混合动力车辆控制系统的制作方法

文档序号:17701379发布日期:2019-05-17 22:33阅读:198来源:国知局
混合动力车辆控制系统的制作方法

本公开涉及用于混合动力车辆的控制系统,所述混合动力车辆包括用于推进车辆的多个发电装置。



背景技术:

混合动力车辆可包括多个发电装置,其被配置为推进车辆。



技术实现要素:

车辆包括发动机、马达和控制器。发动机和马达各自被配置为将扭矩递送到变矩器泵轮。控制器被编程为响应于当马达单独将扭矩递送到泵轮时需求泵轮扭矩超过马达扭矩上阈值,将马达扭矩增加到一个值,该值小于阈值并取决于变矩器旁通离合器扭矩容量和变矩器涡轮速度。

车辆包括发动机、马达和控制器。发动机经由分离离合器选择性地联接到变矩器泵轮。马达固定地联接到泵轮。控制器被编程为响应于当分离离合器打开时需求泵轮扭矩超过最大马达扭矩,将马达扭矩增加到一个值,该值小于最大马达扭矩并取决于估计的泵轮速度曲线(profile)。

车辆包括发动机、马达、变矩器和控制器。发动机经由离合器联接到马达。变矩器具有联接到马达的泵轮。控制器被编程为响应于当离合器打开且发动机关闭时泵轮扭矩命令超过阈值,将马达扭矩增加到一个值,该值小于阈值并取决于估计的泵轮速度曲线。

附图说明

图1是混合动力电动车辆的代表性动力传动系统的示意图;

图2是示出调整泵轮扭矩的方法的流程图;

图3是示出在发动机起动期间泵轮速度和泵轮扭矩的曲线图;以及

图4是示出在利用马达/发电机起动发动机的发动机起动期间的泵轮速度、泵轮扭矩和其他各种参数的曲线图。

具体实施方式

本文描述本公开的实施例。然而,应当理解,所公开实施例仅仅是示例,并且其他实施例可采用各种和可替代的形式。附图不一定按比例绘制;一些特征可能被放大或最小化以便展示特定部件的细节。因此,本文所公开的具体结构细节和功能细节不应当被理解为是限制性的,而是仅仅作为教导本领域技术人员以不同方式实施这些实施例的代表性基础。如本领域普通技术人员将理解,参考附图中的任何一个来说明和描述的各种特征可以与在一个或多个其他附图中所示出的特征相结合,以产生未明确示出或描述的实施例。所示出特征的组合提供典型应用的代表性实施例。然而,与本公开的教导内容一致的特征的各种组合和修改可以是特定应用或实施方式所希望的。

参考图1,示出了根据本公开的实施例的混合动力电动车辆(hybridelectricvehicle,hev)10的示意图。图1示出了部件之间的代表性关系。车辆内部件的实体布局和取向可变化。hev10包括动力传动系统12。动力传动系统12包括驱动变速器16的发动机14,变速器16可被称为模块化混合动力变速器(modularhybridtransmission,mht)。如下面将进一步详细描述的,变速器16包括诸如电动马达/发电机(motor/generator,m/g)18的电机、相关联的牵引电池20、变矩器22和多阶梯传动比自动变速器、或变速箱24。

发动机14和m/g18都是hev10的驱动源,其被配置为推进hev10。发动机14通常表示动力源,其可包括诸如汽油、柴油或天然气动力发动机的内燃发动机或燃料电池。当发动机14和m/g18之间的分离离合器26至少部分地接合时,发动机14产生被提供给m/g18的发动机功率和相应的发动机扭矩。m/g18可由多种类型的电机中的任何一种实现。例如,m/g18可以是永磁同步马达。功率电子器件根据m/g18的要求调理由电池20提供的直流(dc)功率,如下所述。例如,功率电子器件可向m/g18提供三相交流电(ac)。

当分离离合器26至少部分地接合时,功率可从发动机14向m/g18流动或从m/g18向发动机14流动。例如,分离离合器26可被接合并且m/g18可作为发电机操作,以将由曲轴28和m/g轴30提供的旋转能量转化成待存储在电池20中的电能。分离离合器26也可脱开以将发动机14与动力传动系统12的其余部分隔离,使得m/g18可充当hev10的唯一驱动源。轴30延伸穿过m/g18。m/g18连续地可驱动地连接到轴30,而发动机14仅在分离离合器26至少部分地接合时可驱动地连接到轴30。

m/g18经由轴30连接到变矩器22。因此,当分离离合器26至少部分地接合时,变矩器22连接到发动机14。变矩器22包括固定到m/g轴30的泵轮和固定到变速器输入轴32的涡轮。因此,变矩器22在轴30和变速器输入轴32之间提供液压联接。当泵轮比涡轮旋转得快时,变矩器22将功率从泵轮传输到涡轮。涡轮扭矩和泵轮扭矩的大小通常取决于相对速度。当泵轮速度与涡轮速度之比足够高时,涡轮扭矩是泵轮扭矩的倍数。还可提供变矩器旁通离合器(也称为变矩器锁止离合器)34,其在接合时摩擦地或机械地联接变矩器22的泵轮和涡轮,允许更有效的功率传输。变矩器旁通离合器34可作为起步离合器操作以提供平稳的车辆起步。另选地或组合地,对于不包括变矩器22或变矩器旁通离合器34的应用,可在m/g18和变速箱24之间提供类似于分离离合器26的起步离合器。在一些应用中,分离离合器26通常被称为上游离合器,并且起步离合器34(其可以是变矩器旁通离合器)通常被称为下游离合器。

齿轮箱24可包括齿轮组(未示出),这些齿轮组通过诸如离合器和制动器(未示出)的摩擦元件的选择性接合而选择性地以不同的齿轮比放置,以建立期望的多个离散或阶梯传动比。摩擦元件可通过换挡规律来控制,该换挡规律连接和断开齿轮组的某些元件以控制变速器输出轴36与变速器输入轴32之间的传动比。基于各种车辆和环境工况,变速箱24通过诸如动力传动系统控制单元(powertraincontrolunit,pcu)的相关联的控制器自动从一个传动比换挡到另一个传动比。来自发动机14和m/g18的功率和扭矩都可被递送到齿轮箱24并由齿轮箱24接收。然后,齿轮箱24将动力传动系统输出功率和扭矩提供给输出轴36。

应当理解,与变矩器22一起使用的液压控制变速箱24仅是变速箱或变速器装置的一个示例;任何接受来自发动机和/或马达的一个或多个输入扭矩、然后以不同的传动比向输出轴提供扭矩的多传动比变速箱,都可用于本公开的实施例。例如,变速箱24可通过自动机械(或手动)变速器(automatedmechanicaltransmission,amt)实现,该自动机械变速器包括一个或多个伺服马达以沿换挡导轨平移/旋转换挡拨叉以便选择期望的齿轮比。如本领域普通技术人员通常所理解的,amt可用于例如具有更高扭矩要求的应用中。

如图1的代表性实施例所示,输出轴36连接到差速器40。差速器40经由连接到差速器40的相应轴44驱动一对车轮42。差速器向每个车轮42传输大致相等的扭矩,但是诸如当车辆转弯时允许细微的速度差异。可使用不同类型的差速器或类似装置将扭矩从动力传动系统分配到一个或多个车轮。在一些应用中,扭矩分配可根据例如特定的操作模式或条件而变化。

动力传动系统12还包括诸如动力传动系统控制单元(pcu)的相关联的控制器50。虽然示出为一个控制器,但是控制器50可以是较大控制系统的一部分,并且可以由整个车辆10中的各种其他控制器控制,诸如车辆系统控制器(vehiclesystemcontroller,vsc)。因此应当理解,动力传动系统控制单元50和一个或多个其他控制器可统称为“控制器”,其响应于来自各种传感器的信号控制各种致动器,以控制诸如起动/停止发动机14、操作m/g18的功能,以便提供车轮扭矩或为电池20充电、选择或安排变速器换挡等。控制器50可包括与各种类型的计算机可读存储装置或介质通信的微处理器或中央处理单元(cpu)。计算机可读存储装置或介质可包括例如只读存储器(rom)、随机存取存储器(ram)和保活存储器(kam)形式的易失性和非易失性存储器。kam是持久性或非易失性存储器,该存储器可用于在cpu断电时存储各种操作变量。计算机可读存储装置或介质可使用许多已知存储器装置中的任何一种来实现,诸如prom(可编程只读存储器)、eprom(电子prom)、eeprom(电可擦除prom)、快闪存储器或任何其他能够存储数据的电子、磁性、光学或组合的存储器装置,其中一些代表由控制器用于控制发动机或车辆的可执行命令。

控制器通过输入/输出(i/o)接口(包括输入通道和输出通道)与各种发动机/车辆传感器以及致动器通信,该接口可作为单个集成接口实现,其提供各种原始数据或信号调理、处理和/或转化、短路保护等。另选地,可在提供给cpu之前使用一个或多个专用硬件或固件芯片调理和处理特定信号。通常如图1的代表性实施例所示的,控制器50可向和/或自发动机14、分离离合器26、m/g18、电池20、起步离合器34、变速器齿轮箱24和功率电子器件56传送信号。尽管没有明确说明,但是本领域普通技术人员将认识到各种可由上面标识的子系统的每一个中的控制器50控制的功能或部件。可使用由控制器执行的控制逻辑和/或算法直接或间接致动的参数、系统和/或部件的代表性示例包括燃料喷射正时、速率和持续时间、节流阀位置、火花塞点火正时(用于火花点火发动机)、进气/排气门正时和持续时间、前端附件驱动(front-endaccessorydrive,fead)部件(诸如交流发电机)、空调压缩机、电池充电或放电(包括确定最大充放电功率极限)、再生制动、m/g操作、分离离合器26、起步离合器34和变速器齿轮箱24的离合器压力等。通过i/o接口传送输入的传感器可用于例如指示涡轮增压器增压压力、曲轴位置(pip)、发动机转速(rpm)、车轮速度(ws1、ws2)、车速(vss)、冷却液温度(ect)、进气歧管压力(map)、加速踏板位置(pps)、点火开关位置(ign)、节流阀位置(tp)、空气温度(tmp)、排气氧(ego)或其他排气成分浓度或存在、进气流量(maf)、变速器的档位、传动比或模式、变速器油温(tot)、变速器涡轮速度(ts)、变矩器旁通离合器34状态(tcc)、减速或换挡模式(mde)、电池的温度、电压、电流或充电状态(soc)。

由控制器50执行的控制逻辑或功能可由一个或多个附图中的流程图或类似图表示。这些图提供了代表性的控制策略和/或逻辑,该控制策略和/或逻辑可使用一个或多个处理策略来实现,诸如事件驱动、中断驱动、多任务、多线程等。这样,所示的各种步骤或功能可按所示顺序执行、并行执行、或者在某些情况下省略。尽管并不总是明确说明,但是本领域普通技术人员将认识到,可根据所使用的特定处理策略重复执行所示步骤或功能中的一个或多个。类似地,处理顺序不一定是实现本文所述的特征和优点所必需的,而是为了便于说明和描述而提供的。控制逻辑可主要在由基于微处理器的车辆、发动机和/或动力传动系统控制器(例如控制器50)执行的软件中实现。当然,取决于特定应用,控制逻辑可在一个或多个控制器中的软件、硬件或软件和硬件的组合中实现。当在软件中实现时,控制逻辑可提供在一个或多个计算机可读存储装置或介质中,该存储装置或介质具有表示由计算机执行以控制车辆或其子系统的代码或命令的存储数据。计算机可读存储装置或介质可包括多种已知物理装置中的一个或多个,所述物理装置利用电、磁和/或光存储来保持可执行指令和相关校准信息、操作变量等。

车辆驾驶员使用加速踏板52来提供需求扭矩、功率或驱动命令以推进车辆。通常,踩下和释放加速踏板52产生加速踏板位置信号,该信号可由控制器50分别解释为对增加功率或减小功率的需求。车辆驾驶员还使用制动踏板58来提供需求制动扭矩以减慢车辆。通常,踩下和释放制动踏板58产生制动踏板位置信号,该信号可由控制器50解释为对降低车速的需求。基于来自加速踏板52和制动踏板58的输入,控制器50命令到发动机14、m/g18和摩擦制动器60的扭矩。控制器50还控制齿轮箱24内换挡的时机、以及分离离合器26和变矩器旁通离合器34的接合或脱开。与分离离合器26一样,变矩器旁通离合器34可在跨接合位置和脱开位置之间的范围内调节。除了由泵轮和涡轮之间的液力联接产生的可变滑移之外,这也在变矩器22中产生可变滑移。可选地,取决于特定应用,变矩器旁通离合器34可在不使用被调节的操作模式情况下以锁定或打开操作。

为了用发动机14驱动车辆,分离离合器26至少部分地接合以将发动机功率和/或扭矩的至少一部分通过分离离合器26传递到m/g18,然后从m/g18传递到轴30(即,变矩器22的泵轮)并通过变矩器22和变速箱24。m/g18可通过提供另外的功率和/或扭矩来转动轴30(即,变矩器22的泵轮)来辅助发动机14。该操作模式可被称为“混合模式”或“电动辅助模式”。

为了以m/g18作为唯一功率源来驱动车辆,除了分离离合器26将发动机14与动力传动系统12的其余部分相互隔离之外,功率流保持相同。在此期间,发动机14中的燃烧可被禁用或以其他方式关闭以便节省燃料。牵引电池20通过布线54将存储的电能传输到可包括例如逆变器的功率电子器件56。功率电子器件56将来自电池20的直流电压转化成待由m/g18使用的交流电压。控制器50命令功率电子器件56将来自电池20的电压转化成被提供给m/g18的交流电压,以向轴30(即,变矩器22的泵轮)提供正或负的功率和/或扭矩。该操作模式可被称为“仅电动”或“ev”操作模式。

在任何一种操作模式中,m/g18都可充当马达并为动力传动系统12提供驱动力。可选地,m/g18可充当发电机并将来自动力传动系统12的动能转化成待存储在电池20中的电能。例如,当发动机14为车辆10提供推进功率时,m/g18可充当发电机。m/g18可另外在再生制动期间充当发电机,在再生制动中,来自旋转车轮42的扭矩和旋转(或运动)能量或功率向回传递通过齿轮箱24、变矩器22(和/或变矩器旁通离合器34),并被转换成电能存储在电池20中。

电池20和m/g18还可被配置为向一个或多个车辆附件62提供电力。车辆附件62可包括但不限于空调系统、动力转向系统、电加热器或任何其他电动操作的系统或装置。

集成的起动机-发电机(integratedstarter-generator,isg)64可联接到发动机14(即,可联接到发动机14的曲轴28)。isg64可被配置为在发动机起动事件期间作为马达操作以起动发动机14,或者在车辆操作期间向动力传动系统12提供另外的扭矩。isg64还可被配置为从发动机14接收扭矩并作为发电机操作。isg64可通过离合器66、皮带68和一对带轮70选择性地联接到发动机。如果isg64通过皮带68联接到发动机,则它可被称为带传动起动发电机(beltintegratedstarter-generator,bisg)。控制器50可被配置为将信号传输到isg64以将isg64作为马达或发电机来操作。控制器还可被配置为将信号传输到离合器66,以打开或关闭离合器66。当离合器处于关闭状态时isg64将联接到发动机14,并且当离合器66处于打开状态时isg64将与发动机14脱离。isg64可被配置为提供电能以为附件电池72、牵引电池20充电,或者在作为发电机操作时提供电能为车辆附件62供电。附件电池72还可被配置为为车辆附件62供电。

控制器50可被配置为经由电信号接收图1中所示的各种车辆部件的各种状态或条件。这些电信号可经由输入通道从各种部件递送到控制器50。可选地,从各种部件接收的电信号可指示改变或变更车辆10的一个或多个相应部件的状态的请求或命令。控制器50包括输出通道,其被配置为(经由电信号)向各种车辆部件递送请求或命令。控制器50包括控制逻辑和/或算法,这些逻辑和/或算法被配置为基于各种车辆部件的请求、命令、条件或状态来产生通过输出通道递送的请求或命令。

输入通道和输出通道如图1中的虚线所示。应当理解,单个虚线可表示进出单个元件的输入通道和输出通道。此外,一个元件中的输出通道可作为另一个元件中的输入通道,反之亦然。

应当理解,图1中所示的示意图仅仅是代表性的,而并非旨在进行限制。设想了其他配置,其利用发动机和马达的选择性接合以通过变速器传输功率。例如,m/g18可从曲轴28偏移,并且/或者m/g18可设置在变矩器22和变速箱24之间。在不脱离本公开的范围的情况下,可设想其他配置。

参考图2,示出了调整泵轮扭矩的方法200。方法200可作为算法和/或控制逻辑存储在控制器50内。控制器50可被配置为基于hev10的各种条件或hev10的各种子系统来实现控制方法200。方法200在开始框202处发起。一旦方法200已被发起,方法200就前进到框204,在此处,将m/g18的扭矩储备设置为零。m/g18的扭矩储备可指为起动发动机14而储备的扭矩量,其可通过经由关闭分离离合器26将扭矩从m/g18传递到发动机14而发生。

在框204处将m/g18的扭矩储备设置为零之后,方法200前进到框205,在此处,确定驾驶员需求扭矩。驾驶员需求扭矩可基于操作员输入(例如,经由踩下加速踏板52的命令扭矩)来确定,并且可在泵轮扭矩域、涡轮扭矩域或车轮扭矩域中指定。

方法200接下来前进到框206,在此处,估计满足驾驶员需求扭矩所需的变矩器22的泵轮速度。驾驶员需求扭矩可根据滤波功能或整形功能(诸如防抖动功能)逐渐增加,使得动力传动系统以平滑的方式操作以最小化噪音、振动和不平顺性。如果在涡轮域中指定了驾驶员需求扭矩,则可使用等式(1)来计算满足涡轮处驾驶员需求扭矩所需的泵轮速度:

τ涡轮=k(ωi)2+τ旁通离合器(1)

其中:τ涡轮是变矩器22的涡轮处驾驶员需求扭矩,τ旁通是变矩器旁通离合器34的扭矩容量,ωi是变矩器22的泵轮速度,并且k是变矩器22的k系数,该k系数是变矩器22的涡轮速度ωt和泵轮速度ωi的函数。

在车轮域中指定的驾驶员需求扭矩可转化成涡轮处驾驶员需求扭矩τ涡轮,该转化使用等式(2):

其中,rt是变速器扭矩比,并且τ车轮是车轮42处驾驶员需求扭矩。

在涡轮域中指定的驾驶员需求扭矩可转化成泵轮处驾驶员需求扭矩,反之亦然,该转化使用等式(3):

τ涡轮=rτ泵轮(3)

其中,r是跨变矩器22的扭矩比,并且τ泵轮是变矩器22的泵轮处驾驶员需求扭矩。跨变矩器的扭矩比r是变矩器22的泵轮速度ωi和变矩器22的涡轮速度ωt的函数。

期望的涡轮处驾驶员需求扭矩τ涡轮、变矩器旁通离合器容量τ旁通和涡轮速度ωt可经由操作员输入(例如,经由压下加速踏板的命令扭矩)或经由仪表(例如,扭矩或速度传感器)来获知。基于期望的任何域(例如,车轮、变矩器的泵轮或变矩器的涡轮)中的驾驶员需求扭矩的已知值、变矩器旁通离合器容量τ旁通和涡轮速度ωt,控制器50可估计满足涡轮处驾驶员需求扭矩τ涡轮的泵轮速度ωi,该估计利用等式(1),如果必要,还利用等式(2)和(3)。

一旦估计的泵轮速度ωi已经被确定,方法200就前进到框208,在此处,估计在估计的泵轮速度ωi下m/g18的电力损失。在框208处确定的m/g18的电力损失可指由以下各项引起的电损失:在估计的泵轮速度ωi下m/g18的低效率、在估计的泵轮速度ωi下功率电子器件56的低效率、和/或由需求扭矩命令等于需求泵轮扭矩τ泵轮与马达扭矩储备的总和所导致的损失。

在框208处确定m/g18的电力损失之后,方法200前进到框210,在此处,在给定以下各项之下估计m/g18的最大可持续扭矩:m/g18的估计速度(其对应于估计的泵轮速度ωi,因为m/g18和泵轮固定在公共轴30上)、在框208处确定的m/g18的电力损失、需求泵轮扭矩τ泵轮、以及牵引电池20的功率极限(其可包括牵引电池20的最大功率输出或放电极限、牵引电池20的当前电量、以及在给定当前电池电量之下牵引电池20的特定功率输出或放电量可被维持的持续时间等)。应当指出的是,由于m/g18的最大可持续扭矩取决于估计的泵轮速度ωi,根据上面的等式(1),m/g18的最大可持续扭矩也将取决于涡轮处驾驶员需求扭矩τ涡轮、变矩器旁通离合器容量τ旁通和涡轮速度ωt。假设净泵轮扭矩等于需求泵轮扭矩τ泵轮。最大可持续马达扭矩与需求泵轮扭矩τ泵轮之间的差值可用于补偿分离离合器26的负扭矩,因为净泵轮扭矩将保持不变。

在m/g18运行时发动机14正在起动并且分离离合器26正在关闭的情形期间,在框210处确定的m/g18的最大可持续扭矩可对应于m/g18的最大扭矩值,该最大扭矩值在一段时间内是可持续的,该时间段对应于在发动机起动期间使发动机速度上升到泵轮速度ωi。

方法200接下来前进到框212,在此处,限制泵轮处的扭矩。更具体地,可将泵轮处的扭矩限制为以下两个值中的最小值:(1)泵轮处驾驶员需求扭矩τ泵轮以及(2)通过分离离合器26(如果连接)传递的发动机14的扭矩和在框210处确定的m/g18的最大可持续扭矩减去m/g18的扭矩储备的总和。如果发动机速度小于泵轮速度,则通过分离离合器26传递的发动机14的扭矩为零。如果发动机速度不小于泵轮速度,则通过分离离合器26传递的发动机14的扭矩是分离离合器26的容量和最大发动机扭矩中的最小值。在m/g18单独为hev10供电的情形期间,如果可命令发动机14起动,则可储备m/g18扭矩的一部分(即,扭矩储备)。如果命令发动机14起动,则可通过关闭分离离合器26将扭矩储备从m/g18传递到发动机14,以便在起动过程中辅助发动机。为了最小化从起动期间转动起动发动机14起到经由分离离合器26将发动机14连接到动力传动系统12的其余部分止的时间,可在发动机14达到与m/g18的同步速度之前请求分离离合器26的有限量容量。m/g18可补偿已请求的分离离合器26的有限量容量,只要该容量小于扭矩储备。

此外,在m/g18单独为hev10供电的情形期间(即,发动机14关闭且分离离合器26打开),如果泵轮处驾驶员需求扭矩τ泵轮超过m/g18的瞬时最大扭矩输出电位(可称之为上阈值,基于牵引电池20的最大功率输出,并且大于在框210处确定的m/g18的最大可持续扭矩),m/g18的扭矩可增加到在框210处确定的的m/g18的最大可持续扭矩,或者如果有储备,则增加到在框210处确定的m/g18的最大可持续扭矩减去储备。还可响应于泵轮处驾驶员需求扭矩τ泵轮超过m/g18的瞬时最大扭矩输出电位,命令分离离合器26关闭,以便起动发动机14并将发动机14连接到动力传动系统12。

在方框212处限制了泵轮扭矩之后,方法200前进到框214,在此处,确定是否已接收到起动发动机14的请求。如果已接收到起动发动机14的请求,则方法200前进到框216,在此处,确定m/g18的多少扭矩在发动机起动期间可用于辅助发动机14。在发动机起动期间可用于辅助发动机14的m/g18的扭矩量可等于或小于在框210处确定的m/g18的最大可持续扭矩与当前正在命令m/g18的扭矩(等于泵轮处当前需求扭矩τ泵轮)之间的差值。接下来,方法200前进到框218,在此处,确定期望m/g18的多少扭矩在发动机起动期间用于辅助发动机14。

分别在框216和框218处确定m/g18的多少扭矩在发动机起动期间可用于和被期望用于辅助发动机14之后,方法200前进到框220。在框220处,仲裁在发动机起动期间可用于辅助发动机14的m/g18的扭矩量和被期望用于辅助发动机14的m/g18的扭矩量,并且储备m/g18的适当扭矩量用于在发动机起动期间辅助发动机14。在仲裁期间,如果对于在发动机起动期间辅助发动机14而言m/g18的可用扭矩量小于m/g18的期望扭矩,则将储备扭矩量设置为在发动机起动期间可用于辅助发动机14的m/g18的扭矩量。另一方面,如果对于在发动机起动期间辅助发动机14而言m/g18的可用扭矩量大于m/g18的期望扭矩,则将储备扭矩量设置为在发动机起动期间期望用于辅助发动机14的m/g18的扭矩量。

一旦在框220处的仲裁步骤完成,方法200就前进到框222,在此处,产生在发动机起动期间分离离合器26的期望或请求扭矩容量。如果期望的或请求的分离离合器26容量小于在发动机起动期间用于辅助发动机14的m/g18的可用扭矩(在框216处确定),则可将马达扭矩储备设置为分离离合器26的期望或请求扭矩容量。如果期望的或请求的分离离合器26容量大于在发动机起动期间用于辅助发动机14的m/g18的可用扭矩,则将分离离合器26容量消减到m/g18的可用扭矩以防止泵轮扭矩下降。一旦产生在发动机起动期间分离离合器26的期望或请求扭矩容量,方法200就返回到框205的输入。

返回框214,如果尚未接收到起动发动机14的请求,则方法200前进到框224,在此处,确定发动机起动是否正在进行中。如果发动机起动正在进行,则方法200直接前进到框222。另一方面,如果发动机起动不在进行中,则方法200返回到框204的输入。应当理解,图2中的流程图仅用于说明目的,并且方法200不应当被理解为限于图2中的流程图。可重新布置方法200的一些步骤,而其他步骤可完全省略。

参考图3,示出了在发动机起动期间的泵轮速度和泵轮扭矩的曲线图300。发动机起动可对应于加速踏板52的踩加速踏板。线302对应于未滤波或未整形的驾驶员需求泵轮扭矩。线304对应于当不根据m/g18的最大可持续扭矩限制m/g18的扭矩时可递送到泵轮的m/g18的瞬时最大扭矩输出电位。线305对应于当根据m/g18的最大可持续扭矩限制m/g18的扭矩时可递送到泵轮的m/g18的瞬时最大扭矩输出电位。线306对应于当根据m/g18的瞬时最大扭矩输出电位命令m/g18的扭矩时递送到泵轮的扭矩。线308对应于当根据m/g18的瞬时最大扭矩输出电位命令m/g18的扭矩时的泵轮速度响应。线310对应于在对应于使发动机速度上升到估计的泵轮速度ωi的时间段期间m/g18的最大可持续扭矩(见框210)。线312对应于当根据估计的泵轮处驾驶员需求扭矩τ泵轮命令m/g18的扭矩(见框206)并已将m/g18的扭矩限制为在发动机起动期间m/g18的最大可持续扭矩时递送到泵轮的扭矩。线314是估计的泵轮速度ωi(见框206)。线316对应于当将m/g18的扭矩限制为m/g18的最大可持续扭矩时(见框210)的泵轮速度响应。线318示出如果发动机14已经将扭矩递送到泵轮的情况下的滤波后或整形后扭矩曲线。

在时间t0,车辆操作者将扭矩需求302增加到超过m/g18的最大扭矩输出的值,这导致在时间t1发起发动机起动。当根据线312将扭矩递送到泵轮时(其中根据泵轮处的需求扭矩τ泵轮命令m/g18的扭矩,并且将m/g18的扭矩限制为在对应于使发动机速度上升到估计的泵轮速度ωi的时间段期间m/g18的最大可持续扭矩),发动机14在时间t3开始向泵轮递送扭矩,这导致在时间t5获得需求泵轮扭矩302(在时间t3之前沿着线312仅m/g18向泵轮递送扭矩)。当根据线306将扭矩递送到泵轮时(其中根据m/g18的瞬时最大扭矩输出电位命令m/g18的扭矩),发动机14在时间t4开始向泵轮递送扭矩,这导致在时间t6获得需求泵轮扭矩302(在时间t4之前沿着线306仅m/g18向泵轮递送扭矩)。因此,根据泵轮处估计的驾驶员需求扭矩τ泵轮命令m/g18的扭矩以及将m/g18的扭矩限制为m/g18的最大可持续扭矩导致当与根据m/g18的瞬时最大扭矩输出电位来命令m/g18的扭矩相比时,发动机14在更早的时间起动并获得需求泵轮扭矩302。

参考图4,示出了在利用m/g18起动发动机14的发动机起动期间的泵轮速度、泵轮扭矩和其他各种参数的曲线图400。发动机起动可对应于加速踏板52的踩加速踏板。线402对应于未滤波或未整形的驾驶员需求泵轮扭矩。线404对应于可递送到泵轮的m/g18的瞬时最大扭矩输出电位。线406对应于当在没有储备m/g18扭矩来在发动机升速(run-up)期间进行辅助的情况下,根据m/g18的最大可持续扭矩命令m/g18的扭矩时经由m/g18递送到泵轮的扭矩。线408对应于当根据m/g18的瞬时最大扭矩输出电位命令m/g18的扭矩时的泵轮速度响应。线410对应于在对应于使发动机速度上升到估计的泵轮速度ωi的时间段期间m/g18的最大可持续扭矩(见框210)。线412对应于当分离离合器26用于辅助发动机升速并且递送到泵轮的m/g18扭矩被限制为m/g18的最大可持续扭矩减去起动发动机14所需的扭矩储备时递送到泵轮的扭矩。线414是当存在辅助发动机14升速的扭矩储备时估计的泵轮速度ωi(见框206)。线416对应于当在没有扭矩储备来辅助发动机14升速的情况下,将m/g18的扭矩限制为m/g18的最大可持续扭矩时(见框210)的泵轮速度响应。线418对应于当在来自分离离合器26的扭矩用于辅助发动机14升速的情况下,将m/g18的扭矩限制为m/g18的最大可持续扭矩时的泵轮速度响应。线420是为辅助发动机14的升速而储备的m/g18扭矩。线422是可被储备用于发动机14升速的m/g18的最大扭矩。线424是当存在被储备用于辅助发动机14升速的扭矩时可被递送到泵轮的m/g18的最大扭矩,这是线410中所示的m/g18的最大可持续扭矩与扭矩储备420之间的差值。线426示出了如果发动机14已经将扭矩递送到泵轮的情况下的扭矩曲线。

图4沿袭了与图3相同的模式,除了在时间t1与t3之间的发动机起动期间,m/g18的扭矩被限制为线424的m/g18的调整后的最大可持续扭矩,而不是线410的m/g18的最大可持续扭矩,这允许储备扭矩420用于起动发动机14。

在说明书中所使用的措词是描述用词而非限制用词,并且应当理解,可在不脱离本公开的精神和范围的情况下做出各种改变。如前所述,各种实施例的特征可组合以形成可能未明确描述或说明的其他实施例。虽然各种实施例可被描述为关于一个或多个所期望特性相对于其他实施例或现有技术实施方式提供优点或更优,但是本领域的普通技术人员认识到,可以折衷一个或多个特征或特性以实现所期望的总体系统属性,这取决于具体的应用和实施方式。因此,关于一个或多个特性被描述为不如其他实施例或现有技术实施方式那样令人期望的实施例在本公开的范围之内,并且对于特定应用可能是所期望的。

根据本发明,提供了一种车辆,其具有发动机和马达,各自被配置为将扭矩递送到变矩器泵轮;以及控制器,其被编程为响应于当所述马达单独将扭矩递送到所述泵轮时需求泵轮扭矩超过马达扭矩上阈值,将马达扭矩增加到一个值,所述值小于所述阈值并取决于变矩器旁通离合器扭矩容量和变矩器涡轮速度。

根据一个实施例,本发明的进一步特征在于电池,其被配置为为所述马达提供动力,其中所述值进一步取决于电池放电极限。

根据一个实施例,本发明的进一步特征在于分离离合器,其被配置为选择性地将所述发动机联接到所述泵轮,其中所述控制器被编程为响应于当所述马达单独将扭矩递送给所述泵轮时所述需求泵轮扭矩超过所述阈值,关闭所述分离离合器并起动所述发动机。

根据一个实施例,所述值对应于马达扭矩值,所述马达扭矩值在一段时间内是可持续的,所述时间段对应于在发动机起动期间使所述发动机速度上升到估计的泵轮速度。

根据一个实施例,所述马达扭矩的一部分通过所述分离离合器传递,以辅助起动所述发动机。

根据一个实施例,通过所述分离离合器传递的所述马达扭矩的所述部分小于或等于所述值与当前马达扭矩之间的差值。

根据本发明,提供了一种车辆,其具有发动机,其经由分离离合器选择性地联接到变矩器泵轮;马达,其固定地联接到所述泵轮;以及控制器,其被编程为响应于当所述分离离合器打开时需求泵轮扭矩超过最大可持续马达扭矩,将马达扭矩增加到一个值,所述值小于所述最大可持续马达扭矩并取决于估计的泵轮速度曲线。

根据一个实施例,本发明的进一步特征在于电池,其被配置为为所述马达提供动力,其中所述值进一步取决于电池放电极限。

根据一个实施例,所述控制器被编程为响应于当所述分离离合器打开时所述需求泵轮扭矩超过所述最大可持续马达扭矩,关闭所述分离离合器并起动所述发动机。

根据一个实施例,所述值对应于马达扭矩值,所述马达扭矩值在一段时间内是可持续的,所述时间段对应于在发动机起动期间使所述发动机速度上升到所述估计的泵轮速度。

根据一个实施例,所述马达扭矩的一部分通过所述分离离合器传递以起动所述发动机。

根据一个实施例,通过所述分离离合器传递的所述马达扭矩的所述部分小于或等于所述值与当前马达扭矩之间的差值。

根据一个实施例,本发明的进一步特征在于变矩器旁通离合器,其中所述估计的泵轮速度曲线进一步从所述旁通离合器的扭矩容量、变矩器涡轮速度和需求变矩器涡轮扭矩推导得到。

根据本发明,提供了一种车辆,其具有发动机,其经由离合器联接到马达;变矩器,其具有联接到所述马达的泵轮;以及控制器,其被编程为响应于当所述离合器打开并且所述发动机关闭时泵轮扭矩命令超过阈值,将马达扭矩增加到一个值,所述值小于所述阈值并取决于估计的泵轮速度曲线。

根据一个实施例,本发明的进一步特征在于电池,其被配置为为所述马达提供动力,其中所述值进一步取决于电池放电极限。

根据一个实施例,所述控制器被编程为响应于当所述离合器打开且所述发动机关闭时所述泵轮扭矩命令超过所述阈值,关闭所述离合器并起动所述发动机。

根据一个实施例,所述值对应于马达扭矩值,所述马达扭矩值在一段时间内是可持续的,所述时间段对应于在发动机起动期间使所述发动机速度上升到所述估计的泵轮速度。

根据一个实施例,所述马达扭矩的一部分通过所述离合器传递,以辅助起动所述发动机。

根据一个实施例,所述马达扭矩的所述部分小于或等于所述阈值与当前马达扭矩之间的差值。

根据一个实施例,本发明的进一步特征在于变矩器旁通离合器,并且其中所述估计的泵轮速度曲线基于所述旁通离合器的扭矩容量、变矩器涡轮速度和需求变矩器涡轮扭矩。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1