包括焊接的构件的燃料储箱的制作方法

文档序号:11120964阅读:208来源:国知局
包括焊接的构件的燃料储箱的制造方法与工艺

本发明涉及一种燃料储箱,该燃料储箱具有这样的壁,该壁具有开口和燃料不可渗透层,围绕该开口焊接有构件。



背景技术:

各种车载燃料储箱一般必须符合密封性(imperviousness)和渗透性标准,这些标准与其设计的用途类型和其必须满足的环境要求有关。在欧洲及全世界,有关限制将污染物散布到环境中的要求目前正在大幅提高。燃料储箱的设计因此快速地向能够更好地确保在各种使用条件下的密封性和安全性的技术的方向发展。

燃料储箱一般包括由燃料不可渗透的材料制成的屏障层,该燃料不可渗透的材料通常是例如EVOH(乙烯和部分水解的乙烯醇的共聚物)的树脂。在多层燃料储箱中,该燃料不可渗透层一般是夹在两个燃料可渗透层之间的中间层,燃料可渗透层例如由热塑性材料(例如高密度聚乙烯(HDPE))制成。因此,燃料储箱整体是不可渗透的。然而,车载燃料储箱要连接其它通常不可渗透燃料的构件,这要求在储箱壁上存在开口,围绕这些开口固定所述构件。由于构件的固定凸缘不能与储箱壁的燃料不可渗透层接触以形成密封的体积,这些开口泄露或渗透燃料的风险很高。这是因为不知道储箱壁的燃料不可渗透层的精确位置,将构件的固定凸缘过深地插入储箱壁会增大刺穿燃料不可渗透层的风险。构件的不可渗透层到储箱壁的不可渗透层的距离取决于储箱壁的总厚度、储箱壁的层厚度分布以及如果用吹气模制工艺来制造该储箱壁的话,壁在焊接区域中的延展,该延展是吹气模制工艺所固有的。

为了控制燃料泄露,必须精确地知道燃料围绕由附件的凸缘与储箱壁的燃料不可渗透层之间现有空间限定的开口的渗透路径。然而,由于不知道燃料不可渗透层在储箱壁的厚度中的精确位置,这些渗透路径不是预先确定的。



技术实现要素:

本发明的目的因此在于提供一种燃料储箱,尤其是通过控制现有渗透路径来改善围绕储箱壁上的开口的密封性。

本发明涉及一种燃料储箱,该燃料储箱具有带开口的壁,该壁具有燃料不可渗透层,该燃料储箱包括围绕开口焊接到壁上的构件,该构件具有燃料不可渗透层,其中燃料储箱包括燃料不可渗透的插件,该插件围绕开口至少部分地嵌入壁中,并布置在储箱壁的燃料不可渗透层与构件的燃料不可渗透层之间。

该插件优选地是通过包覆成型被固定到壁上的。换句话说,该插件具有位于构件的焊接到壁上的部分前方的表面和位于壁的燃料不可渗透层前方的表面。由于该插件的位置是预先确定的,不可渗透的插件与构件之间的距离是已知的。因此,燃料渗透路径是受控的。而且,能够更好地控制插件与壁的燃料不可渗透层之间的距离,这是因为在插件的固定工艺期间能够掌握它在壁中的深度,而在无插件的情况下将构件焊接到储箱壁上时,构件的不可渗透层到储箱壁的不可渗透层的距离是由机器人施加到构件上的压强与熔融材料的变形强度相抵的结果。该位置不能够被预先确定。

优选地,插件的尺寸使得储箱壁的不可渗透层和构件的不可渗透层间隔开。使储箱壁的不可渗透层与构件的不可渗透层保持间隔开能够使构件熔入储箱壁而无刺穿储箱壁的不可渗透层的风险。换句话说,插件用作了这两个不可渗透层之间的间隔器,这不是惯用的技术手段,因为增强储箱-构件的密封性的直观方式通常是使(储箱壁和构件的)两个不可渗透层彼此尽可能接近。在一个优选实施例中,储箱壁的不可渗透层与构件的不可渗透层之间的最短距离是数毫米。

在本发明的各个实施例中,燃料储箱可具有以下非限制性的特征:

-可通过共注射、优选地通过双注射来实现插件在壁上的包覆成型。

-插件由被外部层包围的芯件构成。该芯件由具有良好的屏障特性的材料制成,如PA6、PA66、PA12、PPA、金属、铝或其它任何本领域技术人员已知的材料。外部层优选地是改性HDPE,例如马来酸酐接枝HDPE。外部层在发生屏障效应的功能性区域中的厚度约为0.2至0.5mm。

-插件是环形插件。

-插件可以是单一部件或数个部件的组件。

-插件包括止挡表面,在将构件焊接到壁上时该止挡表面限定构件的熔入极限。

-构件在焊接区域中被焊接到壁上,该焊接区域位于构件的不可渗透层的附近。

-构件的焊接区域在熔入方向上的投影是相对于插件的止挡表面偏移的。

-插件包括遵循壁的燃料不可渗透屏障的形状的内表面。

-插件的内表面与壁的燃料不可渗透屏障之间的最大距离小于200μm,优选地小于100μm,更优选地小于40μm。

-该内表面包括凸起。

-插件由燃料不可渗透材料制成。

-插件包括燃料不可渗透层,优选地包括燃料不可渗透的外层。

本发明的另一主题在于一种围绕储箱的壁的开口将构件焊接到该壁上的方法,该壁具有燃料不可渗透层,该方法包括以下步骤:

-在对型坯进行吹气模制期间将插件包覆成型在该型坯内,使得插件围绕开口的位置至少部分地嵌入型坯,

-将构件焊接到插件上方。

在本发明的意义上,“型坯”指管状或片状塑料预成型体。

在一个具体实施例中,将构件焊接到储箱壁的外表面上。

在另一具体实施例中,将构件焊接到储箱壁的内表面上。

在另一实施例中,在制造储箱之后、即将储箱从模具中取出之后焊接构件。在该具体实施例中,有利的是在进行焊接之前该方法还包括冷却储箱壁的步骤。

在另一实施例中,在制造储箱期间焊接构件。例如,可通过对片状型坯的吹气模制来制造储箱,并可通过芯件或机器人使构件抵在储箱壁上以被焊接到储箱壁上。

该方法具有不同的实施例:

-可以通过穿过插件在刚性壁上穿孔来获得开口。

-可以通过在型坯的吹气模制期间刺穿型坯来获得开口。

附图说明

通过以下示出本发明的某些具体方面的附图,将更好地理解本发明。附图仅是作为例子示出的,不限制本发明的范围。

图1是一个储箱的整体视图,该储箱具有两个焊接到其上的构件。

图2是符合本发明的第一实施例的、构件之一和刚完成模制的储箱的接收该构件的部分的纵向剖视图。

图3是示出了本发明的第二实施例的、类似于图2的视图。

图4是示出了本发明的第三实施例的、类似于图2的视图。

图5是示出了本发明的第四实施例的、类似于图2的视图。

图6a、图6b、图6c示出了用于获得图5的实施例的第一制造方法。

图7a、图7b、图7c、图7d示出了用于获得图5的实施例的第二制造方法。

具体实施方式

图1示出了一个储箱1,该储箱包括两个焊接到其上的构件3、5。第一构件是位于储箱1的上部部分中的凸嘴3,第二构件是位于储箱1的下部部分中的入口止回阀5。

储箱1的形状在本发明中是不重要的。储箱唯一的相关几何构造特征是其在围绕每个部件3、5的部分3a、5a中的形状。

凸嘴3和止回阀5是连接到储箱1以允许储箱内部和外部之间借助于外部管道(未示出)流体联通的构件。但是本发明不限于这样的允许储箱内部和外部之间流体流通的构件。换句话说,构件3、5可以在一端封闭以实现非液体流通的特定功能。

构件3、5的重要特征在于这些构件必须密封地连接到储箱上,以阻止、或至少控制在储箱壁和构件的界面处的流体泄露。

在以下附图中示出了构件5的截面图。然而,这可以是图1的两个构件3、5中的任一个,这些构件仅是作为可根据本发明焊接到储箱上的可能的构件的例子而给出的。

在图2的截面图中,示出了储箱壁7的部分5a带有孔7a。并示出了构件壁9带有位于孔7a前方的开口9a。构件在该例子中具有圆柱形的形状,但任何构件形状都是可接受的。

储箱壁7和构件壁9分别包括不可渗透层11、13,该层阻止储箱1内存储的液体穿过储箱壁7或构件壁9。在该例子中,储箱的不可渗透层11包括在储箱壁7内部并大致位于储箱壁7的厚度的中间,而构件的不可渗透层13则覆盖构件壁9的内表面。在该例子中,储箱是燃料储箱,不可渗透层11和13是由EVOH制成的燃料不可渗透层。

构件围绕孔7a被焊接到储箱壁7上,该孔构成壁的开口。在大多数情况下,孔7a和构件的开口9a沿着构件的纵轴线X-X对齐。

构件5在储箱壁7上的焊接导致构件5部分地熔入储箱壁7。该熔入使得构成储箱壁7和构件壁9的材料的直接接触和融合。更具体地说,围绕储箱的燃料不可渗透层11的塑料材料和构件壁9的塑料材料是化学兼容的,并能够在焊接期间融合以形成连续介质。与储箱壁7的材料不同,构件的不可渗透层13的材料通常不与储箱壁7的塑料材料化学兼容。由此,在熔入储箱壁7之后,不与该材料融合。因此,构件5与储箱壁7之间的机械连接是通过构件壁9的材料与储箱壁7的材料的焊接来实现的。因此,最好这样地设计构件的不可渗透层13在构件壁9上的位置,以使得构件9熔入储箱壁的部分呈现出没有不可渗透层13的外表面。

另外,优选的是使得构件的插入储箱壁内的、与储箱壁的塑料材料化学兼容的外表面被足够量的储箱壁材料包围。由此,能够在储箱寿命期间承受使用构件所导致的机械应力。

如在图2中所示,还在储箱壁7中围绕开口7a嵌入插件15。该插件15布置在两个不可渗透层11和13之间。

插件15具有环形的形状。该插件由不可渗透的材料制成。插件15的横截面显示出该插件具有T形横截面,这是因为它在几何构造上由两个环、即内平环17和凸起的厚环19(在图2中用虚线表示)叠置而成的,凸起的厚环19露出储箱壁7的外表面。内平环17的不被凸起的厚环19覆盖的外表面17a构成肩部表面21,该肩部表面位于构件壁9的在焊接期间熔入储箱壁7的塑料材料的部分前方。肩部表面21的位置使其在构件壁9的塑料材料前方为足够量的储箱壁塑料材料留出空间,使得足够的储箱壁塑料材料包围焊接区域。换句话说,肩部表面21大致位于构件的不可渗透层13的前方,但与构件壁9偏置,以允许将构件壁9可靠地焊接到储箱壁7上。

在图2中所示的组件中,将构件壁9焊接到储箱壁7上的优点在于对从储箱内部到储箱外部的液体泄漏有良好控制。该泄露可在由虚线箭头示出的两条流出路径中发生:短流出路径23和长流出路径25。短流出路径是在插件15与构件壁9的不可渗透层13之间通过的路径,而长流出路径则是在储箱的不可渗透层11与插件15之间通过的路径。

现在将详细描述这两条流出路径中的每一条。

短流出路径23是构件的不可渗透层13的端部与插件15之间的狭窄通道。在附图中,该狭窄通道位于肩部表面21与不可渗透层13的端部之间。该短流出路径的宽度取决于构件壁9熔入储箱壁7中的深度。幸运的是,在本发明中,由于将构件壁9焊接到储箱壁7上时在储箱壁7中存在插件15,可以很好地控制该熔入深度:由于焊接时储箱壁7中存在插件15,就允许在焊接期间以这样的强度将构件5压抵在储箱壁上,该强度高到足以让构件的不可渗透层13尽可能接近肩部表面21地熔入,而没有刺穿或破坏储箱的不可渗透层11的风险,该储箱的不可渗透层11正是由于肩部表面21而与构件5相距甚远。插件15用作构件5在焊接期间的止挡件和与储箱的不可渗透层11的间隔器。

由此,对于短流出路径23,本发明通过很好地控制了构件的不可渗透层13与插件15之间的狭窄通道,而提供了一种限制通过短流出路径泄露的有效方式。

对于长流出路径25,流体泄露是在储箱的不可渗透层11与插件15之间发生的,它与构件壁在储箱壁上的焊接没有关系。长流出路径25由插件的内表面17b的长度(该长度在截面图中是环形插件15的径向尺寸)确定,该长度在图2中由尺寸27表示。储箱的不可渗透层11与插件15之间的距离由插件15嵌入储箱壁的方式确定,该方式将参照图6来描述。

由于能够良好地控制短流出路径23和长流出路径25,插件15提供了对液体泄漏到储箱外的良好控制并确保构件壁9在储箱壁7上的焊接的密封性。

在图3的实施例中,构件31具有另一形状并且其相对于插件15的位置是反转的,即插件15围绕构件31。在该实施例中,插件15的肩部表面21位于凸起的厚环19的内部。与前一实施例的构件不同,构件31的不可渗透层13位于构件的外表面上。

长流出路径25不变,但短流出路径23在外肩部表面21和位于构件外部的构件的不可渗透层13之间通过。

在该实施例中,构件壁9的熔入储箱的塑料材料也被大量的储箱壁7的塑料材料包围,使得这两种化学兼容的塑料材料的融合产生连续介质,该连续介质有助于有效的焊接。构件的不可渗透层33面对肩部表面21。

在图4的实施例中,构件5与图2的构件相同,但插件41完全嵌入储箱壁7中。插件41不是由两个环形的环的叠置构成的:该插件仅由一个内平环17构成,该内平环的内外表面17a、17b完全被储箱壁7的塑料材料覆盖。在图4中,长流出路径和短流出路径25、23与图2的相同。

该实施例的关于焊接的泄露密封性的特性与图2中的实施例相同。

在图5的实施例中,构件与图2和图4的相同,但插件51具有不同的形状。插件51在几何构造上由三个基础环的叠置导致:如前所述的内平环17,如前所述的、位于内平环17的外侧的凸起的厚环19,以及位于内平环17的内侧的尖锐的内环53(即凸起)。只是为了描述插件51的形状而提到这三个环17、19、53,但其实插件15是单体部件。换句话说,环形的环17、19和53之间没有物理边界。插件51可通过任何合适的方法获得,包括压缩模制或铣削。

在该实施例中,短流出路径23与前述的相同。而长流出路径55与前述的不同,其不同之处在于液体或气体泄漏必须沿着插件51的内表面绕过插件51的内尖锐面(由尖锐环53定义),该内表面被储箱壁7的塑料材料覆盖,而储箱的不可渗透层11几乎与插件51的内尖锐面的表面平行地延伸。因此,由于插件51在其内侧具有尖锐形状,长流出路径55的长度增加,并且储箱的不可渗透层11与插件51之间的最小距离被减小。

由此,插件51为构件与储箱之间的焊接提供了更好的密封性。

现在将参考图6a、图6b和图6c来描述用于获得图5的组件的方法。

在第一步骤(图6a)中,将插件51置于模具61上,该模具具有用于接收该插件的、沿着贯穿孔65布置的凹槽63。模具66可以是如在文档EP1261473B1中描述的用于吹气模制型坯的模具的两个半部分之一,该文档的内容通过引用包括在本文中。模具61也可以是用于吹气模制储箱的一个半部分的单独模具,由此获得的储箱的半部分随后与储箱的另一半部分焊接以构造完整的储箱。

如在图6a中所示,针67能够在模具中在回撤位置(在图6a中示出)和伸展位置(在图6b中示出)之间轴向地移动,在回撤位置上,针位于模具61的内体积之外,在伸展位置上,针67伸入模具61的内体积内。

根据该方法,当插件51已置入凹槽63之后,将型坯(该型坯是新挤出成型的、还是热的且可成型的塑料材料片材)与模具表面平行地布置在模具表面和插件51上方。然后,将气体(该气体可以是热的压缩空气)吹入模具61以对型坯进行吹气并将其压抵在内模具表面和插件51上。在型坯已经包裹住插件并贴合模具和插件的形状之后的短时间内,将针67从其回撤位置移动到其伸展位置(图6b)。针刺穿型坯,并且一旦位于型坯内就借助于通到模具内的内部通道69帮助吹气。

当模具被冷却时,在足以让储箱壁硬化的时间长度内,流到模具中的气体压缩型坯。借助于该方法,插件相对于储箱壁的位置是精确地固定的,这是由于该位置仅取决于凹槽63的深度。该方法的另一优点在于,由于没有刚性部件压在插件51的内尖锐面上,型坯能够贴合插件51的形状而不会刺穿储箱的不可渗透层11。但是,借助于吹气工艺,储箱的不可渗透层11与插件51之间的距离被尽可能地减小。由此,优化了长流出路径以获得良好的储箱密封性。

在完成吹气工艺之后,从模具61中取出由储箱壁和嵌入的插件51构成的储箱,并将构件焊接到储箱壁上。在焊接期间,将散发热量的热镜布置在相互面对的储箱壁和构件之间。当塑料材料足够熔化时,移走热镜,在X-X轴线方向上将构件压在储箱壁上。在焊接期间,施加给构件的强度是受控的,取决于该强度,构件尽可能深地熔入储箱壁。由于存在插件51及其肩部表面21,构件不能刺穿储箱的不可渗透层11,而构件非常接近插件,由此提供能够有效密封泄露的短流出路径。

在图7a、图7b、图7c、图7d所示的方法中,模具71与模具61的不同之处在于该模具不包括贯穿孔及针。吹气工艺与前述的相同:与模具平行地引入型坯,使其覆盖插件,吹入气体以将型坯压抵在壁和插件上并贴合其形状。如图7b所示,一旦储箱壁具有足够的刚性,就将其从模具中取出。如在图7c中所示,用切割器75在插件51中间在储箱壁中钻出贯穿孔73。在图7c的该钻孔步骤之后,储箱壁与前述的相同,能够根据参照图6c所述的步骤来实施焊接方法。

总之,插件15、41、51存在于储箱壁内,这样通过构成两条流出路径、即长流出路径和短流出路径而有助于优化焊接的泄露密封性。通过插件和不可渗透层(要么是储箱的,要么是构件的)之间受控的缩短的距离来控制这两条流出路径的长度和宽度。

术语表:

图1-图2

储箱1

凸嘴3

入口止回阀5

储箱壁7

孔7a

构件壁9

开口9a

储箱的不可渗透层11

构件的不可渗透层13

插件15

内平环17

凸起的厚环19

肩部表面21

短流出路径23

长流出路径25

环形插件的长度27

图3

构件31

构件的不可渗透层33

图4

插件41

图5

插件51

内尖锐环53

长流出路径55

图6

模具61

凹槽63

贯穿孔65

针67

通道69

图7

模具71

孔73

切割器75

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1