变速驱动桥装置的制作方法

文档序号:16809038发布日期:2019-02-10 13:23阅读:235来源:国知局
变速驱动桥装置的制作方法

本发明涉及一种用于混合动力车辆的变速驱动桥装置(transaxledevice),该混合动力车辆包括发动机和两个旋转电机。



背景技术:

传统上,在包括发动机和旋转电机(马达、发电机和马达发电机)的混合动力车辆中,在行驶的同时切换行驶模式的车辆存在于实际使用中。行驶模式包括:ev模式,其中车辆仅通过使用电池的充电电力的马达行驶;串联模式,其中车辆仅通过马达行驶,同时驱动发电机以通过发动机产生电力;以及并联模式,其中车辆通过一同使用发动机和马达行驶的模式。通过控制插在变速驱动桥装置内侧的动力传递路径上的诸如套筒或离合器的机构来执行行驶模式的切换。该机构例如设置在发动机和发电机之间的动力传递路径内的轴或发动机和驱动轮之间的动力传递路径内的轴上(参见专利文献1和2)。

现有技术文献

专利文献

专利文献1:日本特开专利公报第11-170877号

专利文献2:日本特开专利公报第2013-180680号



技术实现要素:

本发明要解决的问题

顺便提及,当可以在不切换行驶模式的情况下响应于驾驶员的请求输出或车辆速度来切换齿轮时,行驶模式增加并且因此可预期驾驶性能或燃料经济性的改进。为了实现这一点,可以在变速驱动桥装置内侧设置多个可切换的齿轮。然而,由于差速器齿轮(下文中,称为“差速器”)设置在变速驱动桥装置内侧,因此当在其中内置多个齿轮级和用于切换齿轮级的机构时,变速驱动桥装置的尺寸容易增大。

此外,由于驱动轴从变速驱动桥装置的壳体的外侧连接到其中插入有差速器的输出轴,因此用于连接驱动轴的空间设置在输出轴在壳体外侧的延伸线上。因此,当在壳体内侧设置多个齿轮或用于切换齿轮的机构时,期望提供一种能够在确保空间之后抑制变速驱动桥装置的尺寸增大的结构。

本发明的目的是提供一种能够在抑制变速驱动桥装置的尺寸增大的同时增加行驶模式并确保驱动轴连接空间的变速驱动桥装置。此外,该目的不受限制,并且本发明的另一个目的是展示通过稍后描述的用于实施本发明的实施例中所示的每种配置得出的操作和效果,并且这些操作和效果不能通过传统技术获得。

问题的解决方案

(1)本文公开的变速驱动桥装置是用于混合动力车辆的变速驱动桥装置,混合动力车辆包括发动机、第一旋转电机和第二旋转电机,并且变速驱动桥装置可操作以将所述发动机的动力和所述第一旋转电机的动力单独地传递到驱动轮侧的输出轴,并且还将所述发动机的动力传递到所述第二旋转电机,所述变速驱动桥装置包括:差动齿轮,插在所述输出轴上;以及切换机构,插在从所述发动机到所述输出轴的动力传递路径上,并且切换高齿轮级(highgearstage,高挡位)和低齿轮级(lowgearstage低挡位),以及其中所述高齿轮级在所述变速驱动桥装置的壳体内侧相对于所述低齿轮级设置在所述差动齿轮的相对侧。此外,第一旋转电机是指包括旋转电枢或场并且至少具有电动马达功能的电力发电机(马达发电机)或电动马达。此外,第二旋转电机是指包括旋转电枢或场并且至少具有电力发电功能的电力发电机(马达发电机)或电力发电机。

(2)切换机构可包括:高侧离合器,连接或断开动力传递路径中的高齿轮级,以及低侧离合器,连接或断开动力传递路径中的低齿轮级。

(3)切换机构可以通过将高侧离合器和低侧离合器组合为一集成体来获得。

(4)可替代地,在切换机构中,高侧离合器和低侧离合器可以插在不同的轴上,以便在与轴向正交的方向上位于彼此重叠的位置处。

(5)变速驱动桥装置还可包括:输入轴,与所述发动机的旋转轴同轴连接,其中在切换机构中,高侧离合器和低侧离合器中的至少一个可插入在输入轴上,以便在与轴向方向正交的方向上位于与差动齿轮重叠的位置处。

(6)变速驱动桥装置还可包括:中间轴,其设置在输出轴和与发动机的旋转轴同轴连接的输入轴之间的动力传递路径上;壳体,包括从第一旋转电机和第二旋转电机的附接表面围绕所述中间轴在轴向方向上向外突出的柱形部,以便不干扰第一旋转电机和第二旋转电机,其中在切换机构中,高侧离合器和低侧离合器中的至少一个可以设置在柱形部内。

(7)变速驱动桥装置还可包括:输入轴,与发动机的旋转轴同轴连接;第二旋转电机轴,其与第二旋转电机的旋转轴同轴连接,其中,切换机构可包括与输入轴一起旋转的部件,并且其中,通常与固定在所述第二旋转电机轴上的固定齿轮接合的齿轮可以固定在所述部件上。

发明的有益效果

可以通过用于切换高齿轮级和低齿轮级的切换机构来增加行驶模式。此外,可以确保用于连接驱动轴的空间,同时基于高齿轮级和低齿轮级之间的位置关系来抑制变速驱动桥装置的尺寸增大。

附图说明

[图1]是示出根据实施例的包括变速驱动桥装置的车辆的内侧配置的俯视图。

[图2]是包括图1的变速驱动桥装置的动力传动系的示意性侧视图。

[图3]是沿着动力传递路径沿轴向切割图1的变速驱动桥装置的截面图。

[图4]是示出包括图3的变速驱动桥装置的动力传动系的骨架图。

[图5]是示出根据第一修改示例的动力传动系的骨架图。

[图6]是示出根据第二修改示例的动力传动系的骨架图。

[图7]是示出根据第三修改示例的动力传动系的骨架图。

[图8]是示出根据第四修改示例的动力传动系的骨架图。

[图9]是示出根据第五修改示例的动力传动系的骨架图。

[图10]是示出根据第六修改示例的动力传动系的骨架图。

[图11]是示出根据第七修改示例的动力传动系的骨架图。

[图12]是示出根据第八修改示例的动力传动系的骨架图。

具体实施方式

将参考附图描述实施例的变速驱动桥装置。以下实施例中的每个仅仅是示例,并不意图排除在以下实施例中未提及的各种修改和技术的应用。在不脱离其主旨的情况下,可以将实施例的配置修改为各种形式。此外,可以适当地选择或组合配置。

[1.整体配置]

本实施例的变速驱动桥1(变速驱动桥装置)应用于图1所示的车辆10。车辆10是混合动力车辆,其包括发动机2、行驶马达3(电动马达,第一旋转电机)和电力发电机4(电力发电机,第二旋转电机)。发电机4连接到发动机2并且可独立于马达3的操作状态操作。此外,车辆10设置有三种行驶模式,包括ev模式、串联模式和并联模式。可替代地,这些行驶模式响应于由电子控制装置(未示出)输出的车辆状态、行驶状态或驾驶员的请求而选择,因此发动机2、马达3和发电机4可以响应于类型单独使用。应注意,马达3可具有发电功能(发电机的功能),并且发电机4可具有电动马达功能(马达的功能)。

ev模式是在发动机2和发电机4停止时使用驱动电池(未示出)的充电电力仅由马达3驱动车辆10的行驶模式。在行驶负载和行驶速度低或电池充电水平高的情况下选择ev模式。串联模式是车辆10由马达3利用动力驱动同时驱动发电机4以通过发动机2产生电力的行驶模式。在行驶负载和行驶速度中等或电池充电水平低的情况下选择串联模式。并联模式是车辆10主要由发动机2驱动并且车辆10的驱动由马达3适当地辅助并且在行驶负载和行驶速度为高的情况下选择的行驶模式。

发动机2和马达3通过变速驱动桥1并联连接到驱动轮8,并且发动机2和马达3中的每个的动力单独地传递到驱动轮8。此外,发电机4和驱动轮8通过变速驱动桥1并联连接到发动机2,并且发动机2的动力除了传递到驱动轮8之外也传递到发电机4。

变速驱动桥1是动力传递装置,通过使包括差速齿轮18(差速装置,以下称为“差速器18”)和变速器(减速器)的最终驱动器(最终减速器)整体形成而获得,并且包括负责驱动源和从动装置之间的动力传递的多个机构。该实施例的变速驱动桥1被配置为在高/低状态(高速级和低速级)之间可切换。当车辆以并联模式行驶时,响应于电子控制装置的行驶状态或请求输出,切换高齿轮级(highgearstage,高挡位)和低齿轮级(lowgearstage低挡位)。

发动机2是燃烧汽油或轻油的内燃机(汽油发动机或柴油发动机)。发动机2是所谓的横向发动机,其中曲轴2a(旋转轴)的方向横向地设置成与车辆10的车辆宽度方向对齐并且固定到变速驱动桥1的右侧表面。曲轴2a平行于驱动轮8的驱动轴9设置。发动机2的操作状态由电子控制装置控制。

马达3和发电机4都是电力发电机(马达发电机),其具有电动马达的功能和电力发电机的功能。马达3主要用作驱动车辆10的电动马达,并且在再生时用作电力发电机。发电机4在起动发动机2时用作电动马达(起动机),并且在操作发动机2时通过发动机的动力产生电力。在马达3和发电机4每个的外周(或内侧)设有转换dc电流和ac电流的逆变器(未示出)。通过控制逆变器来控制马达3和发电机4每个的转速。马达3、发电机4和每个逆变器中的每个的操作状态由电子控制装置控制。

本实施例的马达3形成为使得外形形成为使用旋转轴3a作为中心轴线的柱形形状,并且固定于变速驱动桥1的左侧面(附接面),处于其底面朝向变速驱动桥1的姿势。与电动机3类似,本实施例的发电机4形成为使得其外形形成为使用旋转轴4a作为中心轴线的柱形形状,并且固定于变速驱动桥的左侧面,处于其底面朝向变速驱动桥1的姿势。

图2是当从左侧观察发动机2、马达3、发电机4和包括变速驱动桥1的动力传动系7时的侧视图。在侧视图中省略了发动机2。如图2所示,除了马达3和发电机4之外,泵5也固定在变速驱动桥1的左侧表面上。泵5是液压产生装置,其使用驱动轮8的动力压送作为工作油的油或将润滑油压送到液压回路(未示出)。

[2.变速驱动桥]

图3是沿着动力传递路径沿轴向切割本实施例的变速驱动桥1的截面图,并且图4是包括变速驱动桥1的动力传动系7的骨架图。在图4之后的骨架图中,泵5和变速驱动桥1以集成状态示出(泵5安装在壳体1c中的状态)。

如图2至图4所示,变速驱动桥1设置有六个平行布置的轴11至16。在下文中,与曲轴2a同轴连接的旋转轴将被称为输入轴11。类似地,与驱动轴9同轴连接的旋转轴、电动机3的旋转轴3a和发电机4的旋转轴4a将分别称为输出轴12、马达轴13(第一旋转电机轴)和发电机轴。14(第二旋转电机轴)。另外,设置在输入轴11和输出轴12之间的动力传递路径上的旋转轴将被称为第一中间轴15,并且设置在马达轴13和输出轴12之间的动力传递路径上的旋转轴将被称为第二中间轴16。

如图3所示,所有六个轴11至16的两个端部通过轴承11e至16e轴颈连接至壳体1c。此外,在壳体1c的侧表面上形成开口,该开口位于输入轴11、输出轴12、马达轴13和发电机轴14中的每个上,并且这些轴通过所述开口连接到曲轴2a等。此外,具有通过中断过大转矩来保护动力传递机构的功能的转矩限制器6插在曲轴2a上。如图4所示,泵5的旋转轴连接到第一中间轴15。

在变速驱动桥1的内侧形成三个动力传递路径。具体地,如图2中的双点划线所示,形成从输入轴11延伸到输出轴12的动力传递路径(下文中,称为“第一路径51”),从马达轴13延伸到输出轴12的动力传递路径(在下文中,称为“第二路径52”),以及从输入轴11延伸到发电机轴14的动力传递路径(下文中,称为“第三路径53”)。

第一路径51(第一机构)是涉及从发动机2到驱动轮8的动力传递的路径,并且在发动机2的操作期间负责动力传递。在第一路径51的过程中插入切换机构20(下文将描述),以切换动力传递启用/禁用状态和高/低状态。第二路径52(第二机构)是涉及从马达3到驱动轮8的动力传递的路径并且负责马达3的动力传递。第三路径53(第三机构)是涉及从发动机2到发电机4的动力传递的路径,并且负责发动机起动和通过发动机2发电时的动力传递。

接下来,将参考图3和图4详细描述变速驱动桥1的配置。在下面的描述中,“固定齿轮”是指与轴成一体并且不能相对于轴旋转的齿轮。此外,“空转齿轮”是指可枢转地支撑在轴上以便可相对旋转的齿轮。

输入轴11设置有两个固定齿轮11h和11l。两个固定齿轮11h和11l具有不同数量的齿,并且分别通常与设置在第一中间轴15中具有不同数量的齿的两个空转齿轮15h和15l接合。

在该实施例中,具有较少数量的齿的一个固定齿轮11l设置在右侧(差速器18侧),并且具有较大数量的齿的另一个固定齿轮11h设置在左侧(相对于一个固定齿轮11l位于差速器18的相对侧)。具有较少数量的齿的一个固定齿轮11l与具有较大数量的齿的一个空转齿轮15l接合以形成低齿轮级。相反,具有较大数量的齿的另一个固定齿轮11h与具有较少数量的齿的另一个空转齿轮15h接合以形成高齿轮级。应注意,固定齿轮11l通常与设置在发电机轴14中的固定齿轮14a接合,并在发动机2和发电机4之间传递动力。

在第一中间轴15中,具有大直径的空转齿轮15l设置在靠近差速器18的位置处,并且具有小直径的空转齿轮15h设置在远离差速器18的位置处。由于第一中间轴15靠近(邻近)输出轴12,其中插入有差速器18,例如,沿着壳体1c中的第一中间轴15的部分可以根据齿轮的布置在向外方向(远离差速器18方向)上减小直径。可替代地,当设置有输出轴12的开口的壳体侧表面设置在具有大直径的空转齿轮15l和具有小直径的空转齿轮15h之间时,沿着壳体1c中的第一中间轴15的部分可以总体上减小了尺寸。利用这种配置,用于连接驱动轴9的空间固定在输出轴12在壳体1c外侧的延长线上。

本实施例的壳体1c包括柱形部1d,柱形部1d设置在与马达3和发电机4附接的左侧表面上,以围绕第一中间轴15在轴向方向上向外(向左)突出。柱形部1d是柱形壳体1c的一部分,并且形成为具有不与马达3和发电机4干扰的布置和形状。当从左侧观察动力传动系7时(在侧视图中),柱形部1d设置在马达3的旋转轴3a(马达轴13)和发电机4的旋转轴4a(发电机轴14)之间的区域内。这里,“区域”是指在侧视图中与连接两个轴3a和4a的线正交并且插入穿过轴3a和4a的两条线之间的区域。此外,泵5附接到柱形部1d的外端面(左端面)。

本实施例的两个空转齿轮15h和15l设置在同一轴(第一中间轴15)上并形成双管结构。具体地,低侧空转齿轮15l的右侧部分设置有与固定齿轮11l接合的齿面部分,并且切换机构20的接合部件21l固定到从齿面部分的左侧(即,空转齿轮15l的左侧部分)突出的柱形部1d的前端。此外,在高侧空转齿轮15h中,切换机构20的接合部件21h固定到与固定齿轮11h接合的齿面部分的左侧。此外,空转齿轮15h由低侧空转齿轮15l的柱形部1d的外周可枢转地支撑,以便可相对旋转。

切换机构20用于控制发动机2的动力连接/断开状态并切换高齿轮级和低齿轮级,并且设置在柱形部1d的内侧,同时插入第一中间轴15中。该实施例的切换机构20通过将连接或断开第一路径51中的高齿轮级的高侧多盘式离合器(高侧离合器)和连接或断开第一路径51中的低齿轮级的低侧多盘式离合器(低侧离合器)组合为一集成体而获得。每个离合器的工作液压由设置在第一中间轴15中的两个油通道入口5a和5a'中的每个供应。

本实施例的切换机构20包括构成高侧离合器的两个接合部件21h和22h以及构成低侧离合器的两个接合部件21l和22l。驱动侧接合部件21h和21l分别固定到两个空转齿轮15h和15l并从发动机2接收动力。同时,从动侧接合部件22h和22l分别固定到第一中间轴15并将动力输出到驱动轮8。高侧接合部件21h和22h以及低侧接合部件21l和22l中的每个响应于从油通道入口5a'和5a流出的油的液压在分离方向(脱离方向)和接近方向(接合方向)上得到驱动。应注意,可以在液压回路中设置压力调节器,该压力调节器将从泵5压送的油的液压调节到适当的压力。压力调节器包括例如多个电磁阀(开/关电磁阀、线性电磁阀等)。

当切换机构20的所有接合部件21h、22h、21l和22l都脱离时,所有两个空转齿轮15h和15l进入空转状态。在这种情况下,即使当发动机2运转时,发动机2的动力(输入轴11的旋转)也不会传递到输出轴12。也就是说,在这种情况下,中断发动机2到驱动轮8的动力传递。同时,当切换机构20的高侧离合器和低侧离合器中的一个接合而另一个离合器脱离时,选择高齿轮级或低齿轮级,并且将发动机2的动力传递到输出轴12。

也就是说,当高侧离合器接合部件21h和22h接合并且低侧离合器接合部件21l和22l脱离时,选择高齿轮级。在这种情况下,发动机2的动力通过固定齿轮11h和空转齿轮15h传递到驱动轮8。相反,当低侧离合器接合部件21l和22l接合并且高侧离合器接合部件21h和22h脱离时,选择低齿轮级。在这种情况下,发动机2的动力通过固定齿轮11l和空转齿轮15l传递到驱动轮8。

在第一中间轴15中,固定齿轮15a设置在低侧空转齿轮15l的右侧附近。固定齿轮15a通常与设置在输出轴12中的差速器18的环形齿轮18a接合。

此外,第二中间轴16设置有两个固定齿轮16a和16b以及驻车齿轮19。设置在壳体1c的右侧表面附近的固定齿轮16a通常与设置在马达轴13中的固定齿轮13a接合。同时,设置在壳体1c的左侧表面附近的固定齿轮16b通常与差速器18的环形齿轮18a接合。也就是说,马达3的动力通过固定齿轮13a、16a和16b以及差速器18传递到输出轴12。

驻车齿轮19是构成驻车锁定装置的部件并且固定到第二中间轴16。当驾驶员选择p挡位时,驻车齿轮19与驻车楔块(未示出)接合以禁止第二中间轴16(即输出轴12)旋转。

如图3所示,差速器18通过差速器壳18b、小齿轮轴18c、差动小齿轮18d和侧齿轮18e将传递到环形齿轮18a的动力传递到输出轴12。

[3.操作和效果]

(1)上述变速驱动桥1设置有切换机构20,并且当车辆以并联模式行驶时,响应于行驶状态或请求输出切换高齿轮级和低齿轮级。也就是说,由于发动机2的动力可以在并联模式中切换到两个等级的同时传递(输出),因此可以增加行驶模式并获得改进的驾驶性能和燃料经济性以及改进的车辆适销性效果。

此外,在上述变速驱动桥1中,高齿轮级(固定齿轮11h、空转齿轮15h)在壳体1c内相对于低齿轮级(固定齿轮11l、空转齿轮15l)设置在差速器18的相对侧。也就是说,在输出轴12附近的轴(第一中间轴15)上,由于具有大直径的齿轮(空转齿轮15l)设置在靠近差速器18的位置处,并且具有小直径的齿轮(空转齿轮15h)设置在远离差速器18的位置处,沿着壳体1c中的第一中间轴15的部分可以例如,在向外方向上(远离差速器18的方向)在整体上减小直径或尺寸。即,根据上述变速驱动桥1,能够确保用于将驱动轴9连接在壳体1c外侧的输出轴12的延长线上的空间,同时抑制变速驱动桥1的尺寸增大。

此外,在上述车辆10中,由于提供了发动机2的动力和马达3的动力的相应输出,因此在切换高/低状态时产生的转矩省略可以用马达3的动力覆盖。因此,可以抑制换挡冲击。

(2)在上述变速驱动桥1中,由于通过包括高侧离合器和低侧离合器的切换机构20切换高/低状态,因此可以简化配置。

(3)此外,在上述变速驱动桥1中,由于切换机构20是通过将高侧离合器和低侧离合器组合为一集成体获得的,因此变速驱动桥1可以是紧凑的。

(4)在上述变速驱动桥1中,切换机构20设置在壳体1c的柱形部1d内。由于柱形部1d是从附接有马达3和发电机4的左侧表面突出的部分,并且设置成不干扰马达3和发电机4,所以可以通过在柱形部1d内设置切换机构20,而将切换机构20组装到变速驱动桥1却不增加动力传动系7的尺寸。

[4.修改示例]

上述变速驱动桥1是示例,并且其配置不限于上述配置。在下文中,将参考图5至图12描述变速驱动桥1的修改示例。图5至图12是示出根据第一至第八修改示例的包括变速驱动桥1的动力传动系7的骨架图。在上述实施例或修改示例的部件中,部件将被给予与上述实施例或修改示例相同的附图标记或相似附图标记(具有相同数字和不同字母的附图标记),并且将省略其重复描述。

[4-1.第一修改示例]

如图5所示,除了空转齿轮11h'和11l'与切换机构20'的布置不同之外,根据第一修改示例的变速驱动桥1具有与上述实施例相同的配置。在该修改示例中,所有高侧空转齿轮11h'和低侧空转齿轮11l'都设置在输入轴11中以形成双管结构,并且切换机构20'插入在同一轴(输入轴11)上。

高侧空转齿轮11h'相对于低侧空转齿轮11l'设置在差速器18的相对侧(左侧)上,并且通常与设置在第一中间轴15中的高侧固定齿轮15h'接合。低侧空转齿轮11l'设置在设置在输入轴11中的固定齿轮11a附近,并且通常与设置在第一中间轴15中的低侧固定齿轮15l'接合。应注意,固定齿轮11a设置在壳体1c的右侧表面附近,并且通常与发电机轴14的固定齿轮14a接合。即,输入轴11和发电机轴14通过两个固定齿轮11a和14a相互连接,使得可以在发动机2和发电机4之间传递动力。

该修改示例的切换机构20'通过将高侧离合器和低侧离合器组合为一集成体而获得。在切换机构20'中,所有驱动侧接合部件21h'和21l'都固定到输入轴11,并且从动侧接合部件22h'和22l'分别固定到空转齿轮11h'和11l'。高侧离合器接合部件21h'和22h'以及低侧离合器接合部件21l'和22l'中的每个接收通过设置在输入轴11中的油通道入口5b和5b'从泵5压送的油,并且响应于液压(或调节后的液压)在分离方向(脱离方向)和接近方向(接合方向)上得到驱动。

当切换机构20'的所有接合部件21h'、22h'、21l'和22l'都脱离时,所有两个空转齿轮11h'和11l'进入空转状态,从而中断发动机2对驱动轮8的动力传递。同时,当高侧离合器和低侧离合器中的任何一个接合而其另一个脱离时,选择高齿轮级或低齿轮级,使得发动机2的动力传递到输出轴。同样在这种配置中,可以获得与上述实施例相同的效果。

在根据修改示例的变速驱动桥1中,在第二路径52的过程中在第二中间轴16上设置连接/断开机构,该连接/断开机构启用或禁用来自马达3的动力传递。该连接/断开机构包括空转齿轮16c和马达侧离合器17。空转齿轮16c固定在马达侧离合器17的第一接合部件17a上,并且通常与设置在马达轴13中的固定齿轮13a接合,以便随着马达轴13的旋转而旋转。马达侧离合器17是多盘式离合器,其控制马达3的动力连接/断开状态,并且包括第一接合部件17a和固定到第二中间轴16的第二接合部件17b。马达侧离合器17设置在壳体1c的右侧表面附近。

第一接合部件17a是从马达3输入动力的部件,并且第二接合部件17b是向驱动轮8输出动力的部件。这些接合部件17a和17b接收从泵5通过油通道入口5c压送的油,并且响应于液压(或调节后的液压)在分离方向(脱离方向)和接近方向(接合方向)上得到驱动。当马达侧离合器17接合时,马达3的动力通过固定齿轮13a和空转齿轮16c传递到驱动轮8,并且驱动轮8的旋转传递到马达3。即,在马达侧离合器17接合的状态下,通过马达3的动力运行和再生发电变得可能。

相反,当在车辆10通过发动机2行驶的同时(在马达3停止的同时)马达侧离合器17脱离时,空转齿轮16c空转,因此驱动轮8的旋转不被传递到马达3。因此,由于马达3不旋转,所以电阻变小。应注意,可以提供电耦合来代替泵5和多盘式马达侧离合器17,以用作通过电子控制装置控制动力连接/断开状态的连接/断开机构。当设置这种连接/断开机构时,可以防止马达3一起旋转并减小运行阻力。

应注意,连接/断开机构不是必不可少的配置,并且可以省略。此外,在修改示例中,驻车齿轮19设置在第二中间轴16中,但是驻车齿轮19的布置不限于此。

[4-2.第二修改示例]

如图6所示,根据第二修改示例的变速驱动桥1与第一修改示例(图5)的变速驱动桥1的不同之处在于切换机构20'与空转齿轮11h'和11l'的位置关系是不同的,并且用于将动力传递到发电机4的齿轮是不同的。也就是说,同样在修改示例中,切换机构20'和空转齿轮11h'和11l'设置在输入轴11中,但是具有不同的位置关系。此外,设置齿轮11b代替第一修改示例的固定齿轮11a。

在修改示例中,切换机构20'设置在壳体1c内侧的右侧表面附近,并且两个空转齿轮11h'和11l'设置在切换机构20'的左侧。具体地,切换机构20'设置在与差速器18的环形齿轮18a在与轴向垂直的方向(下文中,称为“宽度方向”)上重叠的位置处。如图3所示,第一中间轴15的固定齿轮15a与差速器18的环形齿轮18a接合。因此,当与第一中间轴15的其他齿轮(例如空转齿轮15l)接合的齿轮(例如,固定齿轮11l)设置在输入轴11中时,该齿轮可以仅设置在沿宽度方向偏离环形齿轮18a的位置处。也就是说,输入轴11的周边中在宽度方向上与差速器18(特别是环形齿轮18a)重叠的空间容易变成死区。

相反,如图6所示,修改示例的切换机构20'设置在死区中。此外,低侧空转齿轮11l'设置在切换机构20'的左侧附近,高侧空转齿轮11h'设置在空转齿轮11l'的左侧附近(在差速器18相对于低齿轮级的相对侧)。所有空转齿轮11h'和11l'包括分别形成在其左侧部分的齿面部分,以与固定齿轮15h'和15l'接合,并分别包括形成在其右侧部分处的切换机构20'的从动侧接合部件22h'和22l'。

切换机构20'的驱动侧接合部件21h'和21l'固定到输入轴11。在该修改示例中,通常与发电机轴14的固定齿轮14a接合的齿轮11b固定到离合器组对应于与输入轴11一起旋转的接合部件21l'的外周表面上。即,输入轴11和发电机轴14通过齿轮11b和固定齿轮14a连接,使得可以在发动机2和发电机4之间传递动力。

因此,同样在根据修改示例的变速驱动桥1中,可以获得与上述实施例相同的效果。此外,设置修改示例的切换机构20'的空间成为传统结构中的死区。因此,在修改示例的变速驱动桥1中,能够有效地利用死区,并且能够提高壳体1c内的空间效率。此外,由于将动力传递到发电机14的齿轮11b固定到离合器组(接合部件21l'),因此可以缩短输入轴11的轴向尺寸并且可以使变速驱动桥1紧凑。

切换机构20'可以在宽度方向上设置在与差速器18的环形齿轮18a之外的部件(差速器壳体18b或差速器小齿轮18d)重叠的位置处。此外,上述第一修改示例的固定齿轮11a可以设置在输入轴11中,而不是将齿轮11b固定到切换机构20'的接合部件21l'(离合器组)的外周。

[4-3.第三修改示例]

如图7所示,根据第三修改示例的变速驱动桥1与第一修改示例(图5)的变速驱动桥1的不同之处在于,切换机构包括分别插入不同轴的高侧离合器30h和低侧离合器30l。高侧离合器30h设置在第一中间轴15的左侧表面附近,并且下侧离合器30l设置在靠近输入轴11的右侧表面并且在宽度方向上与差速器18的环形齿轮18a重叠的位置处。

在输入轴11中,空转齿轮11la设置在低侧离合器30l的左侧附近。此外,高侧固定齿轮11h和固定齿轮11a设置在空转齿轮11la的左侧。在第一中间轴15中,空转齿轮15ha设置在高侧离合器30h的右侧附近。此外,低侧固定齿轮15l'和固定齿轮15a设置在空转齿轮15ha的右侧。高侧离合器30h包括固定到空转齿轮15ha的左侧的驱动侧接合部件31h和固定到第一中间轴15的从动侧接合部件32h。低侧离合器30l包括固定到输入轴11的驱动侧接合部件31l,以及固定到空转齿轮11la的右侧的从动侧接合部件32l。

高侧离合器30h的接合部件31h和32h以及低侧离合器30l的接合部件31l和32l分别接收从泵5通过油通道入口5a和5b压送的油并响应于液压(或调节后的液压)在分离方向(脱离方向)和接近方向(接合方向)上得到驱动。当高侧离合器30h接合并且低侧离合器30l脱离时,选择高齿轮级。在这种情况下,发动机2的动力通过固定齿轮11h和空转齿轮15ha传递到驱动轮8。相反,当低侧离合器30l接合并且高侧离合器30h脱离时,选择低齿轮级。在这种情况下,发动机2的动力通过空转齿轮11la和固定齿轮15l'传递到驱动轮8。

因此,同样在根据修改示例的变速驱动桥1中,可以获得上述实施例的效果(1)。此外,类似于上述第二修改示例,可以有效地使用死区并且提高壳体1c内的空间效率。

在该修改示例中,低侧离合器30l可以在宽度方向上设置在与除了差速器18的环形齿轮18a以外的部件(例如,差速器壳体18b或差速器小齿轮18d)重叠的位置处。

[4-4.第四修改示例]

如图8所示,根据第四修改示例的变速驱动桥1与第三修改示例(图7)的变速驱动桥1的不同之处在于切换机构的两个离合器30h'和30l'的布置和空转齿轮11ha和15la的布置不同。即,在该修改示例中,输入轴11设置有固定齿轮11a和11l以及高侧离合器30h'和空转齿轮11ha。此外,第一中间轴15设置有固定齿轮15a和15h'以及低侧离合器30l'和空转齿轮15la。

高侧离合器30h'包括固定到输入轴11的驱动侧接合部件31h'和固定到高侧空转齿轮11ha右侧的从动侧接合部件32h'。低侧离合器30l'包括固定到低侧空转齿轮15la左侧的驱动侧接合部件31l'和固定到第一中间轴15的从动侧接合部件32l'。这些接合部件31h'、32h'、31l'和32l'响应于液压而接合或脱离,类似于上述第三修改示例。

在该修改示例中,形成高齿轮级的空转齿轮11ha和固定齿轮15h'设置在壳体1c的左侧表面附近,并且通常与发电机轴14的固定齿轮14a接啮合的固定齿轮11a设置在其右侧表面附近。此外,高侧离合器30h'插入在空转齿轮11ha的右侧,并且形成低齿轮级的固定齿轮11l和空转齿轮15la设置在离合器30h'和固定齿轮11a之间。同时,低侧离合器30l'置于空转齿轮15la的左侧,并且插入在宽度方向上与高侧离合器30h'重叠的位置处。

因此,同样在根据修改示例的变速驱动桥1中,由于高齿轮级相对于低齿轮级设置在差速器18的相对侧,因此可以获得上述实施例的效果(1)。此外,在该修改示例中,高侧空转齿轮11ha和低侧空转齿轮15la设置在不同的轴上,并且与空转齿轮11ha和15la同轴的两个离合器30h'和30l'插入在宽度上方向的重叠位置处。因此,可以缩短变速驱动桥1的轴向尺寸(整个长度),并且可以使变速驱动桥1紧凑。

[4-5.第五修改示例]

如图9所示,根据第五修改示例的变速驱动桥1与第三修改示例(图7)和第四修改示例(图8)的变速驱动桥1的不同之处在于所有空转齿轮11ha和11la和切换机构的两个离合器30h'和30l设置在输入轴11中。即,在修改示例中,低齿轮级(空转齿轮11la、固定齿轮15l')设置在固定齿轮11a的左侧,设置在输入轴11上的壳体1c的右侧表面附近,并且低侧离合器30ls插入在空转齿轮11la的左侧。此外,高齿轮级(空转齿轮11ha、固定齿轮15h')设置在低齿轮级的左侧,并且高侧离合器30h'设置在空转齿轮11ha的左侧。

在该修改示例中,高侧和低侧离合器30h'和30l的从动侧接合部件32h'和32l分别固定到空转齿轮11ha和11la的左侧。与第三和第四修改示例类似,这些接合部件32h'和32l可以固定到空转齿轮11ha和11la的右侧。同样在这种配置中,可以获得上述实施例的效果(1)。

[4-6.第六修改示例]

如图10所示,根据第六修改示例的变速驱动桥1与第五修改示例(图9)的变速驱动桥1的不同之处在于,所有空转齿轮15ha和15la以及切换机构的两个离合器30h和30l'设置在第一中间轴15中。即,在该修改示例中,低齿轮级(固定齿轮11l、空转齿轮15la)在输入轴11上设置在壳体1c的右侧表面附近的固定齿轮11a的左侧,并且高齿轮级(固定齿轮11h、空转齿轮15ha)设置在低齿轮级的左侧。离合器30h和30l'分别插入在空转齿轮15ha和15la的左侧。同样在这种配置中,可以获得上述实施例的效果(1)。

[4-7.第七修改例]

如图11所示,根据第七修改示例的变速驱动桥1与第五修改示例(图9)的不同之处在于,离合器40h和40l相对于空转齿轮11hb和11lb的位置不同。在该修改示例中,与上述实施例或第一至第六修改示例相比,空转齿轮11hb和11lb的内径形成得较大,并且离合器40h和40l分别设置在空转齿轮11hb和11lb的径向内侧(下文中,称为“内侧”)。

该修改示例的切换机构还用于控制发动机2的动力连接/断开状态并切换高齿轮级和低齿轮级,并且包括高侧离合器40h和低侧离合器40l,全部形成为多盘式离合器。高侧离合器40h包括固定到输入轴11的驱动侧接合部件41h和固定到形成高齿轮级的空转齿轮11hb的内侧的从动侧接合部件42h。此外,低侧离合器40l包括固定到输入轴11的驱动侧接合部件41l和固定到形成低齿轮级的空转齿轮11lb的内侧的从动侧接合部件42l。与上述修改示例类似,这些接合部件41h、42h、41l和42l响应于液压而接合或脱离。

因此,同样在根据修改示例的变速驱动桥1中,可以获得上述实施例的效果(1)。此外,根据该修改示例的配置,由于离合器40h和40l设置在空转齿轮11hb和11lb内侧,因此可以缩短轴向尺寸并且可以使变速驱动桥1紧凑。

[4-8.第八修改示例]

如图12所示,根据第八修改示例的变速驱动桥1与第七修改示例(图11)的变速驱动桥1的不同之处在于,空转齿轮15hb和15lb以及离合器40h'和40l'的布置是不同的。在该修改示例中,所有空转齿轮15hb和15lb设置在第一中间轴15中,并且离合器40h'和40l'分别设置在空转齿轮15hb和15lb内侧。

高侧离合器40h'包括固定到形成高齿轮级的空转齿轮15hb的内侧的驱动侧接合部件41h',和固定到第一中间轴15的从动侧接合部件42h'。此外,低侧离合器40l'包括固定到形成低齿轮级的空转齿轮15lb内侧的驱动侧接合部件41l'和固定到第一中间轴15的从动侧接合部件42l'。这些接合部件41h'、42h'、41l'和42l'类似于上述其他修改示例,响应于液压而接合或脱离。在这样的配置中,也可以获得与上述第七修改示例相同的效果。

[5.其他]

虽然已经描述了本发明的实施例和修改示例,但是本发明不限于上述实施例等,并且可以在不脱离本发明的主旨的情况下修改为各种形式。

例如,上述修改示例的变速驱动桥1设置有连接/断开机构,但是如在上述实施例中,可以不设置连接/断开机构。此外,驻车齿轮19的位置没有特别限制并且可以适当地设定。

所有上述切换机构包括高侧离合器和低侧离合器,但是高齿轮级和低齿轮级可以通过使用套筒或行星齿轮而不是离合器来切换。

此外,发动机2、马达3、发电机4和泵5相对于变速驱动桥1的相对位置不限于上述示例。响应于相对位置,可以设置变速驱动桥1内侧的六个轴11至16的布置。此外,设置在变速驱动桥1内侧的轴中的齿轮的布置也是示例性的,并且不限于上述示例。

附图标记列表

1变速驱动桥(变速驱动桥装置)

1c套管

1d柱形部

2发动机

2a曲轴(旋转轴)

3马达(电动马达,第一旋转电机)

4发电机(电力发电机,第二台旋转马达)

4a旋转轴

8驱动轮

10车辆

11输入轴

11b齿轮

12输出轴

14发电机轴(第二旋转电机轴)

15第一中间轴(中间轴)

18差速器(差动齿轮)

20、20'切换机构

30h、30h'、40h、40h'高侧离合器(切换机构)

30l、30l'、40l、40l'低侧离合器(切换机构)

51第一路径(动力传递路径)

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1