光散射技术测定重均分子量。将样品溶于合适溶剂中,样品的浓度低于1.0g/100ml溶剂,使用注射器和孔径小于0.5微米的微孔滤膜直接过滤到光散射池中。使用标准步骤,以散射角和聚合物浓度为函数进行光散射测定。以用于光散射的相同波长和溶剂测定样品的示差折光率(DRI)。下列参考文献和本文描述的分析方法有关1.ModernSize-ExclusionLiquidChromatography,W.W.Yau,J.J.Kirkland,D.D.Bly,JohnWiley&Sons,NewYork,NY,1979.
2.LightScatteringfromPolymerSolution,M.B.Huglin,ed.,AcademicPress,NewYork,NY.1972.
3.W.KayeandA.J.Havlik,AppliedOptics,12,541(1973).
4.M.L.McCmnell,AmericanLaboratory,63,May,1978.
本发明共聚物的饱和和/或不饱和臂可以官能化,如用增加对许多类型表面,尤其是高能表面的粘附性能的极性基团官能化。例如,不饱和臂可环氧化或羧化。例如饱和臂可马来酸化或硅烷酸化。根据加入的官能团的类型,可通过这些基团交联。对于此意图的特定基团包括酸,如羧酸,酐如羧酸酐、环氧化试剂、丙烯酸酯、乙烯基烷氧基硅烷等等。
本发明的聚合物,官能化的或非官能化的,都可用紫外或电子束辐射固化,但是使用宽范围的电磁波辐射固化是可行的。或者离子化辐射如α、β、γ、X射线和高能电子或者非离子化辐射如紫外、可见光、红外光、微波和无线电频率均匀使用。
最普通的α、β和γ辐射源是放射核。对商业聚合物交联应用的离子辐射源是γ辐射,可由Co-60或Cs-137放射核产生。X射线可通过高速电子经过原子核的电场减速产生。
关于γ辐射和某些类型的X线加工设备,高压电子加速器是优选的。与放射性同位素相反,由机器加速产生的高能电子很容易应用于工业过程中,这有下列几个原因易于开一关;比γ辐射需要更少的屏蔽;加速器束是直接的,比γ或X射线穿透更弱;电子辐射提供的剂量率高(剂量率即为每单位密度的材料的最大穿透);很适于在经和适合于高速加工应用,商业上可获得的高或低能电子加工设备为DYNAMITRON(TM)设备,dyacote(地那科特工业电子加速器)。绝缘芯变压器、线性加速器、VandeGraaff加速器、球链式静电加速器、梯形管和线性阴极。高压电子加速器设备的制造商是HighVoltageEngineeringCorporation(高压工程公司),Burlington,Mass.和RadiationDynamics,Inc.,Westbury,N.Y.。生产低能电子束设备的制造商包括AmericanInternationalTechnologies,Inc.,ofTorrance,California;RPCIndustriesofHayward,California和EnergySciencesof Wilmington,Massachusetts。
紫外光源可以基于汞蒸汽弧产生。汞密封于石英管中。在管的两端给电极加上电压。电极可以是汞、铁、钨或其它金属。汞蒸汽灯的压力可低于1atm到大于10atm。当汞压力和灯操作温度增加时,辐射更强,发射线宽度增大。其它UV灯源包括无电极灯、氙灯、脉冲氙灯、氩离子激光器和激基复合物激光器。
可见光源可以通过向高压汞弧光灯中加入稀有气体或金属卤化物获得,增加了350-600nm光谱区域中发射线的数目。荧光灯、卤化钨灯和可见光激光器也可使用。
在辐射交联过程中,聚合物组合物中存有水是很不利的,这是因为水趋向于终止交联反应。因此辐射固化时,在接近或大于水的沸点的温度下辐射固化更为有效。
高凝胶形成所必需的辐射量随被辐射聚合物的厚度、不饱和度或官能团的数目、不饱和度或官能度在聚合物内特定区域内的浓缩程度和所使用的辐射类型等因素的变化而变化。当使用电子束辐射,约0.1-约16Mrads的辐射剂量是可以接受的,优选约0.1Mrads-约5Mrads,因为此时设备成本低,对底物材料可能的损害少。
当使用非离子辐射时,必须使用光引发剂引发交联反应。有用的光引发剂包括二芳基碘鎓、烷氧基取代的二芳基碘鎓、三芳基锍、二烷基苯甲酰甲基锍和二烷基-4-羟基苯基锍盐。这些盐中的阴离子一般具有低亲核特征,包括SbF-6、BF-4、PF-6和AsF-6。特定的例子包括(4-辛氧基苯基)-苯基-碘翁六氟锑酸盐、UVI-6990(Union Carbide生产)和FX-512(3M公司)。双(十二烷基苯基)碘鎓六氟锑酸盐、UV9310C(GE)和UVI-6974(Union Carbide)是特别有效的。可单独使用鎓盐或与光敏剂结合使用以对长波长UV和可见光响应。光敏剂的例子包括噻吨酮、蒽、苝、吩噻嗪酮、1,2-苯并蒽晕苯、吡喃和并四苯。选择的光引发剂和光敏剂与被交联的聚合物和可使用的光源是相容的。
辐射诱导的阳离子固化也可与自由基固化结合起来进行。自由基固化可被加入的自由基光引发剂和光敏剂而进一步促进。
可添加到聚合物中的反应性的(辐射可固化的)稀释剂包括醇、乙烯醚、环氧化物、丙烯酸酯和甲基丙烯酸酯单体、低聚物和高聚物。它们也可以与其它的基于二烯的聚合物混合。例子包括双(2,3-环氧环戊基)醚乙烯基环己烯二氧化物、苎烯二氧化物、环氧化大豆和亚麻子油和脂肪酸、斑鸠菊苷油和UVI6110(UnionCarbide)。
不使用辐射,加入阳离子引发剂也可使聚合物固化。合适的引发剂包括锡、铝、锌、硼、硅、铁、钛、镁和锑的卤化物和这些金属的许多氟硼化物。还包括BF3复合物如BF3-醚和BF3胺。强Bronsted酸如三氟甲烷磺酸(triflic酸)和trflic酸的盐如FC-520(3M公司)也是有用的。选择的阳离子引发剂与被交联的聚合物、应用方法和固化温度是相容的。也可通过加入多官能团的羧酸和酸酐以及一般情形下按美国专利3,970,608中描述的固化方法交联聚合物。对于粘合剂,辐射交联是优选的,因为反应成分并不与热的粘合剂接触。
许多情形中包含多种交联形式的本发明的材料适用于粘合剂(包括压敏粘合剂、接触粘合剂、层压粘合剂和装配粘合剂、标签、包装粘合剂、耐气候的胶带)、密封剂、印刷板、油胶和保护层。本发明的交联形式特别适用于需要抗高温的应用中。可是,对于配方设计师,为了特别的应用,将许多不同组份与本发明聚合物结合起来以获得几种性能(如粘合性、内聚性、耐用性、低成本等)适当结合起来的产品可能是必要的。因此,合适的配方可能仅包含本发明聚合物,以及如固化剂。可是,在大多数粘合剂和密封剂应用中,合适的配方也将包含树脂、增塑剂、填料、稳定剂和其它组份如沥青的多种结合。下列是密封剂的一些典型配方实例。
在粘合剂和密封剂应用中,加入与聚合物相容的粘合促进剂或粘着树脂是普通的方法,一般为每100份聚合物(重量)加入20-400份。普通的粘附树脂是1,3-戊二烯和2-甲基-2-丁烯的二烯-烯烃共聚物,软化点约95℃。在市场上可获得该树脂,商标为Wingtack95。可按美国专利3,577,398通过60%1,3-戊二烯、10%异戊二烯、5%环戊二烯、15%2-甲基-2-丁烯和约10%二聚体的阳离子聚合制备这种树脂。其它粘着树脂也可使用,其中树脂共聚物包括20-80%(重量)的1,3-戊二烯和80-20%(重量)的2-甲基-2-丁烯。按ASTM法E28测定,树脂的环球软化点通常在约80-115℃之间。
芳香树脂也可用作粘着试剂,条件是它们应与配方中所使用的特定的聚合物是相容的。通常情况下,这些树脂的环球软化点应在约80-115℃之间,尽管具有高和低软化点的芳香树脂的混合物也可使用。有用的树脂包括苯并呋喃-茚树脂、聚苯乙烯树脂、乙烯基甲基-α-甲基苯乙烯共聚物和聚茚树脂。
在本发明组合物中同样有用的其它粘合促进树脂包括氢化松香、松香酯、聚萜烯、萜烯酚树脂和聚合的混合烯、较低软化点树脂和液体树脂。液体树脂的例子是ADTAC(TM)、LV(TM)树脂,产自Hercules。为了获得好的热氧化和颜色稳定性,粘附树脂最好是饱和树脂,如氢化二环戊二烯树脂,如由EXXON(TM)制造的ESCOREZ5000(TM)系列树脂或氢化聚苯乙烯或聚α-甲基苯乙烯树脂,如由HERCULES(TM)制造的REGALREZ(TM)树脂。固体树脂的软化点可为约40-约120℃。液体树脂,即软化点低于室温的树脂,和固液树脂的结合体都可使用。粘合促进树脂的用量为每百份橡胶(Phr)(重量)用0-400份,20-350Phr更好,20-150Phr最好。很大程度上特殊的粘附剂的选择依赖于粘合剂组合物中使用的特定聚合物。
本发明的组合物可包含增塑剂,如橡胶增充增塑剂或混炼油或有机或无机色素和染料。橡胶混炼油是工艺上已知的,包含高饱和油和环烷油。优选的增塑剂是高饱和油,如由ARCO(TM)制造的TUFFLO6056和6204(TM)油和环烷加工油,如由SHELL(TM)制造的SHELLFLEX371(TM)油。本发明组合物中使用的橡胶混炼油的数量为0-约150Phr(份),约0-100Phr更好,约0-60Phr最好。
本发明必要时可选择的组份是稳定剂,阻止热降解、氧化、表皮形成和颜色形成。将稳定剂加到商业上可获得的化合物中以保护组合物在制备、使用和高温储存中避免聚合物热降解和氧化是典型的用法。
密封剂和粘合剂配方中可包括不同类型的填料和色素,尤其是对外部密封剂更是这样。加入填料不仅创造了所需的感染力而且改变了密封剂的使用性能如耐气候性。有许多填料可以使用。合适的填料包括碳酸钙、粘土、滑石、二氧化硅、氧化锌、二氧化钛等等。根据所用填料的类型和密封剂的应用目的,填料的量通常为配方的溶剂自由部分的0-约65%。尤其优选的填料是二氧化钛。
如果从溶剂溶液形式使用粘合剂或密封剂,那应将配方中有机部分溶解于溶剂中或溶剂的混合物。甲苯、二甲苯或SHELLCYCLOSOL53(TM)的芳烃溶剂是合适的。象己烷、石脑油或矿物精的脂肪烃溶剂也可使用。如需要的话,也可使用烃溶剂与极性溶剂的混合溶剂。合适的极性溶剂包括酯如乙酸异丙酯、酮如甲基异叔酮和醇如异丙醇。所用极性溶剂的数量依赖于配方所选择的特殊的极性溶剂和所用的特定的聚合物结构,通常混合溶剂中所用极性溶剂的数量在0-50%wt.。
优选将一级和二级抗氧化剂结合起来使用。这种结合包括空间位阻酚与亚磷酸酯或硫醚的结合。如羟苯丙酸与芳磷酸酯的结合,或氨基酚与芳磷酸酯的结合。特定的有用的抗氧化剂的结合例子包括3-(3,5-二叔丁基-4-羟基苯基)丙酸甲烷(IRGANOX1010,CIBA-GEIGY产)与三(壬苯)-亚磷酸酯(POLYGARDHR(TM),UNIROYAL产)的结合,IRGANOX(TM)1010与双(2,4-二叔丁基)季戊四醇二亚磷酸酯(ULTRANOX626(TM)419,BORG-WARNER产)的结合。
工艺上已知的附加稳定剂也可并入组合物中。这些稳定剂可以使其得到保护,如避免受氧气,自氧影响和紫外线的辐射。可是,这些附加稳定剂应该与上述必要的稳定剂和其本文描述的预期的功能相容。
基于本发明聚合物的所有粘合剂和密封剂的组合物将包含多种本文公开的配方组份的一些结合。使用哪种组份没有给出明确的规则。对于任何特定的粘合剂、涂层或密封剂的应用,娴熟的配方师将选择特定类型的组份,调整其浓度,正确地获得组合物中所需的性能结合。
粘合剂通常是用于保护的环境(将两种底物粘合在一起)中粘性组份薄层。因此,未氢化的环氧聚合物通常有足够的稳定性,所以为了达到最大粘性,选择树脂类型和浓度无需关心稳定性。通常不需使用色素。
密封剂是缝隙填料。因此,它们使用于很厚的层中填充两底物的空间。因为两底物常常彼此相对运动,所以密封剂通常是能够阻止这种运动的低模量组合物。因为密封剂常常暴露于大气中,所以通常使用氢化环氧聚合物。选用树脂和增塑剂维持低模数,使沾灰尘降至最低。选用填料和色素得到适当的耐用性和颜色。因为密封剂应用于很厚的层中,所以溶剂含量尽可能地低,使收缩降至最小。
娴熟的配方师将明白制备具有适合于许多不同用途性质的粘合剂和密封剂,要求本发明聚合物有许多多样性。
通过在高温下,最好在50-200℃之间,将组份混合,直到获得均一的混合体(通常少于3小时),可制得本发明粘合剂和密封剂的组合物。多种混合方法是已知的。任何产生均一混合物的方法都是令人满意的。所形成的组合物可用于许多应用中。另外,组份可混进溶剂中。
本发明的粘合剂组合物可用作许多不同种粘合剂,如层压粘合剂、压敏粘合剂、连接层、热熔粘合剂、含溶剂粘合剂和含水粘合剂(这里固化前水已被除去。粘合剂可只是包括聚合物或更普通的配方组合物,该组合物除其它已知的粘合剂组合物成份外还包含很大一部分的聚合物,一种优选的应用方法是100℃左右或100℃以上的热熔应用,因为100℃以上的热熔应用使存在的水和阳离子聚合的其它低分子量阻聚剂降至最低含量。粘合剂可在固化前后加热进一步促进固化或后固化。人们相信热粘合剂的辐射固化比较低温度下的辐射固化更快地促进固化。这些应用中也可使用未氢化的前体。
本组合物优选的用途是压敏粘合剂带的制备和标签的制造。压敏粘合剂带包括柔性垫片和在垫片的一主要表面上涂有本发明的粘合剂组合物层。垫片可以是塑料胶片、纸或任何其它合适的材料。带子可包括多种其它层或涂层,如引发剂、隔离涂层等,这些均在压敏粘合剂带的生产中得到使用。未氢化前体也可在这些应用中使用。
本发明的密封剂组合物可用于许多应用中。特别优选的是它们用作建筑缝隙填料,使用了密封剂后。可以烘烤(例如在涂料烤箱中)。这将包括它们在汽车制造和设备制造中的使用。另一受欢迎的应用是它们在垫片材料中的应用,如食品和饮料容器。未氢化的前体也可用于这些应用中。
实例表Ⅰ至表Ⅲ说明了不同臂的嵌段共聚物在压敏粘合剂应用中可获得的优点。
表ⅠA不仅说明了粘合剂工业广泛使用的一种对照聚合物而且也说明了本发明的两个有用的分子结构。分子量和其它描述数据列于表ⅠB中。本发明聚合物包含聚异戊二烯侧链(分为2和4)和一末端为聚苯乙烯嵌段的聚(乙烯/丁烯)的饱和主链。侧链和主链通过偶合试剂在主链的中间点连接起来。对照聚合物主要为S-EB-S三嵌段(无侧链),含S-EB二嵌段30%或低于30%。
本发明聚合物的总分子量分别大于和小于对照聚合物的分子量。二嵌段的含量低于对照的含量。87%和89%的偶合率分别表明二嵌段含量≤13%和≤11%。尽管分子量及较低的二嵌段含量相似,但不同臂聚合物的溶液粘度比对照的更低(表ⅠB),与粘合剂工业使用的普通的100%嵌段共聚物相比,粘度降低也是惊人的。例如KRATOND1107(TM)橡胶是长期用于这种应用中的普通高聚物,在甲苯中,20%的浓度,分别与显示于表ⅠB中本发明高聚物的粘度180和93厘泊相比,粘度为514厘泊。在聚合物制造和最终用途中,粘度降低是有价值的。例如,能够使用较高含量的固体,较少的溶剂,较易应用,所需泵能较低等等。
表Ⅰ中描述的聚合物是按压敏粘合剂的配方配制的,玻璃化转变温度为-20℃(表Ⅱ)和-15℃(表Ⅲ)。就整体考虑,实验性聚合物在粘着性、剥离强度和对钢的握力优于对照聚合物。在聚酯薄膜上的剪切粘合破坏温度(SAFT)方面,聚合物Ⅰ优于对照聚合物。不仅在实验室仪器粘着性测定还是定性的手指粘着性比较,粘着性的优势是明显的。
在另一实例中,将聚合物Ⅰ与同样的对照物比较,所用配方的Tg校正到-15℃(表Ⅲ)。在此情形,聚合物Ⅰ在粘着性、剥离强度和SAFT性能方面优于对照物。对钢的握力比对照物稍低。
与聚苯乙烯-不饱和二烯橡胶嵌段比较,以低分子量和粘度获得高粘合性能的结合应归功于聚苯乙烯末端嵌段和聚(乙烯-丁烯)橡胶嵌段之间优越的相分离。
表Ⅰ聚合物的描述A聚合物的结构-实例 □聚苯乙烯EB聚(乙烯-丁烯)I聚异戊二烯Y侧合剂
表Ⅱ配制粘合剂性能(所有配方均调至Tg=-20℃) 1Regalrez 1085;Hercules,Inc.;氢化苯乙烯/α-甲基苯乙烯共聚物2Regalrez 1018;Hercules,Inc.;
3Irganox 1010;CIBA-Geigy Corp.
4Tinuvin 327;CIBA-Geigy Corp.
5Tinuvin 770;CIBA-Geigy Corp.
表Ⅲ配制粘合剂的性能(调至Tg=-15℃) 1Regalrez 1085;Hercules,Inc.;氢化苯乙烯/α-甲基苯乙烯共聚物2Regalrez 1018;Hercules,Inc.;
3Irganox 1010;CIBA-Geigy Corp.
4Tinuvin 327;CIBA-Geigy Corp.
5Tinuvin 770;CIBA-Geigy Corp.
尽管本发明聚合物包含不饱和臂的均聚物,但将它们加热和加速老化时,它们的行为主要类似于粘合剂中普遍使用的完全饱和的嵌段共聚物。表Ⅳ将本发明聚合物与普通的饱和聚合物(见表Ⅰ)、工业上广泛使用的普通的不饱和聚合物(KRATOND1107(TM)橡胶、线性S-I-S(分子量160M,苯乙烯含量为15%)(ShellOil公司制造)的粘度和颜色稳定性进行了比较。将基于这三种聚合物的粘合剂组合物于350°F下加热96小时,不同时间间隔测定粘度和颜色。这种试验在预测热熔粘合剂组合物的行为是重要的。本发明聚合物在上述时间内维持粘度和颜色方面接近完全饱和聚合物的行为,在这些方面显著优于不饱和聚合物。

(1)配方聚合物,100重量份(Pbw);REGALREZ1085树脂,125Pbw;REGALREZ1018树脂,20Pbw;IRGANOX1010,1.0Pbw;TINUVIN770,0.25Pbw;TINUVIN327,0.25Pbw。
(2)配方聚合物,100Pbw;PICCOTAC95树脂,135Pbw;SHELLFLEX371油,15Pbw;IRGANOX1010,1.0Pbw;TINUVIN770,0.25Pbw;TINUVIN327,0.25Pbw。
(3)BROOKFIELD粘度,RVTD型。
考虑到作为耐气候粘合剂的聚合物,本发明聚合物应不仅能抵抗实验室设计用业预测室外老化稳定性的设备所用条件,而且还应抵抗室外老化条件。表Ⅴ显示了基于本发明聚合物的粘合剂在一定的时间内维持了剥离强度,至少和普通的饱和聚合物基的粘合剂一样好。进而破坏的方式保持了干净的粘合剂剥离(这是所要求的),而基于不饱和聚合物的粘合剂短时间老化后内聚开始破坏(即在底物和衬膜上留下一层粘合剂),不饱和聚合物基的粘合剂的这种行为可能是因为降解引起的削弱,从加速老化研究(列于表Ⅵ中)可推出相似的结论。


将不饱和聚合物臂并入基本上饱和的嵌段共聚物结构中,以其在应用中的耐剪切和耐热方面的明显优点,给系统的交联添加了潜能。本发明聚合物经得起使用许多技术的交联反应的检验。表Ⅶ说明了以10和16兆拉得的剂量电子束辐射交联基于本发明聚合物Ⅰ的粘合剂组合物(可分别获得原料聚合物的38%和81%的凝胶含量)。剪切粘合破坏温度(SAFT)显著得到改善而粘着性无任何主要损失。
在其它的饱和的本发明嵌段共聚物中存在不饱和聚合物臂给官能化增加了活性位置的数目。官能化的聚合物常常改善了粘合性能,因为其极性增加了。官能化的聚合物在辐射诱导的交联过程中也可能是更活泼。在表Ⅶ的例子中,使用电子束辐射交联基于已被环氧化的发明聚合物的配方。在相对低的剂量(小于2或6兆拉得,凝胶含量分别为原料聚合物的14%和74%)就发生交联。握力和SAFT值大量提高,除了在很高的剂量外,对粘着性很少或没有影响。

(1)配方聚合物,100Pbw;REGALREZ1085树脂,54Pbw;REGALREZ1018树脂,68Pbw;PolyGARDHR抗氧剂,1.0PbwEB固化在EnergySciences,Inc.完成,电子束单元,型号CB-150。
(2)按美国专利5,229,464环氧化到1.26meq/g。
(3)0.5英寸×0.5英寸结合物,2kg重。
(4)重迭剪切结合物的剪切粘合破坏温度,结合物1英寸×1英寸,2kg重。
类似地,粘合剂的配方中本发明的环氧化的和非环氧化的嵌段共聚物在紫外光(UV)下很易交联。表Ⅷ说明了使用LINDE(TM)UnionCarbide公司的光固化系统所获得的结果。甚至在最低剂量(表Ⅷ中所示的最高带速),在环氧化的变体上都可发生大量的交联反应。

(1)按美国专利5,229,464用UV光辐射(LINDE光固化系统,UnionCorbide公司)。
(2)配方聚合物,100Pbw;REGALREZ1085树脂,58Pbw;REGALREZ1018树脂,65Pbw;POLYGARDHR抗氧化剂,1.0Pbw;IRGACURE651光引发剂,1.0Pbw;1,6已二醇二丙烯酸酯交联剂,7.5Pbw。
(3)按美国专利5,229,464环氧化到1.26meq/g。
(4)配方聚合物,100Pbw;REGALREZ1085树脂,54Pbw;REGALREZ1018树脂,68Pbw;POLYGARDHR抗氧化剂,1.0Pbw;CYRACUREUVI6974阳离子光引发剂,1.1Pbw。
(5)带速越慢,辐射剂量越高。
在表Ⅸ中,列出了交联研究的结果,这里引发和增长本质上是化学的,没有任何形式的辐射帮助。交联试剂是脲-醛树脂,用十二烷基苯磺酸催化。在20-40分钟、149-177℃下,形成凝胶含量为80-90%。本发明聚合物的不饱和臂将经历许多化学反应导致网络形成的事实说明了这些结果。在粘合剂、密封剂、涂层和许多其它应用中,这种结构提高了使用温度、溶剂抵抗力和剪切性质。

权利要求
1.具有下式的辐射形或星形不对称嵌段共聚物(Ⅰ)(A-HD)x-Y-(UD)z或(Ⅱ)(UD-A-HD)x-Y或(Ⅲ)((UD)y-A-HD)x-Y-(UD)z或(Ⅳ)(A-HD1)x-Y-(HD2)z或(V)-(HD2-A-HD1)x-Y或(Ⅵ)((HD2)y-A-HD1)x-Y-(HD2)z这里A是聚乙烯基芳烃嵌段,分子量为4000-20,000,HD是氢化共轭二烯嵌段,分子量为10,000-100,000,Y是多官能团偶合试剂,UD是未氢化的共轭二烯嵌段,分子量为1000-80,000,HD1是氢化共轭二烯嵌段,分子量为10,000-100,000,HD2为氢化共轭二烯嵌段,分子量为1000-80,000,x是2-20的整数,Y是0或1,z是1-10的整数,x+z的范围为3-30,以及用极性基团使其官能化而增加粘性所产生的它们的衍生物。
2.权利要求1的共聚物,其中嵌段共聚物是式(Ⅰ)的辐射形嵌段共聚物,x为2-4,z为1-4,x+z为3-6。
3.权利要求1和2的共聚物,其中氢化二烯为丁二烯,未氢化二烯为异戊二烯。
4.权利要求1的共聚物,其中聚(共轭二烯)嵌段已被环氧化、羧酸化、马来酸化、硅烷酸化或丙烯酸化。
5.权利要求4的共聚物,其中氢化聚(共轭二烯)嵌段已被马来酸化或丙烯酸化或硅烷酸化。
6.含有权利要求1-5的共聚物和一粘附树脂的粘合剂和密封剂组合物。
7.权利要求6的组合物,其中该组合物被交联。
全文摘要
具有下式的辐射形、星形不对称嵌段共聚物这里A为乙烯基芳烃嵌段,分子量为4000-20,000,HD是氢化共轭二烯嵌段,分子量为10,000-100,000,Y是多官能团偶合试剂,UD是未氢化的共轭二烯嵌段,分子量为1000-80,000,x是2-20的整数,Y是0或1,z是1-10的整数,x+z的范围为3-30;及其官能化衍生物及改善的粘合剂和密封剂组合物。(I)(A-HD)
文档编号C08F8/00GK1105037SQ94118158
公开日1995年7月12日 申请日期1994年11月7日 优先权日1993年11月9日
发明者S·S·秦, G·R·海姆斯, R·J·浩斯麦尔, B·A·斯彭斯 申请人:国际壳牌研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1