DAN-1修饰的核壳型QDs新型荧光纳米材料、其制备方法及其应用与流程

文档序号:16855030发布日期:2019-02-12 23:10阅读:260来源:国知局
DAN-1修饰的核壳型QDs新型荧光纳米材料、其制备方法及其应用与流程
本发明涉及化学、纳米材料、荧光传感技术和生物分析检测领域,具体涉及基于荧光分子探针和半导体量子点传感平台同时定量检测血浆中硫化氢和一氧化氮含量的方法。
背景技术
:一氧化氮(no)是继no和一氧化碳之后被证实为第三种内源性气体信号分子,广泛参与体内的多种生理和病理活动,在心血管系统、神经系统和免疫系统中发挥着重要的调节功能。在生理条件下参与诸如血管的张力调节、心肌的收缩控制、神经信号传导和胰岛素分泌调控等一系列的生理调控过程。目前no的检测方法主要有荧光光谱法、电化学法、化学发光法、电子自旋共振波谱法和紫外-可见光谱法等。h2s的主要检测方法包括荧光法、比色法、电化学法、色谱法等等。其中,荧光法由于其灵敏度高,操作简便,反应快速、成本低廉、可实时测量、对生物样本基本无破坏等优点而备受关注。在no荧光探针的设计中,最常见的思路就是利用邻苯二胺与no的特异性反应,得到具有苯并三唑结构的产物,由于产物具有荧光,可通过考察产物荧光强度的变化反应no的浓度大小。kojima,h.等在此基础上报道了一种新的no探针(4-((3-氨基-2-萘基)氨基甲基)苯甲酸,dan-1),在氧气存在条件下,可以与no迅速反应,生成含三唑结构的产物,在365nm激发条件下,发射出445nm左右的荧光(biological&pharmaceuticalbulletin,1997.20(12):1229-1232.)。在h2s荧光探针的设计中,常规的思路就是利用h2s的硫离子与荧光分子中的金属原子(比如铜离子)形成金属硫化物沉淀,并改变荧光分子的荧光强度,进而测出h2s的浓度。量子点(qds)是一种由ii-vi族(cds、cdse)或iii-v族(inp、inas)元素组成的荧光半导体纳米颗粒。qds具有优异的荧光特性,比如存在量子尺寸效应,可通过调节粒径尺寸而改变其发射波长;qds激发谱带宽而发射谱带窄而对称,可进行同一激发光源的多通道检测;qds的发光寿命高,可大幅度降低背景的强度,有利于提高检测灵敏度;qds量子产率高,光稳定性好,适用于多种检测环境。在核壳型qds中,比如cdte/cds/znsqds,内核cdte与外壳cds及zns通过内在的金属镉离子,锌离子与稳定剂巯基丙酸形成金属-硫键而保持结构的完整。中国专利201410046859.6公开了一种一锅法直接合成cdte/cds/zns/sio2qds的方法。目前尚无以核壳型qds检测h2s浓度的报道。有研究表明硫化氢和一氧化氮之间通过各种信号通路相互作用,共同调控人体的健康与疾病。因此,如能同时检测出两者在生物样本中的浓度,对于我们深刻认识两者在生命活动中的相互关系具有重要的意义。zhou,y.等曾经报道一种通过检测hno浓度而间接反应两者关系的分析方法(analchem,2017.89(8):4587-4594.),但迄今为止,能够同时直接检测no和h2s浓度的方法未见报道。技术实现要素:为了克服现有技术的不足,本发明目的在于提供dan-1修饰的核壳型qds新型荧光纳米材料,可用于直接同时检测no和h2s浓度,具有高灵敏度,高选择性,快速反应,简单易行等特点。本发明再一目的是提供一种dan-1修饰的核壳型qds新型纳米荧光微粒的制备方法。本发明另一目的是提供一种基于dan-1修饰的核壳型qds新型纳米荧光微粒应用于血浆等生物样品中no和h2s浓度的直接同时测定。为实现上述发明目的,本发明采用的技术方案如下:dan-1修饰的核壳型qds新型荧光纳米材料,包含h2s探针和no探针两部分;h2s探针部分由发射波长大于500nm的核壳型量子点构成,核壳型量子点cdte/cds/zns表面包裹sio2薄层。该核壳型量子点包括但不限于cdte/cds/zns量子点,cdte/cds量子点,inp/zns量子点,cdse/zns量子点,zncdse/zns量子点,pbs/zns量子点。no探针部分是4-((3-氨基-2-萘基)氨基甲基)苯甲酸(dan-1),其中dan-1的羧基与量子点表面的氨基形成酰胺键结合。原理示意如图6所示。dan-1修饰的核壳型qds荧光纳米材料的制备方法,是在核壳型量子点cdte/cds/zns表面包裹sio2薄层并以3-氨丙基三乙氧基硅烷(aptes)实现表面氨基化,将氨基与dan-1的羧基在edc/nhs催化条件下形成酰胺键,得到纳米荧光微粒(cdte/cds/zns/sio2@dan-1)。具体而言,制备方法的步骤如下:(1)合成no探针dan-1(参考文献(biological&pharmaceuticalbulletin,1997.20(12):1229-1232.):将2,3-二氨基萘溶于n,n-二甲基甲酰胺(dmf)中,加热溶解后加入4-(溴甲基)苯甲酸,加热回流得dan-1;(2)合成cdte/cds/zns/sio2qds(中国专利201410046859.6);以碲粉和nabh4制备nahte;将其加入cd2+、巯基丙酸(mpa)的溶液,加热回流得到cdteqds;将cdteqds转移到含有cd2+,zn2+,mpa的溶液中,加热回流充分反应后再加入正硅酸四乙酯(teos),继续回流反应,最终得到cdte/cds/zns/sio2qds;(3)cdte/cds/zns/sio2qds的表面氨基化:将cdte/cds/zns/sio2qds分散于dmf中,加热搅拌后加入过量3-氨丙基三乙氧基硅烷(aptes),充分反应得到cdte/cds/zns/sio2@nh2qds;(4)制备dan-1修饰的核壳型qds纳米荧光微粒(cdte/cds/zns/sio2@dan-1):将dan-1溶于dmso,加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(edc)和n-羟基琥珀酰亚胺(nhs)活化dan-1中的羧基,然后与(3)中的qds表面氨基形成酰胺键,得到cdte/cds/zns/sio2@dan-1。dan-1修饰的核壳型qds新型荧光纳米材料同时检测生物样品中no和h2s浓度的用途:测样使用标准加入法,即取若干份(比如5份)体积相同的待测血浆,加入10倍体积的无水甲醇,涡旋10分钟,离心,取上清,氮气吹干,依次加入探针cdte/cds/zns/sio2@dan-1的dmso溶液和pbs缓冲液(ph7.4),并从第二份起按比例加入不同量no供体标准溶液和nash标准溶液,各份样品体积相同,30℃孵育15分钟后直接测量荧光强度,并以标准加入法的计算方法获得其no和h2s的实际浓度。本发明所得cdte/cds/zns/sio2@dan-1纳米材料中的dan-1部分可特异性的与no反应,生成含三唑结构的产物并发射蓝色荧光,随着no浓度的增加,荧光强度逐渐增加,以此可测量体系中no含量;在核壳型qds中,如cdte/cds/znsqds,内核cdte与外壳cds及zns通过内在的金属镉离子/锌离子与稳定剂巯基丙酸形成金属-硫键而保持结构的完整。当h2s与核壳型qds共存时,h2s释放出的硫离子会竞争性地与金属-硫键中的金属反应,生成金属硫化物,导致金属-硫键断裂,核壳型qds的结构发生改变,并使其荧光减弱,于是qds的荧光强度与h2s的浓度之间就存在了对应关系,可用于构建基于核壳型qds的h2s荧光检测方法。本发明将no探针dan-1共价修饰至核壳型qds上,获得一种全新的荧光纳米材料,可用于直接同时检测no和h2s浓度,具有高灵敏度,高选择性,快速反应,简单易行等特点,为生物体内no和h2s在信号传导及生理病理的调控机制研究提供了新思路。附图说明图1是实施例4制备得到的cdte/cds/zns/sio2@dan-1的透射电子显微镜图,图中可见cdte/cds/zns/sio2@dan-1呈现球形,均匀分散,平均粒径约5nm,在内插的高分辨率透射电子显微镜图像中可以看到量子点明显的晶格。图2为cdte/cds/zns/sio2@dan-1相关的激发光谱、发射光谱以及紫外可见吸收光谱图;图2(a)为cdte/cds/zns/sio2@dan-1相关的激发光谱及发射光谱,其中曲线①为cdte/cds/zns/sio2@dan-1((qds@dan-1))与no反应后产物的激发光谱,显然cdte/cds/zns/sio2@dan-1与no反应产物的激发光谱与量子点cdte/cds/zns/sio2的激发光谱大部分重合,因此可用一种激发光同时激发两种荧光物质;曲线②是cdte/cds/zns/sio2@dan-1与no反应后产物的发射光谱,与曲线③相比,曲线②在440nm处有一个明显的发射峰,这正是探针dan-1与no反应后产物的荧光发射峰,同时,曲线②和③在635nm处有相似的发射峰,这与cdte/cds/zns/sio2发射峰相一致;图2(b)为cdte/cds/zns/sio2@dan-1以及dan-1的紫外可见吸收光谱图,其中曲线①为cdte/cds/zns/sio2@dan-1的吸收光谱,曲线②为dan-1的吸收光谱,与曲线②相比,曲线①有一个明显的红移,同时,内插图为曲线①的局部放大图,在500-600nm范围内有一个突起,正是典型的量子点特征峰,上述特点表明cdte/cds/zns/sio2@dan-1被成功制备。图3为cdte/cds/zns/sio2@dan-1的红外光谱图,其中3400cm-1左右的吸收峰为氨基的伸缩振动峰,2931cm-1处的弱吸收峰源自修饰aptes后带来的亚甲基,1647cm-1处吸收峰为酰胺键中羰基的伸缩振动峰,1109cm-1处吸收峰为si-o伸缩振动吸收峰,800cm-1处吸收峰为si-o弯曲振动吸收峰。上述特征峰同样表明cdte/cds/zns/sio2@dan-1被成功制备。图4为cdte/cds/zns/sio2@dan-1同时与不同浓度的no及h2s反应后的荧光发射光谱图,如图所示,随着no浓度的增大,440nm处荧光强度逐渐增强,而随着h2s浓度的增大,635nm处荧光强度逐渐减弱。上述特征充分说明,本发明所公开的纳米材料cdte/cds/zns/sio2@dan-1可直接同时检测no和h2s浓度。图5为cdte/cds/zns/sio2@dan-1对no及h2s的选择性考察。在图5(a)中,纵坐标表示溶液在发射波长440nm测得的荧光强度,横坐标为溶液中与cdte/cds/zns/sio2@dan-1反应的物质成分。其中第(1)排表示只有no与cdte/cds/zns/sio2@dan-1反应并在440nm处发射强烈的荧光,而其他物质均无响应。第(2)排表示在每一份溶液中,均事先加入cdte/cds/zns/sio2@dan-1和no,然后再分别加入各干扰物质,结果显示这些干扰物质均不影响no与cdte/cds/zns/sio2@dan-1反应并产生相应的荧光。在图5(b)中,纵坐标表示溶液在发射波长635nm测得的荧光强度,横坐标为溶液中与cdte/cds/zns/sio2@dan-1反应的物质成分。其中第(1)排表示只有nahs(h2s供体)与cdte/cds/zns/sio2@dan-1反应并导致635nm处荧光猝灭,而其他物质则基本不猝灭荧光,或者只有少许影响。第(2)排表示在每一份溶液中,均事先加入cdte/cds/zns/sio2@dan-1和nahs(h2s供体),然后再分别加入各干扰物质,结果显示这些干扰物质均不影响h2s猝灭cdte/cds/zns/sio2@dan-1在635nm处荧光。图6是本发明制备方法的原理示意图。具体实施方式下面结合具体实施例进一步阐述本发明,这些实施例仅仅用于使专业技术人员更全面地理解本发明,但不以任何方式限制本发明。实施例1.合成一氧化氮探针dan-1,步骤如下(参考文献(biological&pharmaceuticalbulletin,1997.20(12):1229-1232.):将1.54g2,3-二氨基萘溶于4mldmf中,加热至100℃后逐滴加入含1.40g4-(溴甲基)苯甲酸的4mldmf溶液,升温至140℃加热回流2小时,将反应混合物冷却至室温,倒入150ml冰水混合物中,可见大量棕黄色固体析出,抽滤,收集固体,并以水洗涤三次,随后以柱层析法分离提纯(流动相二氯甲烷∶甲醇=97∶3,v/v),除去溶剂后真空干燥过夜,得棕色固体,即为dan-1。1hnmr(300mhz,dmso)δ7.89(d,j=8.1hz,2h),7.52(d,j=8.2hz,2h),7.34(d,j=5.42hz,1h),7.30(d,j=8.5hz,1h),6.97(m,2h),6.86(s,1h),6.53(s,1h),5.78(m,1h),5.08(s,2h),4.49(d,j=5.4hz,2h)。msm/z,c18h16n2o2,(m-h)-,理论值:291.1,实际值:291.1。实施例2.合成cdte/cds/zns/sio2qds(中国专利201410046859.6):称取碲粉25.50mg、nabh490.70mg置于50ml三颈瓶中,通氮气20分钟除去氧气,注入8ml新煮沸放冷的蒸馏水,磁力搅拌,氮气保护下室温反应至碲粉完全消失,得到淡粉色nahte溶液,其中碲粉与nabh4摩尔比约为1∶12。另取一个500ml三颈瓶,加入蒸馏水,cdac2·2h2o溶液(0.1mol·l-1,8ml)、mpa212mg,用1mol·l-1naoh调节ph9~10,油浴加热至90℃,氮气保护下将上述nahte溶液导入其中,总体积控制在400ml左右,磁力搅拌,氮气的保护下于90~100℃回流反应3小时即得cdteqds溶液,冷却至室温,备用,其中cd2+、nahte和mpa摩尔比约为1∶0.25∶2.5。再取一个500ml三颈瓶,加入蒸馏水140ml,在搅拌下,依次加入cdac2·2h2o溶液(0.1mol·l-1,2.25ml)、znso4·7h2o溶液(0.1mol·l-1,2.25ml),mpa(114.4mg,1.08mmol),用1mol·l-1naoh调节ph至9~10,加入上述cdteqds溶液150ml,充分搅拌后,加入na2s·9h2o溶液(0.045mol·l-1,5.00ml),氮气保护下90~100℃回流反应6小时,直接加入teos1.676ml,继续回流反应3小时;将所得反应液旋转蒸发至水挥发完毕,用无水乙醇洗去未反应的物质,得到cdte/cds/zns/sio2qds,反应体系中,cd2+∶zn2+∶s2-∶mpa∶teos的摩尔比约为1∶1:1∶4.8∶35。实施例3.cdte/cds/zns/sio2qds的表面氨基化:将0.175gcdte/cds/zns/sio2qds分散于40ml无水dmf中,超声20分钟,氮气保护下,加热至85℃,高速搅拌下加入过量aptes(3ml),维持85℃反应60小时,冷却至室温,离心,弃上清液,无水乙醇洗涤3次,得到cdte/cds/zns/sio2@nh2qds。实施例4.制备cdte/cds/zns/sio2@dan-1:将dan-1(88mg,0.3mmol)溶于10mldmso,加入edc(57.5mg,0.3mmol)和nhs(34.5mg,0.3mmol),超声20分钟,活化dan-1中的羧基,加入pbs缓冲液(ph7.4)20ml充分搅拌,然后加入氨基化qds95mg,室温下搅拌反应3小时,离心,弃上清液,无水乙醇洗涤3次,得到cdte/cds/zns/sio2@dan-1,反应体系中,dan-1∶edc∶nhs的摩尔比约为1∶1∶1,为保证充分反应,这三者相对于qds均过量。实施例5cdte/cds/zns/sio2@dan-1用于同时检测no和h2s的选择性验证1、取14份300μg·ml-1cdte/cds/zns/sio2@dan-1溶液(溶剂h2o∶dmso=4∶1,v/v),每份均为100μl,各加入pbs缓冲液(ph7.4)800μl,分别加入浓度均为1mm的no供体,n3-,so42-,clo-,so32-,s2o32-,no2-,co32-,gsh,vc,cys,h2o2,·oh各100μl,涡旋摇匀,3o℃孵育15分钟后直接测量各样品在440nm荧光强度,结果显示只有no与cdte/cds/zns/sio2@dan-1反应并在440nm处发射强烈的荧光,而其他物质均无响应。另取13份300μg·ml-1cdte/cds/zns/sio2@dan-1溶液(溶剂h2o∶dmso=4∶1,v/v),每份均为100μl,各加入pbs缓冲液(ph7.4)700μl,1mm的no供体100μl,再分别加入浓度均为1mm的n3-,so42-,clo-,so32-,s2o32-,no2-,co32-,gsh,vc,cys,h2o2,·oh各100μl,涡旋摇匀,30℃孵育15分钟后直接测量各样品在440nm荧光强度,结果显示均不影响no与cdte/cds/zns/sio2@dan-1反应并在440nm处发射强烈的荧光。上述结果证实cdte/cds/zns/sio2@dan-1能选择性的定量检测no(图5(a));2、将本实施例上一步中的no供体换成nahs(h2s供体),其余条件不变,配制溶液,并测量其在635nm处的荧光强度,可得到图5(b),结果证实cdte/cds/zns/sio2@dan-1同样能选择性的定量检测h2s。实施例6.检测例检测样品:取5份待测血浆各30μl,分别加入300μl的无水甲醇,涡旋10分钟,10000r/min离心10分钟,取上清,氮气吹干,各样品分别依次加入300μg·ml-1cdte/cds/zns/sio2@dan-1溶液100μl(溶剂h2o∶dmso=4∶1,v/v),pbs缓冲液(ph7.4),no供体标准溶液,nash标准溶液,使每份样品总体积为1ml,其中no加入浓度分别为0μm,1.50μm,3.00μm,5.00μm,8.00μm,nash加入浓度分别为0μm,0.70μm,1.40μm,2.10μm,2.80μm,30℃孵育15分钟后直接测量各样品在440nm和635nm处荧光强度,以标准加入法获得其no和h2s的浓度(见表1和表2),相当于此血浆样品中no浓度为104μm,h2s浓度为52.8μm。表1.血浆中no含量的测量(n=3)加入值(μm)测量值(μm)回收率(%)rsd(%)03.13-4.21.501.0368.572.13.002.3979.642.05.005.25104.91.68.008.18102.22.0表2.血浆中h2s含量的测量(n=3)加入值(μm)测量值(μm)回收率(%)rsd(%)01.58-1.50.700.75107.44.61.401.45103.55.02.102.16102.84.52.802.7297.065.9当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1