操作具有可变电压转换器的车辆的方法

文档序号:3882556阅读:127来源:国知局
操作具有可变电压转换器的车辆的方法
【专利摘要】一种用于操作具有可变电压转换器(VVC)的混合动力电动车辆的方法,所述方法包括:响应于请求VVC测试的信号而命令跨越VVC的第一电压;在第一可校准时间段连续地监视的第一VCC电压差;如果第一电压差超过第一可校准阈值达第一可校准时间段的情况下产生诊断信号。所述方法还包括:响应于第一电压差低于第一校准阈值,命令跨VVC的第二电压;在第二可校准时间段连续地监视第二VCC电压差;在第二电压差超过第二可校准阈值达第二可校准时间段的情况下产生诊断信号;响应于第二电压差低于第二可校准阈值而信号通知测试通过。
【专利说明】操作具有可变电压转换器的车辆的方法

【技术领域】
[0001]本公开涉及用于混合动力电动车辆的动力传动系中的包括可变电压转换器测试的通电(power-up)顺序。

【背景技术】
[0002]混合动力电动车辆(HEV)包括内燃发动机和一个或多个电机,其中,用于所述发动机的能量源是燃料,用于电机的能量源是电池。在HEV中,内燃发动机是用于车辆推进的主要能源,而电池为车辆推进提供补充能量。电池使燃料能量得到缓存并以电的形式来重新得到动能。插电式混合动力电动车辆(PHEV)与HEV相似,但是具有可以通过外部电网充电的更大容量的电池。在PHEV中,电池是用于车辆推进的主要能源,直到电池耗电达低能量水平为止,此时,PHEV像HEV —样地运转以进行车辆牵引。
[0003]电动车辆可以包括连接在电池和电机之间的直流(DC)电压转换器。这样的电压转换器增加或升高提供到电机的电功率的电压电势,并有助于扭矩能力优化。当电机是交流(AC)电机时,电动车辆还可以包括连接在DC电压转换器和电机之间的逆变器。在驱动循环期间出现电压转换器故障情况下,电动车辆将经历关机(shutdown)。如果出现该现象,则该现象降低消费者满意度。


【发明内容】

[0004]一种用于操作具有可变电压转换器(VVC)的车辆的方法和系统,包括:响应于起动请求并响应于受限操作模式可用,命令跨越WC的第一电压。所述方法另外地包括:响应于第一电压和测量的VVC电压之间的电压差低于阈值,命令跨越VCC的第二电压。如果电压差超过阈值长达指定的时间段,则产生诊断信号。
[0005]在一些实施例中,第一命令的电压大于测量的电池电压。在这样的实施例中,当电压差低于阈值时,命令等于电池电压的跨VVC的第二电压。如果第二电压和测量的VVC电压之间的电压差超过第二阈值达第二指定的时间段,则产生诊断信号。如果电压差降到低于第二阈值,则信号通知测试通过。
[0006]在一些实施例中,如果产生诊断信号,则启用受限操作模式。在其他的实施例中,所述方法还包括:隔离VVC与至少一个电机,这可以通过使至少一个绝缘栅双极型晶体管(IGBT)开路来执行。在一些实施例中,可以响应于指示存在传感器异常的信号和指示VVC中的至少一个开关可能未被切换的信号中的一种,中止测试。如果以这样的方式中止测试,则启用受限操作模式。在另一个实施例中,响应于指示受限操作模式已经启用的信号,可以中止测试。
[0007]在一个实施例中,提供一种用于测试VVC的车辆系统,所述系统包括电子控制单元和连接在电池和至少一个电机之间的VVC。电子控制单元被构造为:隔离VVC与所述至少一个电机;命令跨越VVC的电压;监视命令的电压和测量的VVC电压之间的电压差;如果电压差超过相关阈值达可校准时间段,则产生诊断信号。
[0008]在一些实施例中,电子控制单元还被构造为检测车辆起动请求。电子控制单元还可被配置为检测受限操作模式可用的信号。电子控制单元还可被配置为响应于受限操作模式启用的信号而中止测试。电子控制单元还可被配置为响应于指示存在传感器异常的信号或响应于指示VVC中的至少一个开关可能未被切换的信号而中止测试。在一些实施例中,电子控制单元命令的电压大于测量的电池电压。在这样的实施例中,电子控制单元还可被构造为:响应于电压差下降到低于相关的阈值,命令跨越VVC的第二电压,第二电压等于测量的电池电压;监视第二命令的电压和测量的VVC电压之间的第二电压差;如果第二 VCC电压差超过第二阈值达第二可校准时间段,则产生诊断信号。在这样的实施例中,电子控制单元还可被配置为在第二电压差下降到低于第二阈值时信号通知测试通过。
[0009]在一个实施例中,一种用于操作具有VVC的HEV的方法,所述方法包括:响应于请求VVC测试的信号而命令跨越VVC的第一电压;连续地监视第一 VVC电压差达第一可校准时间段;如果第一电压差超过第一可校准阈值达第一可校准时间段,产生诊断信号。所述方法还包括:响应于第一电压差降到低于第一可校准阈值,命令跨越VVC的第二电压;在第二可校准时间段连续地监视第二 VVC电压差;如果第二电压差超过第二可校准阈值达第二可校准时间段,产生诊断信号;响应于第二电压差降到低于第二可校准阈值而信号通知测试通过。
[0010]根据第九方面,提供一种用于测试连接在牵引电池和至少一个电机之间的可变电压转换器(VVC)的车辆系统,所述车辆系统包括电子控制单元,电子控制单元被构造为:隔离VVC与所述至少一个电机;命令跨越VVC的电压;监视命令的电压和测量的VVC电压之间的电压差;在电压差超过相关阈值达可校准时间段的情况下产生诊断信号。
[0011]根据第十方面,其中,电子控制单元还被构造为检测车辆起动请求。
[0012]根据第十一方面,其中,电子控制单元还被配置为检测受限操作模式可用的信号。
[0013]根据第十二方面,其中,电子控制单元还被配置为响应于受限操作模式启用的信号而中止测试。
[0014]根据第十三方面,其中,电子控制单元还被配置为响应于指示存在传感器异常的信号或响应于指不VVC中的至少一个开关可能未被切换的信号而中止测试。
[0015]根据第十四方面,其中,命令的电压大于测量的电池电压。
[0016]根据第十五方面,其中,电子控制单元还被配置为:响应于电压差降到低于相关的阈值电压,命令跨越VVC的第二电压,第二电压等于测量的电池电压;监视第二命令的电压和测量的VVC电压之间的第二电压差;在第二电压差超过第二阈值达第二可校准时间段的情况下产生诊断信号。
[0017]根据第十六方面,其中,电子控制单元还被配置为在第二电压差降到低于第二阈值时信号通知测试通过。
[0018]根据第十七方面,提供了一种用于操作具有可变电压转换器(VVC)的混合动力车辆的方法,所述方法包括:响应于请求VVC测试的信号而命令跨越VVC的第一电压;连续监视第一命令的电压和测量的VVC电压之间的第一电压差;在第一电压差超过第一可校准阈值达第一可校准时间段的情况下产生诊断信号;响应于第一电压差降到低于第一可校准阈值,命令跨越VVC的第二电压;连续监视第二命令的电压和测量的VVC电压之间的第二电压差;在第二电压差超过第二可校准阈值达第二可校准时间段的情况下产生诊断信号;响应于第二电压差降到低于第二可校准阈值而信号通知测试通过。
[0019]根据第十八方面,其中,命令第一电压的步骤还响应于指示缩减功率驱动模式可用的信号。
[0020]根据第十九方面,所述方法还包括:响应于缩减功率驱动模式启用的信号而中止测试。
[0021]根据第二十方面,所述方法还包括:隔离VVC与至少一个电机。
[0022]根据本公开的实施例提供了多个优点。例如,本公开提供一种可以响应于VVC自测试来产生诊断信号并执行车辆仍可安全运行的LOS驱动模式的测试策略。此外,这里公开的测试策略与先前的方法相比更为快速,这是因为不存在预定的电压安定时间段。

【专利附图】

【附图说明】
[0023]图1是用于评估根据本公开的可变电压转换器(VCC)的性能的车辆系统的车辆示意图;
[0024]图2是图1的车辆系统的放大示意图;
[0025]图3是图1和图2的VVC、第一开关单元和第二开关单元的电路图;
[0026]图4是示出根据本公开的VVC自测试前置条件和中止条件的流程图;
[0027]图5是示出根据本公开的测试方法的实施例的流程图。

【具体实施方式】
[0028]如本领域普通技术人员将理解的,如参照任意一幅附图进行示出和描述的本发明的多种特征可以与在一幅或多幅其他附图中示出的特征进行组合,以产生没有被明确示出或描述的本公开的实施例。示出的特征的组合提供了用于典型应用的代表性实施例。然而,与本公开的教导一致的特征的多种组合和变形可以是对特定的应用或实施方式来说所期待的。
[0029]应在车辆启动时对电压转换器进行测试,以确保适当的电驱动操作。用于在车辆启动时测试电压转换器的一种方法(在第13/537,123号共同在审美国专利申请中进行了描述)包括施加命令的电压、等待校准的“安定(settling)”时间段、然后测量电压转换器上的电压。如果命令的电压和测量的电压之间的差异超过阈值,则车辆将不起动。然而,因为在电压测量之前的预定的安定时间段,所以这样的方法相对地耗时。如将在下面描述的,根据本公开的方法提供了多种优点。
[0030]参照图1,示出了根据一个或多个实施例的用于评价电动车辆的可变电压转换器(VVC)的车辆系统,并总体地以附图标记10来引用。车辆系统10被绘示在车辆12内。车辆系统10包括彼此通信的控制器14和VVC16。控制器14接收代表VVC16的电压和电流的测量的输入信号,并在提供用于车辆推进的功率之前评估VVC16的性能。
[0031]示出的实施例将车辆12绘示为在内燃发动机20的辅助下由电机18推进的电动车辆的HEV。根据一个或多个实施例,电机18是AC电机,并被绘不为图1的“电机”18。电机18接收电功率并提供用于车辆推进的驱动扭矩。电机18还用作用于通过再生制动将机械功率转换为电功率的发电机。
[0032]根据一个或多个实施例,车辆12包括具有功率分配结构的变速器22。变速器22包括第一电机18和第二电机24。根据一个或多个实施例,第二电机24是AC电动机,并被绘示为图1中的“发电机”24。与第一电机18相似,第二电机24接收电功率并提供输出扭矩。第二电机24还用作用于将机械功率转换为电功率并优化通过变速器22的功率流的发电机。
[0033]变速器22包括行星齿轮单元26,其中,行星齿轮单元26包括恒星齿轮28、行星架30和环齿轮32。恒星齿轮28连接到第二电机24的输出轴以接收发电机扭矩。行星架30连接到发动机20的输出轴以接收发动机扭矩。行星齿轮单元26组合发电机扭矩和发动机扭矩,并绕环齿轮32提供组合的输出扭矩。行星齿轮单元26用作连续可变的传动系而没有任何固定的或“阶跃式”的比率。
[0034]根据一个或多个实施例,变速器22还包括单向离合器(0.W.C.)和发电机制动器33。0.ff.C.结合到发动机20的输出轴,以仅允许输出轴沿一个方向转动。0.ff.C.防止变速器22被发动机20逆驱动。发电机制动器33结合到第二电机24的输出轴。发电机制动器33可以启用以“制动”或防止恒星齿轮28和第二电动机24的输出轴旋转。在其他的实施例中,去除了 0.W.C.和发电机制动器33,并以用于发动机20和第二电机24的控制策略来进行替换。
[0035]变速器22包括具有第一齿轮34、第二齿轮36和第三齿轮38的中间轴。行星输出齿轮40连接到环齿轮32。行星输出齿轮40与第一齿轮34啮合,以在行星齿轮单元26和中间轴之间传递扭矩。输出齿轮42连接到第一电机18的输出轴。输出齿轮42与第二齿轮36啮合,以在第一电机18和中间轴之间传递扭矩。变速器输出齿轮44连接到变速器输出轴46。变速器输出轴46通过差速器50结合到成对的驱动轮48。变速器输出齿轮44与第三齿轮38啮合,以在变速器22和驱动轮48之间传递扭矩。
[0036]虽然以HEV12的上下文环境进行距离说明和描述,但是应该理解的是,可以在其他类型的电动车辆上实施车辆系统10的实施例,诸如在没有内燃发动机的辅助的情况下由电机驱动的电池电动车辆(BEV)。
[0037]车辆12包括用于存储电能的电池52。电池52是作为可以输出电功率以操作第一电机18和第二电机24的高电压电池的牵引电池。电池52还在第一电机18和第二电机24作为发电机运转时从第一电机18和第二电机24接收电功率。电池52是由几个电池模块(未示出)构成的电池组,其中,每个电池模块包括多个电池单体(未示出)。车辆12的其他的实施例涉及补充或替代电池52的不同类型的能量存储装置,诸如电容器和燃料电池(未示出)。高电压总线将电池52电连接到第一电机18和第二电机24。
[0038]车辆包括用于控制电池52的电池能量控制模块(BECM)54。BECM54接收指示车辆条件和电池条件(诸如电池温度、电压和电流)的输入。BECM54计算和估计电池参数,诸如电池的荷电状态和电池的功率容量。BECM54将指示电池的荷电状态和电池的功率容量的输出提供到其他的车辆系统和控制器。
[0039]变速器22包括VVC16和逆变器56。VVC16和逆变器56电连接在主电池52与第一电机18之间并在电池52与第二电机24之间。VVC16升高或“抬升”由电池52提供的电功率的电压电势。逆变器56将由主电池52 (通过VVC16)提供的DC功率逆变为用于操作电机18、24的AC功率。逆变器56还将由电机18、24提供的AC功率整流为用于对主电池52充电的DC。
[0040]变速器22包括用于控制电机18、24、VVC16和逆变器56的电动机发电机控制单元(MG⑶)58。MG⑶58包括除了其他方面之外还被构造为监视电机18、24的位置、速度和功耗的控制器14。控制器14还监视在VVC16和逆变器56内的多个位置的电学参数(例如,电压和电流)。MGCU58将与这样的信息相应的输出信号提供到其他的车辆系统。
[0041]车辆12包括与其他的车辆系统进行通信的混合动力控制单元(HCU) 60以及用于协调它们的功能的控制器。虽然示出了单个控制器,但是HCU60可以包括可以用于根据总体车辆控制逻辑或软件来控制多个车辆系统的多个控制器。
[0042]包括HCU60和控制器14的车辆控制器通常包括任意数量的微处理器、ASIC、1C、存储器(例如,闪存、R0M、RAM、EPR0M和/或EEPR0M)以及软件代码,以彼此共同运行以执行一系列的操作。控制器还包括基于计算和测试数据并存储在存储器内的“查找表”或预定数据。HCU60通过一种或多种硬线车辆连接使用公共总线协议(例如,CAN和LIN)与其他的车辆系统和控制器(例如,BECM54和MG⑶58)通信。HCU60接收表示变速器22的当前位置(例如,驻车档、倒车档、空档或行车档)的输入(PRND)。HCU60还接收表示加速器踏板位置的输入。HCU60将代表期望的轮扭矩、期望的发动机速度和发电机制动命令的输出提供到MGCU58,并将接触器控制提供到BECM54。
[0043]车辆12包括制动系统(未示出),其中,制动系统包括制动器踏板、助力器、主缸以及连接到驱动轮48的机械连接件,以进行摩擦制动。制动系统还包括位置传感器、压强传感器或它们的组合,以提供诸如与驾驶员请求的制动器扭矩对应的制动器踏板位置的信息。制动系统还包括与HCU60通信以协调再生制动和摩擦制动的制动系统控制模块(BSCM)62。根据一个实施例,BSCM62将再生制动命令提供到HCU60。
[0044]车辆12包括用于控制发动机20的发动机控制模块(ECM) 64。HCU60将基于包括APP的多个输入信号的并与驾驶员的请求对应的输出(期望的发动机扭矩)提供到ECM64,以进行车辆牵引。
[0045]根据一个或多个实施例,车辆12被构造为插电式混合动力电动车辆(PHEV)。电池52周期性地从外部电源或电网经充电端口 66接收AC能量。车辆12还包括从充电接口 66接收AC能量的车载充电器68。充电器68为将接收到的AC能量转换为适于对电池52进行充电的DC能量的AC/DC转换器。反过来,充电器68在充电期间将DC能量提供到电池52。
[0046]车辆12配备有受限操作策略(LOS)驱动模式。LOS模式的操作是提供部分的车辆性能的缩减功率驱动模式,且其可以在存在诊断信号时启用。LOS模式可以根据存在的诊断信号的类型而使车辆能够在一定范围的缩减速度下操作。在未配备有LOS模式的车辆中,如果产生了这样的诊断信号,则车辆可能是不可驱动的。HCU60响应于多种其他车辆系统的诊断而产生指示LOS模式可用的信号。MG⑶58响应于来自HCU的信号并进一步响应于VVC状态检查而产生控制信号(L0S_0K)。
[0047]参照图2,VVC16升高或“抬升”由主电池52提供的电功率的电压电势。主电池52提供高电压(HV)DC功率。接触器70串联连接在主电池52和VVC16之间。当接触器70闭合时,HV DV功率可以从主电池52传递到VVC16。输入电容器72并联连接到主电池52。输入电容器72稳定总线电压并减小任何电压和电流的纹波。VVC16接收HV DC功率并升高或“抬升”输入电压的电压电势。
[0048]逆变器56在AC和DC之间逆变/整流电功率。输出电容器74并联连接到VVC16和逆变器56。输出电容器74稳定总线电压并减小电压和电流的纹波。在一个或多个实施例中,逆变器56包括具有以三相构造定向的一系列开关的双向电路(未不出)。逆变器56包括用于控制第一电机18和第二电机24中的每个的单独的电路(在图2中被总体地绘示为两个逆变器)。
[0049]车辆系统10包括用于测量VVC16的电学参数的传感器(未不出)。第一电压传感器(未示出)测量主电池52的电压,并将对应的输入信号(Vbat)提供到MG⑶58。在一个或多个实施例中,第一电压传感器测量与主电池电压(Vbat)对应的输入电容器72上的电压。
[0050]第二电压传感器(未不出)测量VVC16的输出电压,并将对应的输入信号(Vd。)提供到MGCU58。在一个或多个实施例中,第二电压传感器测量与DC总线电压对应的输出电容器74上的电压。电流传感器(未示出)测量提供到VVC16的输入电流,并将对应的输入信号(IJ 提供到 MGCU58。
[0051]MG⑶58控制VVC16的输出电压。MG⑶58包括控制器14和栅极驱动电路76。控制器14接收来自HCU60和其他控制器的输入,并确定VVC16的期望输出电压。控制器14然后将与输出电压命令(Vrand)对应的控制信号(Vgate)提供到栅极驱动电路76。栅极驱动电路76放大控制信号(Vgate),并将放大的控制信号(Vgate」、Vgate 2)提供到VVC16。控制器14响应于(V_—P Vgate 2)而监视输入信号(Vbat、Vdc, Il),以评价VVC16的性能。
[0052]MGCU58通过将控制信号(Venable)提供到逆变器56并通过控制Vde来控制提供到电机18、24的AC电压。逆变器56包括可以为集成栅双极型晶体管(IGBT)的一系列的开关(未示出)。控制信号(Vmable)包括提供到每个开关以控制它们的操作的栅极信号。根据一个或多个实施例,MG⑶58被构造为在评价VVC16期间(例如,通过使逆变器56中的开关开路)停用第一电机18和第二电机24,以防止产生扭矩。
[0053]参照图3,VVC16包括用于升高输入电压(Vbat)以提供输出电压(Vd。)的第一开关单元78和第二开关单元80。第一开关单元78包括以极性转换(反并联)的方式并联连接到第一二极管84的第一晶体管82。第二开关单元80包括反并联连接到第二二极管88的第二晶体管86。每个晶体管82、86可以为任意类型的可控开关(例如,IGBT或场效应晶体管(FET))。另外,每个晶体管82、86由MG⑶58独立控制。输入电感器90串联连接在主电池52和开关单元78、80之间。输入电感器90对输出电容器74充电。
[0054]MGCU58控制VVC16的输出电压(Vd。)。栅极驱动电路76向每个晶体管82、86提供基于Vcmd的控制信号(V_)。栅极驱动电路76被构造为提供与特定类型的电压改变对应或响应于Vd。(例如,阶跃响应或斜坡响应)的栅极信号。在一个或多个实施例中,晶体管82、86被构造为响应于高电压栅极信号而开路、响应于低电压栅极信号而闭合。
[0055]参照图1至图3,车辆12包括多个控制器(例如,HCU60、控制器14、BECM54等)。这些车辆控制器在允许车辆推进之前在车辆启动时执行一系列的测试。这些测试可以由输入信号(诸如ΚΕΥ_0Ν)初始化。当驾驶员将钥匙(未示出)扭转到“on”位置(或通过一些其他程序启动车辆12)时产生ΚΕΥ_0Ν信号。一些测试可以同时进行,然而,其他的测试顺序进行。因此,快速地执行测试以避免延迟车辆推进。
[0056]现在参照图4,车辆系统10可以在车辆启动时执行VVC16的自测试。如框100所示,接收车辆启动请求。然后,如框102所示并结合由框104-110代表的预置条件的列表,确定是否满足初始化VVC自测试的预置条件。
[0057]在开始VVC自测试之前必须满足多种条件,至少包括下述条件。VVC自测试必须在之前未曾运行过,如框104所示。MGCU58必须未正在经历滚动重置(rolling reset),如框106所示。如果MG⑶58正处在滚动重置中,则MG⑶58不能开始或控制自测试。HCU60必须使MG⑶58能够切换,如框106所示。这出现在HCU60已经确定电池侧接触器在预充电之后闭合且DC总线电压已经到达装置可以开始切换的电平。MG⑶58必须正在响应于来自HCU的信号和VVC状态检查而产生L0S_0K信号。如果这些条件中的任意条件没有满足,则算法可以等待长达校准时间,然后再次评价是否满足这样的条件。校准时间可以为例如100ms。
[0058]如果测试的预置条件中的任意一项没有满足,则不开始VVC自测试,如框112所示。在一些实施例中,算法可以等待长达校准时间,然后再次评价是否满足这样的条件。校准时间可以为例如100ms。如果满足了测试预置条件,则开始VVC自测试,如框116所示。将在下面结合图5来详细描述测试。
[0059]在开始测试之后,测试可以如框118所示地成功完成。成功完成测试可以使MG⑶58产生“测试通过”标志或诊断信号,如下面参照图5所描述的。然而,可以响应于多种条件来中止测试,如框120所示。如果MG⑶58停止产生L0S_0K信号,则将中止测试。这可以响应于使VVC中的开关可不再进行切换的来自HCU60的信号或者在内部VVC诊断表明开关可能不再进行切换的条件下而出现。还将响应于传感器异常信号而使测试中止。其可以是可能影响VVC操作的在VVC16、HCU60、MG⑶58或其他系统中的异常。此外,如果由其他测量子系统启用LOS模式,则将使测试中止。
[0060]如果出于上述原因中的任意原因而使测试中止,则启用LOS模式,如框122中所示。这可以通过来自HCU60的信号来执行。按照这样的方式,车辆仍可在缩减功率模式下操作而非不能运动。如果因基于VVC测试之外的条件启用LOS模式而使测试中止,则车辆将保持在LOS |吴式下。
[0061]现在参照图5,将描述VVC自测试过程。VVC与至少一个电机隔离,如框124所示。这可以通过使至少一个IGBT开路来执行,如框126所示。在一个实施例中,VVC中的所有的IGBT开路。检测电池电压Vbat,如框128所示。在测试开始时间L=O时,MG⑶58命令VVC16提供升压电压Vemtu,如框130所示。MGCU58将与比电池电压大预定的电压差的电压命令值(乂》<1,1=^+^)对应的控制信号提供到—(:16。测量VVC电压V1,并将差IVamu-V1I与阈值电压
^threshold, I
进行比较,如操作132所示。
[0062]如果电压差不小于阈值,则确定逝去时间h是否超过测试时间阈值ttostold,如操作134所示。如果逝去时间不超过阈值时间,则算法回到操作132,并再次比较电压差和电压阈值。如果确定逝去时间已超过测试时间阈值(意味着测试“超时”),则产生诊断信号并启用LOS模式,如框136所示。
[0063]返回操作132,如果确定电压差小于电压阈值,则在第二测试开始时间t2=0时,MG⑶58命令VVC16提供等于电池电压Vbat的第二升压电压Vem42,如框138所示。测量第二WC电压V2,并将差I Vamu - V21与第二阈值电压Vtoshtjltu进行比较,如操作140所示。
[0064] 如果电压差不小于阈值,则确定逝去时间t2是否超过测试时间阈值ttostold,如操作142所示。如果逝去时间不超过阈值时间,则算法回到操作140,并再次比较电压差和电压阈值。如果确定逝去时间已经超过测试时间阈值,则产生诊断信号并启用LOS模式,如框136所示。
[0065]返回操作140,如果确定电压差小于第二电压阈值,则产生指示VVC测试通过的信号,如框144所示。
[0066]如可从多种实施例所获知的,本发明提供了一种可以响应于VVC自测试而产生诊断信号并实现车辆仍可以安全运行的LOS驱动模式的测试策略。此外,这里公开的测试策略比先前的方法更为快速,这是因为不存在用于电压安定的预定时间延迟。
[0067]虽然已经详细描述了最佳实施方式,但是本领域技术人员将理解,多种可选的设计和实施例落入权利要求的范围内。另外,多种实施性实施例的特征可以进行组合,以形成本发明的进一步的实施例。虽然可能已经描述了多种实施例以关于一种或多种期望的特性提供相对于其他实施例或现有技术的实施方式来说提供优点或是优选的,但是本领域普通技术人员将理解,一个或多个特征或特性可以妥协以实现期望的整体系统属性,这依赖于特定的应用和实施方式。这些属性可以包括但不限于成本、强度、耐操性、寿命成本、市场性、外观、包装、尺寸、可服务性、重量、可制造性、组装容易程度等。被描述为关于一个或多个特性与其他的实施例或现有技术的实施方式相比期望度较小的上述实施例不超出本公开的范围且可能对特定的应用来说是期望的。
【权利要求】
1.一种用于操作具有可变电压转换器的车辆的方法,包括: 响应于起动请求和受限操作模式可用,命令跨越可变电压转换器的第一电压; 响应于第一电压和测量的可变电压转换器电压之间的电压差低于阈值,命令跨越可变电压转换器的第二电压; 在电压差超过阈值长达指定的时间段的情况下产生诊断信号。
2.如权利要求1所述的方法,其中,第一命令的电压大于测量的电池电压。
3.如权利要求2所述的方法,所述方法还包括: 当电压差低于阈值时,命令等于测量的电池电压的跨越可变电压转换器的第二电压; 响应于第二电压和测量的可变电压转换器电压之间的第二电压差超过第二阈值达第二指定的时间段,产生诊断信号; 如果第二电压差降到低于第二阈值,则发信号通知测试通过。
4.如权利要求1所述的方法,所述方法还包括:在产生诊断信号的情况下启用受限操作模式。
5.如权利要求1所述的方法,所述方法还包括:隔离可变电压转换器与至少一个电机。
6.如权利要求5所述的方法,其中,所述隔离可变电压转换器与至少一个电机的步骤包括:使至少一个绝缘栅双极晶体管开路。
7.如权利要求1所述的方法,所述方法还包括: 响应于指示存在传感器异常的信号和指示可变电压转换器中的至少一个开关可能未被切换的信号中的一种,中止测试; 启用受限操作模式。
8.如权利要求1所述的方法,所述方法还包括:响应于指示受限操作模式启用的信号,中止测试。
【文档编号】B60R16/02GK104044529SQ201410087590
【公开日】2014年9月17日 申请日期:2014年3月11日 优先权日:2013年3月11日
【发明者】巴拉克里什南·劳, 丽玛·伊萨耶娃 申请人:福特全球技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1