粘着力增强的厚膜导体组合物的制作方法

文档序号:3724775阅读:222来源:国知局
专利名称:粘着力增强的厚膜导体组合物的制作方法
技术领域
本发明涉及厚膜导体组合物,尤其涉及对使用该组合物的基底具有增强的可焊性和粘着力的组合物。
厚膜导体在混合型微电子元件中的应用在电子学领域里是众所周知的。这样的材料通常由分散在有机介质中形成糊状产物的贵金属、贵金属合金或其混合物和无机粘结剂的细碎颗粒的分散体组成。该糊料的稠度和流变性被调整至与具体的涂布方法例如网印、刷涂、蘸涂、挤出、喷涂等相适应。通常将这样的糊料用网印涂布至惰性基底例如三氧化铝上形成印花层。然后将该印花的厚膜导体层烧制以使有机介质挥发(例如“燃烧”)并将该无机粘结剂(通常为玻璃或成玻璃材料)和贵金属、贵金属合金或其混合物的细碎颗粒两者烧结。这样的糊料的燃烧温度通常为约600-900℃。
除该烧制的导电层具有的导电性外,该烧制层必须牢固地粘着在被印制的基底上并且该层必须能够承受焊剂。可焊性是非常需要的性能,因为必须将该导电图案面与使用其的电子体系中的其它元件相连接,所述电子体系有例如电阻器和电容器网络、电阻器、微调电位计、片状电阻器、片状电容器、片状载流子等。
用户对于工业用厚膜糊料的需要和期望不断增加。高粘着力和强可焊性的需要变得愈加难以同时满足。包含在厚膜导体组合物中用于粘合目的的无机粘结剂能妨碍焊剂润湿。因此,能提高焊接的粘着力同时使导体可焊性的降低达到最小的技术和组合物都是特别有价值的。
因此,本发明的目的在于提供一种厚膜组合物,它包括(重量)基糊(A)50-90%(重量)细碎颗粒状的金属导电相,(B)1-18%(重量)无机粘结剂相,(C)0.01-3.0%(重量)式[Ma1+]x[Mb2+]1-xAl2-xSi2+xO8增粘剂,式中Ma选自K,Na,Mb是Ca,和x是0-1,并且所有的(A)、(B)和(C)均被分散在有机介质中。
本发明的组合物包含导电金属、其合金或混合物的细碎颗粒、无机粘结剂和增粘剂,所有这些均被分散在介质中。术语“细碎的”可被“厚膜”领域中的技术人员理解,指能通过400目筛(美国标准筛级)的足够细的颗粒。最好是基本上所有的颗粒均在0.01-20微米的粒度范围内,最大的直径更优选不大于5微米。导电相任何贵金属、其合金或它们的混合物均可用作本发明组合物的导电相。因此可以使用贵金属例如Ag、Au、Pt和Pd以及它们的合金,例如Pt/Au,Pd/Ag,Pd/Au,Pt/Ag、Pt/Pd/Au和Pt/Pd/Ag。
组合物中固体相对于糊料的量为50-95%(重量),其余为5-50%有机介质。优选固体含量为60-90%(重量),更优选70-85%(重量)。组合物中导电金属相对于总固体的量在除有机介质外的组合物的60-99%(重量)范围内。然而优选75-98%(重量)导电金属,其余为25-5%(重量)无机粘结剂。无机粘结剂适宜的无机粘结剂是那些在烧结时能将金属粘结到陶瓷基底上的常规物质,例如玻璃、某些金属氧化物和玻璃前体。可以使用常规玻璃熔块,例如硼酸铅,硅酸铅,硼硅酸铅,硼酸镉,硼硅酸镉铅,硼硅酸锌和硼硅酸镉钠,硼酸铋,硼硅酸铋,硅酸铋铅和硼硅酸铋铅。当然上面所列的对本发明并无限制。通常优选具有高含量的氧化铋的任何玻璃。这样的高铋玻璃含至少50%(重量)氧化铋,优选至少70%。或者,可以使用玻璃和氧化铋的混合物代替铋酸盐玻璃。加入氧化铅作为隔离相亦是常见的。优选的玻璃见下表1;氧化物成分以重量百分数给出表1A B C D E F G HBi2O375.1 82.778.1 94.8 73.3 73.7PbO 10.9 1.83 43.6 0.7B2O31.2 1.34 4.826.7SiO29.3 10.3 37.5 21.7 8.6 5.24.7 4.8CaO2.4 2.68 9.74.0BaO0.9ZnO27.6 3.9 5.0CuO 7.6 5.5CoO 1.8Al2O31.1 1.22 4.35.7Na2O 8.7ZrO24.0GeO216.5 16.6玻璃粘结剂采用常规制玻璃技术,通过将所需成分(或其前体,例如对于B2O3,为H3BO3)按期望的比例混合并将混合物加热形成熔体来制备。正如本领域所公知的那样,将加热进行至峰值温度并维持一般时间使得该熔体完全成为液体,而气体逸出停止。在此操作中,峰值温度在1100-1500℃范围内,通常在1200-1400℃范围内,然后将熔体通过将该熔体冷却而淬冷,通常是将其倒在冷输送带上或倒入流动的冷水中。然后可根据需要通过粉碎达到降低粒径的目的。
正如本领域技术人员公知的那样,其它的过渡金属氧化物也可用作该无机粘结剂的一部分,通常是锌、钴、铜、镍、锰和铁的氧化物或氧化物前体。加入这些据认为能增强导体焊接粘着力。
无机粘结剂还可含有至多约4重量份基糊的具有以下通式的烧绿石相关氧化物(MxM′2-x)M″2O7-z式中M选自至少一种Pb、Bi、Cd、Cu、Ir、Ag、Y、原子序数为57-71的稀土金属和它们的混合物,M’选自Pb、Bi和它们的混合物,M”选自Ru、Ir、Rh和它们的混合物,x=0-0.5,和z=0-1。
烧绿石材料在R.J.Bouchard的US3583931(1971年6月8日授权)中有详细描述,本文参考引用了该文。烧绿石材料对于本发明的组合物起增粘剂的作用。优选钌酸铋铜,Cu0.5Bi1.5Ru2O6.75。添加剂将来自长石家族的结晶性物质加至上述的组合物中。在本文中,结晶性物质被定义为具有原子的有序的周期性排列并且在用X射线照射时能产生明显的衍射峰的物质。这种情况与排列无序、无原子的长程有序化和漫反射X射线衍射图形的玻璃正相反。
所述添加剂可选自组成在下式范围内的物质[Ma1+]x[Mb2+]1-xAl2-xSi2+xO8其中Ma一般可以是钾(K)或钠(Na),Mb一般为钙(Ca),和x是0-1.。这样的物质在陶瓷工业领域是人们所熟悉的,W.D.Kinergy,等人在Introduction to Ceramics,第二版,John Wiley&Sons,NY,1976中有描述。同样,据认为三价离子(Mc)例如铋可以通过Al/Si进行电荷补偿而替代二价钙,例如[Mc3+]x[Mb2+]1-xAl2+xSi2-xO8。
除这些钙长石结构的衍生物外,还存在其它的Ca-Al-Si-O相,例如钙铝黄长石Ca2Al2SiO7。钙铝黄长石也具有广泛的置换能力,例如〔Md〕2〔Me〕〔Mf〕2O7,其中Md选自Ca和Na,Me选自Mg和Al,以及Mf选自Si和Al。
此外,所述晶状结构添加剂属于长石家族,具有广泛的可能的替代物。例如,若用钾长石(微斜长石或正长石)K(AlSi3)O8代替本发明中的钙长石,预期对老化的粘着力(aged adhesion)同样有益。同样预计可用钠长石Na(AlSi3)O8代替钙长石,对导体的粘着性会具有同样有益的影响。
本发明的优选的组合物含基糊重量的0.01-3%(重量)式CaAl2Si2O8晶状钙长石。
钙长石添加剂的存在出人意料地能提供较强的导体老化粘着力,而在可焊性方面几乎没有损失。若浓度小于0.01%(重量),预计对粘着力不再具有益处,而若浓度大于3%(重量),预计会导致不合需要的可焊性下降。0.05-0.50%(重量)的范围是优选的,而最优选0.1-0.3%(重量)。有机介质使用行星式混合机将无机颗粒与基本惰性的液体介质(载体)机械混合,然后分散在三辊磨上形成具有适宜于网印的稠度和流变学的糊状组合物。将后者按常规方法以“厚膜”的形式印制在常规的陶瓷基底上。
任何基本上惰性的液体均可用作液状载体。各种有机液体,无论是否含有增稠剂和/或稳定剂和/或其它的常用添加剂,均可用作液状载体。可用的有机液体的实例有脂肪醇,脂肪醇的酯,例如乙酸酯和丙酸酯,萜类,例如松油、松油醇等,树脂例如低级醇的聚甲基丙酸酯的溶液和乙基纤维素在溶剂例如松油和乙二醇一乙酸酯的一丁基醚中的溶液。优选的液状载体基于乙基纤维素树脂和α-、β-γ-松油醇的溶剂混合物(一般含85-92%α-松油醇,含8-15%β-和γ-松油醇)。液状载体可含有浑发性液体以促进涂布至基底上后迅速凝结。
液状载体与分散体中固体的比率可在很宽的范围内变动,并取决于涂布此分散体的方法和所用的液状载体的种类。通常为获得良好的覆盖,如上所述,该分散体应互补性地含有60-90%固体和40-10%液状载体。当然本发明的组合物可通过加入不影响其有益的性能的其它物质而被改性。这样的制剂在本领域是适当的。
该糊料宜在三辊磨上制备。糊料的粘度一般在下述范围内(在Brookfield HBT粘度计上以低、中和高剪切速率测定)剪切速率(秒-1)粘度(Pa.s)0.2 100-5000300-2000优选的600-1500最优选的440-400100-250 优选的140-200 最优选的40 10-15025-120 优选的50-100 最优选的液状载体的用量由最终需要的制剂粘度来决定。制剂和应用在制备本发明组合物时,将颗粒状无机固体与有机介质混合,并用适当的设备例如三辊磨分散而制成混悬液,得到在4秒-1的剪切速率下粘度在约100-200帕斯卡·秒范围内的组合物。
在下面的实施例中,配制按下述方法进行将糊料的成分一同称至一个容器中。然后将各组分剧烈混合制成均匀的混合物。然后使该混合物通过分散设备例如三辊磨,获得良好的颗粒分散体。用Hegman计测定颗粒在糊料中的分散状况。此仪器含有一个在一块钢中的槽,其一端为25μm深(1mil)并形成在另一端深度为零的斜坡。用刮刀将糊料沿槽的长度向下刮。当附聚物的直径大于槽的深度时,在槽中会出现刮痕。令人满意的分散体通常给出10-18μm的第四刻度点。槽的一半未被充分分散的糊料覆盖的点一般在3-8μm之间。>20μm的第四刻度测定值和>10μm的“半槽”测定值表示分散差的混悬液。
然后将组合物通常采用网印法涂布至基底例如氧化铝陶瓷上至湿厚度为约30-80微米,优选35-70微米,更优选40-50微米。本发明的组合物可用自动印刷机或手动印刷机按常规方法印刷到该基底上。最好采用自动网印技术,使用200-325目印网。然后将该印制的图案在200℃以下、大约150℃干燥约5-15分钟,然后烧制。为将无机粘结剂与细碎的粒状金属烧结而进行的烧制最好在通风良好具有一定的温度分布的带式运输机窑炉中进行,所述温度分布为在约300-600℃将有机物质烧完,随后在约800-1000℃的最高温度维持约5-15分钟,接着进行控制的冷却过程以防止烧结过度、不需要的中温化学反应或由于太快冷却可能出现的基底断裂。整个烧制过程最好进行约30-60分钟,用10-25分钟达到烧成温度,在烧成温度持续约10分钟并用约10-25分钟冷却。在某些情况下,可采用较短的总周期,采用常规烧成时用20-30分钟,采用红外线烧成则用7-14分钟。试验方法可焊性可焊性试验如下进行所用的纤焊合金为62Sn/36Pb/2Ag,保持在220℃。将烧过的部件浸在中等活性的松香助熔剂(rosin flux)例如α611(C611是焊剂助熔剂(solder flux)的商品名,由Alpha Metals Inc.,Jersey City,NJ制造)中,然后通过将该陶瓷的边缘浸在熔融的焊剂中加热3秒钟。然后将此片浸没在该焊剂中5秒钟,取出,擦净并检验。可焊性用在该厚膜试验图案上获得的焊剂覆盖范围(熔敷)的百分数来定。可焊性值不低于95%通常被认为是极佳的润湿。
一个替代的方法采用小焊剂料坯(solder preform)的展开。将1厘米见方的导体印刷并烧制,然后用细刷横贯导体涂布一条薄的上述助熔剂。在该湿助熔剂上放置直径约为1.4mm、高度为0.4mm的焊剂料坯,并将其放置在Browne Corporation的LR-6型带式回流装置上使焊剂回流。最大回流温度通常为220-230℃,持续10-20秒钟。或者,若无回流装置,可代之以将基底置于热板上使料坯回流。然后侧定回流料坯的直径,报告相对于料坯起始直径的增加百分数,以评估该导体组合物的可润湿性。润湿程度更高的材料在回流后料坯展涂量较大。直径增大不低于25%通常被认为是极佳的润湿。
粘着力粘着力用Instron1122型拉伸试验仪以每分钟2英寸的拉伸速率在90℃的剥离条件下测定。将20号预镀锡线在220℃的62Sn/36Pb/2Ag中或在230℃的63Sn/37Pb焊剂中浸10秒中,使用α611助熔剂用焊剂接到80mil×80mil的焊盘上。老化研究在控制在150℃或170℃的Blue M Stabil-Therm烘箱中在空气条件下进行。老化后,将测试部件在空气中平衡几小时,然后将线拉伸。在150℃老化48或更多小时后,至少15牛顿、最好超过18牛顿的剥离力被认为对于大多数应用来说是必需的。
焊接的厚膜导体对陶瓷基底的线皮层剥离粘着力在下文中有进一步描述Bulletin No.A-74672,E.I.du Pont de Nemours and Company,“Method of Test for Wire Peel Adhesion of Soldered Thick FilmConductors to Ceramic SubstrateS”。实施例在下列实施例中,除非另作说明,均将导体糊料印制在HoechstCeramtec 96%氧化铝基底上。烧过的厚度为大约8-12微米。将老化的粘着件通过峰值温度为850℃的带式窑炉烧制5次,由100℃至850℃,在峰值温度烧制10分钟,加热和冷却10分钟。在该窑炉中的总门对门(door-to-door)专送时间大约为48分钟。将可焊性件通过同样的模式烧制一次。
实施例1-6说明了本发明的实质。导体制剂用和未用钙长石制备,用0.2%钙长石能显示出显著改进的老化粘着力,用焊剂回流直径测定,可焊性几乎无降低。此改进的老化粘着力的水平用常规手段即通过加入本领域技术人员公知的附加玻璃料或过渡金属氧化物增粘剂是很难实现的。此外,用两种不同的铋酸盐玻璃料以及加有氧化铋的硼酸铅玻璃料观察到了有益的结果。
表2实施例序号1 2 3 4 5 6Ag53.853.7 56.8 56.5 56.856.5Pd13.813.8 14.6 14.5 14.614.5玻璃料型 C C A A B B玻璃料1.7 1.7 5.55.75.5 5.7Bi2O34.0 4.0 --------- ---烧绿石4.0 4.0 2.12.12.1 2.1Cu2O 1.5 1.5 1.11.11.1 1.1Co3O40.3 0.3 0.30.30.3 0.3钙长石--- 0.2 ---0.2--- 0.2液状载体 20.820.7 19.6 19.5 19.619.5老化 170, 170, 150, 150, 150, 150,条件 48h 48h 100h 100h 100h100h(℃)老化粘着力14.222.8 16.4 20.6 13.819.3[N]可焊性34%31% 36% 36% 30%30%[展涂增加]在实施例7至12中测试了加入钙长石的效能的低限。在这组实施例中,对所有试样均未测定可焊性,但根据实施例12中的高钙长石型的极佳的润湿(焊剂料坯的直径增加29%),可以认为所有的试样润湿极佳。与实施例5和6相比,实施例7-12中使用了较高的玻璃料浓度,因此粘着水平有所增高。然而,加入钙长石的效果仍是明显的,甚至在钙长石在基糊中的水平为0.02%时就能注意到粘着力的改进。预计,在低于基糊的0.01%的水平时,钙长石对老化的粘着力的有益作用会变得可忽略不计。
表3实施例序号7 8 9 10 11 12Ag56.156.156.156.156.156.1Pd14.414.414.414.414.414.4玻璃料型 B B B B B B玻璃料6.736.716.686.626.576.52烧绿石2.102.102.102.102.102.10Cu2O 1.051.051.051.051.051.05Co3O40.320.320.320.320.320.32钙长石0 0.020.050.110.160.21液状载体 19.419.319.319.319.319.3老化条件 120h, 120h, 120h, 120h, 120h, 120h,(℃) 150 150 150 150 150 150老化粘着力[N] 21.325.225.227.728.528.4可焊性--- ------ --- --- 29%[展涂增加]实施例1-12均采用氧化钴作为制剂的组分。然而,正如实施例13-16所证实的那样,本发明不需要氧化钴存在。以前已有披露,氧化钴对老化的粘着力具有益的作用,尽管氧化钴在实现增进的粘着力所必需的浓度时能降低可焊性。因此本发明考虑无与氧化钴相关的可焊性降低的增进的粘着力。
表4实施例序号 13 14 15 16Ag 56.5 56.556.5 56.5Pd 14.5 14.514.5 14.5玻璃料型 B B A A玻璃料 6.06.0 6.06.0烧绿石 2.02.0 2.02.0Cu2O 1.01.0 1.01.0Co3O4------ ------钙长石 ---0.2 ---0.2液状载体 19.8 19.819.8 19.8老化条件 120h, 120h, 120h, 120h,(℃) 150150 150150老化粘着力[N] 14.6 20.811.7 1.5.4可焊性 39% 34%35% 36%[展涂增加]实施例1-16均使用了14.5%左右的相似的钯含量,Ag与Pd之比为约3.9/1。如实施例17-28中所证实的那样,本发明的合金含量可以是宽范围的。例如,对于使用了20%Pd(实施例17和18)的糊料制剂来说,0.5%钙长石显示出老化的粘着力增强刚好超过12N。由向使用了7%铂(实施例19和20)的银糊料制剂中加入0.25%钙长石能发现11N的增强。实施例21和22中披露了含有16%Pd和4%Pt的三元Ag/Pd/Pt糊料,在所述实施例中证实了由1%钙长石产生近12N的增益。同样,实施例23和24中显示了刚好含有3.5%Pd和1%Pt的三元Ag/Pd/Pt糊料,其中0.2%钙长石将老化的粘着力由16.7增进至21.3N。在实施例25和26中,仅含有0.4%Pt的本发明的低粘结剂Ag/Pt组合物,由于0.2%钙长石而显示出更适度的粘着力增进,实施例27和28显示了含有18%Pt的组合物。
实施例25和26中由向Pt/Ag糊料中加入钙长石产生的粘着力增益降低可能是由于在起始组合物中无机粘结剂的含量低(基糊总量的1%)。因此,从实验来看,钙长石本身实际上不能导致粘着力增进,而必须与无机粘结剂一同使用;1%无机粘结剂是加入钙长石能得到有益结果的实际低限。另一方面,如实施例21和22中所示,钙长石可有益地用于无机粘结剂的浓度高达18%的导体体系中,尽管具有大于约18%粘结剂的导体的可焊性将可能被降低,正如实施例21和22中由90-93左右的可焊性值证实的那样。
加入钙长石的有益效果已在所谓玻璃粘结、氧化物粘结和混合的粘结体系中得到证实。玻璃粘结体系仅使用玻璃熔块作无机粘结剂,见实施例17和18和实施例21和22(当然,钙长石糊料在实施例18和22中的存在在技术上不能称作玻璃粘结体系,但“玻璃粘结的”一词用于描述起始糊制剂)。在本发明的实施例中的玻璃粘结体系具有所有所用的单一玻璃料,当然也可以使用玻璃料的混合物,这对本领域技术人员是显而易见的。实施例25和26表明了向氧化物粘结体系中加入钙长石的益处,而实施例1-16显示出钙长石在混合的粘结体系中的有益作用。而且混合的粘结体系还使用了单一玻璃料,当然也可以使用玻璃料的混合物,这对本领域的技术人员是显而易见的。
钙长石加入量的高限由可焊性的降低程度来定,应使得可焊性的降低在允许的限度内。在某种程度上,此高限取决于合金含量,因为高Pd含量的导体需要较高的玻璃料含量以进行粘结,并且,允许较高水平的糊料添加剂,如本领域技术人员公知的那样。实施例18和22中分别使用了0.5%和1.0%的钙长石浓度,这对其起始组合物的可焊性几乎无影响。据认为钙长石浓度大于约3%在有实际意义的所有体系中均能导致可焊性降低。然而,在可焊性几乎没有或没有价值的应用中或者在用其它手段实现互接的应用中,可以使用高于3%的钙长石。
表5实施例序号 1718192021222324252627 28Ag 47.0 47.0 56.0 56.0 44.0 44.0 70.0 70.0 83.3 83.3 54.0 54.0Pd 20.0 20.0 --- --- 16.0 16.0 3.5 3.5 --- --- ------Pt --- --- 7.0 7.0 4.0 4.0 1.0 1.0 0.4 0.4 18.0 18.0玻璃料型A A A A A A C C --- --- C C玻璃料 15.0 15.0 12.0 12.0 18.0 18.0 1.5 1.5 --- --- 2.06 2.06Bi2O3--- --- --- --- --- --- 1.0 1.0 0.45 0.45 4.94 4.94PbO --- --- --- --- --- --- --- --- 0.15 0.15 ------烧绿石 --- --- 2.0 2.0 --- --- 3.5 3.5 --- --- ------Cu2O --- --- --- --- --- --- 0.15 0.15 0.23 0.23 0.30.3ZnO --- --- --- --- --- --- --- --- 0.17 0.17 ------Co3O4--- --- --- --- --- --- 0.5 0.5 --- --- ------钙长石 --- 0.5 --- 0.25 --- 1.0 --- 0.2 --- 0.2 ---0.2液状载体18.0 18.0 23.0 23.0 18.0 18.0 18.85 18.85 15.3 15.3 20.7 20.7老化48h, 48h, 48h, 48h, 48h, 48h, 48h, 48h, 48h, 48h, 48h, 48h,条件150 150 150 150 150 150 150 150 170 170 170170(℃)老化粘着力 7.2 19.3 18.5 29.6 13.1 24.9 16.7 21.3 10.4 12.2 16.1 20.9[N]可焊性 99% 99% 99% 96% 93% 90% 100% 100% 96% 98% 99% 100%[百分数]
本发明不限于银基导体制剂。实施例29给出了Au/Pt/Pd组合物,表明使用0.2%钙长石能获得高粘着力和可焊性。在此体系中,若要获得高的老化粘着力而不使用钙长石,则需要能降低可焊性的相当高浓度的无机粘结剂。所用的焊剂为63/37Sn/Pb,温度为240℃。该糊料被印制在Coor Ceramics(Golden Colorado)96%氧化铝基底上,并烧制6x。表6实施例序号29Au56.5Pd2.58Pt15.2玻璃料型 C玻璃料2.2Bi2O34.6Co3O40.35钙长石0.20液状载体 19.8老化条件 300h,(℃) 150老化粘着力[N]氧化铝>25N老化粘着力[N]5704电介质>25N可焊性[百分数]氧化铝99%可焊性[百分数] 100%5704电介质为测定厚膜导体制剂中钙长石添加剂的通用性,对几种其它的导体玻璃体系进行了评价,如实施例30-39中所述。例如,将硼硅酸锌配合物(玻璃D)用在Ag/Pd/Pt导体制剂中,见实施例30和31。这里,氧化钴为钙长石所替代,粘着性能增强。在实施例32-39中还测定了一系列无铅玻璃。所测定的特定制剂不具强的老化粘着力。实施例32-39中的所有值均在18N以下,但0.2%钙长石能增强粘着力,在这些情况下由3.1增至5.6N。玻璃料浓度较高或加入其它的过渡金属氧化物例如氧化钴或氧化镍可能会进一步在这些实施例中增加粘着力。
实施例40-42用于此较和证实在本发明中非晶态铝硅酸钙玻璃不能用来代替钙长石。Ca-Al-Si玻璃的重量百分组成如下24.0%CaO,14.6%Al2O3,61.4%SiO2。这里,当将0.2%的此种Ca-Al-Si玻璃加至起始组合物中时,观察不到老化的粘着力的变化。这与加入0.2%晶状钙长石的情形正好相反(注意,实施例40和42实质上分别是实施例13和14的重制,尽管用不同批的粉末。它们间试验数据的差异可用次要操作变量例如在最终糊料中的金属颗粒的附聚程度、导体的致密程度等来解释)。
表7实施例序号 30 3132 3334 35 36 3738 39Ag 47.0 47.0 56.5 56.5 56.5 56.5 56.5 56.5 56.5 56.5Pd 16.0 16.0 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5Pt 1.01.0 --- --- ------------ ------玻璃料型 D D EE F F G G H H玻璃料 3.03.0 6.0 6.0 6.06.06.06.0 6.06.0Bi2O39.09.0 --- --- ------------ ------烧绿石 0.75 0.75 2.0 2.0 2.02.02.02.0 2.02.0Cu2O ------ 1.0 1.0 1.01.01.01.0 1.01.0Co3O40.25 --- --- --- ------------ ------钙长石 ---0.25 --- 0.2 ---0.2---0.2 ---0.2液状载体 23.0 23.0 19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8老化 48h, 48h, 48h,48h, 48h, 48h, 48h, 48h, 48h, 48h,条件 150150 150 150 150150150150 150150(℃)老化粘着力 20 2812.4 16.2 6.411.8 4.77.8 9.715.3[N]可焊性 100% 100% 100%100% 100% 100% 59% 63% 62% 60%[百分数]
表8实施例序号 404142Ag 56.5 56.5 56.5Pd 14.5 14.5 14.5玻璃料型 B B B玻璃料 6.0 6.0 6.0烧绿石 2.0 2.0 2.0Cu2O1.0 1.0 1.0Ca-Al-Si玻璃 --- 0.2 ---钙长石 --- --- 0.2液状载体 19.8 19.8 19.8老化条件 48h, 48h, 48h,(℃) 150 150 150老化粘着力[N]5.4 5.0 12.6可焊性 100% 99% 100%[百分数]
权利要求
1.一种厚膜组合物,它包括基糊(重量)(A)50-90%(重量)细碎颗粒状金属导电相,(B)1-18%(重量)无机粘结剂相,(C)0.01-3.0%(重量)下式代表的增粘剂[Ma1+]x[Mb2+]1-xAl2-xSi2+xO8,式中Ma选自K、Na,Mb是Ca,和x是0-1;并且所有的(A)、(B)和(C)均被分散在有机介质中。
2.如权利要求1的组合物,其中增粘剂的化学式为[Mc3+]x[Mb2+]1-xAl2+xSi2-xO8,其中三价离子Mc选自Bi、Fe、Mn、Cr、V、Sc、In、Y、Gd、Eu、Sm、Nd、Pr、Ce、La和Sb。
3.权利要求1的组合物,其中增粘剂的化学式为〔Md〕2〔Me〕〔Mf〕2O7,其中Md选自Ca、Na,Me选自Mg、Al,和Mf选自Si、Al。
4.权利要求1的组合物,其中增粘剂是CaAl2Si2O8。
5.权利要求1的组合物,其中导电相选自Ag,Ag和Pd,Ag和Pt,或Ag和Pd和Pt,其中Pd含量为0-20%(重量)以及Pt含量为0-20%(重量)。
6.权利要求1的组合物,其中导电相选自Au,Au和Pd,Au和Pt,或Au和Pd和Pt,其中Pd含量为0-20%(重量),Pt含量为0-20%(重量)。
7.权利要求1的组合物,其中无机粘结剂包括一种或多种玻璃。
8.权利要求1的组合物,其中无机粘结剂包括一种或多种玻璃和一种或多种氧化物或氧化物前体。
9.权利要求1的组合物,其中无机粘结剂包括一种或多种氧化物或氧化物前体。
10.权利要求8的组合物,其中玻璃选自铋酸盐玻璃料、硅酸铅玻璃料、硼硅酸铅玻璃料或其混合物;氧化物(一种或多种)包括0-3%(重量)氧化铜、0-4%(重量)烧绿石相关化合物、0-1%(重量)氧化钴、0-5%(重量)氧化铅和0-12%(重量)氧化铋,或者它们的前体;所有的量均以基糊为基准计。
11.权利要求10的组合物,其中烧绿石相关化合物符合式(MxM’2-x)M”2O7-z,式中M选自Pb、Bi、Cd、Cu、Ir、Ag、Y、原子序数为57-71的稀土金属和它们的混合物,M’选自Pb、Bi和它们的混合物,M”选自Ru、Ir、Rh及其混合物,x=0-0.5,和z=0-1。
12.权利要求11的组合物,其中烧绿石相关化合物是Cu0.5Bi1.5Ru2O6.75。
全文摘要
本发明涉及厚膜导体组合物,该组合物由于加入了长石家族的结晶性物质而增强了可焊性和对基底的粘着力。
文档编号C09J201/04GK1129340SQ95119050
公开日1996年8月21日 申请日期1995年12月6日 优先权日1994年12月6日
发明者M·H·拉布兰治, B·J·施克林, B·E·泰勒 申请人:纳慕尔杜邦公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1