车辆用控制装置的制作方法

文档序号:18111536发布日期:2019-07-06 12:06阅读:135来源:国知局
车辆用控制装置的制作方法

本发明涉及具备发动机行驶模式和马达行驶模式的车辆用控制装置。



背景技术:

作为混合动力车辆的行驶模式,有使用发动机进行行驶的发动机行驶模式、使用行驶用马达进行行驶的马达行驶模式(参照专利文献1)。此外,在从马达行驶模式切换为发动机行驶模式时,通常通过启动发动机并将离合器机构接合,从而将发动机动力传递到车轮。

现有技术文献

专利文献

专利文献1:日本特开2016-98872号公报



技术实现要素:

技术问题

然而,在从马达行驶模式切换为发动机行驶模式时,为了快速切换行驶模式,多数情况下使发动机启动和离合器接合在大致相同的时刻下执行。这样,在使发动机启动和离合器接合在相同的时刻下执行的情况下,由于发动机启动时的扭矩变化被传递到驱动系统,所以有可能使驱动系统产生振动而给乘员带来不适感。于是,考虑通过使行驶用马达产生再生扭矩,从而利用再生扭矩来抵消发动机扭矩,抑制伴随着发动机启动而产生振动。然而,由于根据驱动系统的旋转状况不同,伴随着离合器接合的扭矩变化增大,所以难以抑制切换行驶模式时的振动。

本发明的目的在于抑制从马达行驶模式切换为发动机行驶模式时的振动。

技术方案

本发明的车辆用控制装置是具备使用发动机进行行驶的发动机行驶模式和使用行驶用马达进行行驶的马达行驶模式作为混合动力车辆的行驶模式的车辆用控制装置,所述车辆用控制装置包括:马达驱动系统,具备所述行驶用马达和与该行驶用马达连结的车轮;离合器机构,设置在所述发动机与所述马达驱动系统之间,并在接合状态与分离状态之间切换;离合器控制部,在从所述马达行驶模式切换为所述发动机行驶模式时,将所述离合器机构从分离状态控制为接合状态;发动机控制部,在从所述马达行驶模式切换为所述发动机行驶模式时,将所述发动机启动;以及马达控制部,在从所述马达行驶模式切换为所述发动机行驶模式时,控制所述行驶用马达而抑制发动机启动时的扭矩变化,所述离合器控制部,在所述马达驱动系统的旋转速度高于旋转阈值的状态下,在所述发动机被启动时,以第一接合速度将所述离合器机构控制为接合状态,另一方面,在所述马达驱动系统的旋转速度低于所述旋转阈值的状态下,在所述发动机被启动时,以比所述第一接合速度慢的第二接合速度将所述离合器机构控制为接合状态。

技术效果

根据本发明,在马达驱动系统的旋转速度低于旋转阈值的状态下,在发动机被启动时,将离合器机构以比第一接合速度慢的第二接合速度控制为接合状态。由此,能够抑制从马达行驶模式切换为发动机行驶模式时的振动。

附图说明

图1是示出应用本发明的一个实施方式的车辆用控制装置的混合动力车辆的概略图。

图2是示出车辆用控制装置的控制系统的一例的概略图。

图3的(a)是示出发动机行驶模式下的动力单元的工作状况的概略图,图3的(b)是示出马达行驶模式下的动力单元的工作状况的概略图。

图4是示出行驶模式切换控制的执行过程的一例的流程图。

图5是示出第一切换模式的执行状况的一例的时序图。

图6是示出第二切换模式的执行状况的一例的时序图。

图7是示出第三切换模式的执行状况的一例的时序图。

图8是示出反扭矩的输出状况的概略图。

符号说明

10:车辆用控制装置

11:混合动力车辆

13:发动机

14:电动发电机(行驶用马达)

24:输入离合器(离合器机构)

25:变矩器

30:车轮

31:马达驱动系统

60:发动机控制器(发动机控制部)

61:任务控制器(离合器控制部)

62:马达控制器(马达控制部)

np:主转速(马达驱动系统的旋转速度)

n1:旋转阈值

具体实施方式

以下,基于附图对本发明的实施方式进行详细说明。

[动力单元]

图1是示出应用本发明的一个实施方式的车辆用控制装置10的混合动力车辆11的概略图。如图1所示,在搭载于混合动力车辆11的动力单元12,设置有发动机13和电动发电机(行驶用马达)14作为动力源。在发动机13的进气歧管15,设置有喷射燃料的喷射器16,并设置有调整进气量的节流阀17。此外,在电动发电机14连接有作为电力转换器的逆变器18。应予说明,在发动机13的曲轴19,连结有作为发电机和电动机发挥功能的起动发电机20。

在动力单元12,设置有具备主滑轮21和副滑轮22的无级变速机23。在主滑轮21的一侧,经由输入离合器24和变矩器25连结着发动机13。另一方面,在主滑轮21的另一侧,经由转子轴26连结着电动发电机14。此外,在副滑轮22,经由输出离合器27连结有车轮输出轴28,在车轮输出轴28,经由差动机构29连结有车轮30。这样,在构成车辆用控制装置10的一部分的动力单元12,设置有由电动发电机14、无级变速机23和车轮30等构成的马达驱动系统31。即,在动力单元12设置有具备电动发电机14和与其连结的车轮30的马达驱动系统31。

在变矩器25与主滑轮21之间,即发动机13与马达驱动系统31之间,作为具备接合油室24a的摩擦离合器而设置有输入离合器(离合器机构)24。通过向接合油室24a供给液压油,输入离合器24被控制为接合状态,另一方面,通过从接合油室24a排出液压油,输入离合器24被控制为分离状态。通过将该输入离合器24接合,发动机13与无级变速机23相互连接,另一方面,通过将输入离合器24分离,发动机13与无级变速机23相互断开。

在发动机13与输入离合器24之间,设置有作为液力耦合器的变矩器25。变矩器25具备与曲轴19连结的泵叶轮40和与该泵叶轮40相对而连结于涡轮轴41的涡轮转轮42。此外,在变矩器25组装有具备离合器盘43a的锁止离合器43。在离合器盘43a的一面侧划分出施加室44,在离合器盘43a的另一面侧划分出释放室45。通过向施加室44供给液压油而从释放室45排出液压油,锁止离合器43被控制为接合状态。另一方面,通过向释放室45供给液压油而从施加室44排出液压油,锁止离合器43被控制为分离状态。

无级变速机23具有设置于主轴51的主滑轮21和设置于副轴52的副滑轮22。在主滑轮21划分出主油室21a,在副滑轮22划分出副油室22a。此外,在主滑轮21及副滑轮22卷绕有传动链53。通过调整主油室21a和副油室22a的液压,能够使传动链53的卷绕直径变化,可以实现从主轴51对副轴52的无级变速。

在副滑轮22与车轮30之间,设置有具备接合油室27a的输出离合器27。通过向接合油室27a供给液压油,输出离合器27被控制为接合状态,另一方面,通过从接合油室27a排出液压油,输出离合器27被控制为分离状态。通过将该输出离合器27接合,无级变速机23与车轮30相互连接,另一方面,通过将输出离合器27分离,无级变速机23与车轮30相互断开。

此外,为了对无级变速机23、变矩器25、输入离合器24、输出离合器27等进行液压油的供给控制,在动力单元12设置有包括油泵等的液压系统54。在液压系统54设置有由发动机13和/或主轴51驱动的机械油泵55,并且设置有由电动马达56驱动的电动油泵57。进而,为了控制液压油的供给对象和/或压力,在液压系统54设置有组装了电磁阀和/或油路的阀单元58。应予说明,电动油泵57在机械油泵55的排出压力下降的状况、即后述的马达行驶模式下的低车速行驶时被驱动。

[控制系统]

图2是表示车辆用控制装置10的控制系统的一例的概略图。如图2所示,为了控制动力单元12等的工作状态,在车辆用控制装置10设置有由微型计算机等构成的各种控制器60~65。作为这些控制器,有:控制发动机13的发动机控制器60,控制输入离合器24、无级变速机23等的任务控制器61,控制电动发电机14的马达控制器62。此外,作为控制器,有:控制电池66的充放电的电池控制器63,控制空调设备等空调单元67的空调控制器64,及综合地控制各控制器60~64的主控制器65。这些控制器60~65经由can和/或lin等车载网络68以相互自由通信的方式连接。

主控制器65向各控制器60~64输出控制信号,使发动机13、电动发电机14及无级变速机23等相互协调而对它们进行控制。作为与主控制器65连接的传感器,有:检测加速踏板的操作状况的加速传感器70,检测制动踏板的操作状况的制动传感器71,检测发动机13的旋转速度的发动机旋转传感器72,检测电动发电机14的旋转速度的马达旋转传感器73。此外,作为与主控制器65连接的传感器,有:检测主轴51的旋转速度的主旋转传感器74,检测副轴52的旋转速度的副旋转传感器75,检测涡轮轴41的旋转速度的涡轮旋转传感器76,检测车轮30的旋转速度即车轮速度的车轮速度传感器77等。

主控制器65基于从各种传感器和/或控制器发送来的信息来设定发动机13、电动发电机14等的控制目标,并对各控制器60~64输出基于这些控制目标的控制信号。并且,从主控制器65接收到控制信号的各控制器60~64对发动机13、电动发电机14等进行控制。也就是说,发动机控制器(发动机控制部)60向喷射器16、节流阀17等输出控制信号,对发动机扭矩、发动机转速等进行控制。任务控制器(离合器控制部)61向对液压油进行压力调节的阀单元58输出控制信号,对无级变速机23、输入离合器24、输出离合器27及变矩器25等的工作状态进行控制。此外,马达控制器(马达控制部)62向对电动发电机14的电流进行控制的逆变器18输出控制信号,对电动发电机14的马达扭矩、马达转速等进行控制。

[行驶模式]

作为行驶模式,混合动力车辆11具有发动机行驶模式及马达行驶模式。发动机行驶模式是使用发动机13进行行驶的行驶模式,马达行驶模式是使用电动发电机14进行行驶的行驶模式。为了执行这些行驶模式,在主控制器65设置有发动机行驶模式控制部80、马达行驶模式控制部81及行驶模式切换部82等各功能部。

在执行发动机行驶模式时,发动机行驶模式控制部80为了控制构成动力单元12的发动机13等各工作部,向各控制器60~63输出控制信号。在执行马达行驶模式时,马达行驶模式控制部81为了控制构成动力单元12的电动发电机14等各工作部,向各控制器60~63输出控制信号。此外,行驶模式切换部82基于车辆行驶状况和/或驾驶操作状况,从发动机行驶模式及马达行驶模式中选择并切换要执行的行驶模式。

例如,在加速踏板被踩踏而使要求驱动力增加的情况和/或混合动力车辆11在高车速范围行驶的情况下,选择发动机行驶模式来作为行驶模式。另一方面,在加速踏板的踩踏被解除而使要求驱动力减小的情况和/或混合动力车辆11在低车速范围行驶的情况下,选择马达行驶模式来作为行驶模式。此外,在使空调单元67工作的情况下,由于空调单元67的压缩机是由发动机13来驱动,所以选择发动机行驶模式来作为行驶模式。进一步地,在电池66的充电状态soc低于预定的阈值的情况和/或电池66的温度高于预定的阈值的情况下等,从抑制电池66的充放电或使电池66的充放电停止的观点考虑,选择发动机行驶模式来作为行驶模式。

图3的(a)是示出发动机行驶模式下的动力单元12的工作状况的概略图,图3的(b)是示出马达行驶模式下的动力单元12的工作状况的概略图。如图3的(a)所示,在发动机行驶模式下,输入离合器24被控制为接合状态,输出离合器27被控制为接合状态,发动机13被控制为工作状态即运转状态。由此,在发动机行驶模式下,能够使用发动机动力来驱动车轮30。应予说明,在执行发动机行驶模式时,既可以将电动发电机14控制为动力运行状态或再生状态,也可以将电动发电机14控制为空转状态。

如图3的(b)所示,在马达行驶模式下,输入离合器24被控制为分离状态,输出离合器27被控制为接合状态,发动机13被控制为停止状态,电动发电机14被控制为工作状态。由此,在马达行驶模式下,能够在使发动机13停止了的状态下,使用马达动力来驱动车轮30。应予说明,电动发电机14的工作状态是包括电动发电机14的动力运行状态和再生状态的状态。电动发电机14的动力运行状态是在电动发电机14产生加速方向的动力运行扭矩的状态,电动发电机14的再生状态是在电动发电机14产生减速方向的再生扭矩的状态。

[行驶模式切换控制(概要)]

接下来,对切换行驶模式的行驶模式切换控制进行说明。如图3的(a)和(b)所示,在从马达行驶模式切换为发动机行驶模式时,需要将发动机13启动,并且将输入离合器24切换为接合状态。但是,从快速切换行驶模式的观点考虑,在从马达行驶模式切换为发动机行驶模式时,使发动机13的启动控制和输入离合器24的接合控制在大致相同的时刻下执行。此时,由于伴随着发动机启动而上升的发动机扭矩从输入离合器24被传递到无级变速机23等马达驱动系统31,所以有可能因伴随着扭矩变化而产生的振动给乘员带来不适感。因此,车辆用控制装置10通过在发动机启动时执行电动发电机14的扭矩控制,从而利用马达扭矩来抑制发动机启动时的扭矩变化。

此外,在混合动力车辆11中,作为从马达行驶模式切换为发动机行驶模式时的切换模式的例子,设想以下三种切换模式。第一切换模式是在马达行驶模式下的行驶过程中在将发动机13启动的同时将输入离合器24接合,并在维持着行驶状态的状态下切换为发动机行驶模式的模式。作为执行该第一切换模式的状况,例如设想为在马达行驶模式下的行驶过程中,加速踏板被踩踏,在行驶过程中转变为发动机行驶模式的状况。

第二切换模式是在马达行驶模式下的即将停车之前将输入离合器24接合,并在停车后将发动机13启动而切换为发动机行驶模式的模式。作为执行该第二切换模式的状况,例如设想为在马达行驶模式下的行驶过程中制动踏板被踩踏而停车,并在停车后因空调单元67等进行工作而转变为发动机行驶模式的状况。应予说明,在混合动力车辆11中,从快速切换行驶模式的观点考虑,在马达行驶模式中低于预定车速(例如8[km/h])的情况下,在使发动机13停止着的状态下将输入离合器24切换为接合状态。由此,当在停车状态中或低速行驶时确定了向发动机行驶模式的转移的情况下,仅将发动机13启动就能够快速切换为发动机行驶模式。

第三切换模式是在输入离合器24未被接合的状态下在马达行驶模式下停车,并在停车后将发动机13启动的同时将输入离合器24接合而转变为发动机行驶模式的模式。作为执行该第三切换模式的状况,例如设想为在以马达行驶模式在结冰路面等行驶时,踩踏制动踏板而将车轮30锁止的状况。在马达行驶模式下将车轮30锁止的状况是指,由于是液压系统54的管线压力急剧下降的状况,所以是难以在即将停车之前将输入离合器24接合的状况。这样,在混合动力车辆11在将输入离合器24分离着的状态下停车之后,在因空调单元67等的工作而切换为发动机行驶模式时,利用第三切换模式转变为发动机行驶模式。

[行驶模式切换控制(流程图)]

以下,按照流程图对伴随着从马达行驶模式向发动机行驶模式的切换的、发动机13的启动控制、输入离合器24的接合控制和电动发电机14的扭矩控制进行说明。图4是示出行驶模式切换控制的执行过程的一例的流程图。

如图4所示,在步骤s10中,判定是否处于马达行驶模式的执行过程中。在步骤s10中,在判定为处于马达行驶模式的执行过程中的情况下,前进至步骤s11,判定是否有发动机启动要求即向发动机行驶模式的切换要求。例如,在加速踏板被踩踏而使要求加速度高于预定的阈值的情况、使空调单元67的压缩机工作的情况、或者电池66的充电状态soc低于预定的阈值的情况下等,判定为有发动机启动要求。

在步骤s11中,在判定为有发动机启动要求的情况下,前进至步骤s12,判定是否混合动力车辆11处于停车状态中且输入离合器24处于分离状态。在步骤s12中,在判定为混合动力车辆11处于行驶过程中的情况和/或判定为输入离合器24处于接合状态的情况下,前进至步骤s13,再次判定是否输入离合器24处于分离状态。在步骤s13中,判定为输入离合器24处于分离状态的状况是指混合动力车辆11处于行驶过程中,有发动机启动要求且输入离合器24被分离的状况。即,判定为输入离合器24处于分离状态的状况是需要通过在行驶过程中将发动机13启动并将输入离合器24接合的第一切换模式来从马达行驶模式向发动机行驶模式切换的状况。在该状况下,前进至步骤s14,启动发动机13,前进至步骤s15,使输入离合器24以高速的第一接合速度切换为接合状态,前进至步骤s16,以第一目标扭矩从电动发电机14输出反扭矩。应予说明,电动发电机14的反扭矩是指用于抵消在发动机启动时上升的发动机扭矩的马达扭矩。

另一方面,在步骤s13中,在判定为输入离合器24处于接合状态的情况下,前进至步骤s17,启动发动机13,前进至步骤s18,从电动发电机14输出反扭矩。在步骤s13中,判定为输入离合器24处于接合状态的状况是指混合动力车辆11处于行驶过程中或停车状态中,有发动机启动要求且输入离合器24被接合的状况。即,判定为输入离合器24处于接合状态的状况是需要通过在输入离合器24被接合着的状态下在停车状态中启动发动机13的第二切换模式来从马达行驶模式向发动机行驶模式切换的状况。在该状况下,前进至步骤s17,启动发动机13,前进至步骤s18,从电动发电机14输出反扭矩。

此外,在前述的步骤s12中,判定为混合动力车辆11处于停车状态中且输入离合器24处于分离状态的状况是指需要通过在停车状态中将发动机13启动并将输入离合器24接合的第三切换模式来从马达行驶模式向发动机行驶模式切换的状况。在该状况下,前进至步骤s19,启动发动机13,前进至步骤s20,使输入离合器24以低速的第二接合速度切换为接合状态,前进至步骤s21,以第二目标扭矩从电动发电机14输出反扭矩。应予说明,将输入离合器24接合时的第二接合速度是比前述的第一接合速度低的接合速度。此外,电动发电机14的第二目标扭矩是比前述的第一目标扭矩小的目标扭矩。

[行驶模式切换控制(时序图)]

以下,按照时序图对各切换模式下的发动机13的启动控制、输入离合器24的接合控制和电动发电机14的扭矩控制进行说明。图5是示出第一切换模式的执行状况的一例的时序图,图6是示出第二切换模式的执行状况的一例的时序图,图7是示出第三切换模式的执行状况的一例的时序图。在图5~图7中,制动操作、加速操作的on是指制动踏板、加速踏板被踩踏的情况。制动操作、加速操作的off是指制动踏板、加速踏板的踩踏被解除的情况。此外,发动机启动要求的on是指有发动机启动要求的情况即需要向发动机行驶模式切换的情况,发动机启动要求的off是指没有发动机启动要求的情况即不需要向发动机行驶模式切换的情况。应予说明,关于图5~图7所示的发动机转速ne、主转速np、涡轮转速nt,为了明确各转速的转变,即使在相互重叠的情况下也以稍微错开的方式记载。此外,发动机转速ne是曲轴19的旋转速度,主转速np是主轴51的旋转速度,涡轮转速nt是涡轮轴41的旋转速度。此外,图5~图7所示的管线压力是从油泵向阀单元58供给的液压油的基本液压。

[第一切换模式]

如图5所示,在马达行驶模式下的行驶过程中,如果加速踏板被踩踏(符号a1),则由于要求驱动力增大而输出发动机启动要求(符号b1)。如果输出发动机启动要求,则开始发动机13的启动旋转(即cranking,起动)(符号c1),并且输入离合器24的接合液压被提高(符号d1)。这里,输入离合器24的接合液压是向输入离合器24的接合油室24a供给的液压。在使输入离合器24的接合液压上升到预定的目标液压p1时(符号d2),组装到阀单元58的未图示的压力控制阀的阀口被打开到预定的目标开度x1(符号e1)。此外,在第一切换模式下将输入离合器24接合时,以比后述的第二接合速度快的第一接合速度将输入离合器24切换为接合状态。即,在第一切换模式下将输入离合器24接合时,以比后述的第二接合时间t2短的第一接合时间t1将压力控制阀的阀口打开到目标开度x1。

此外,由于伴随着发动机启动和输入离合器接合,发动机启动时的发动机扭矩被传递到马达驱动系统31,所以在发动机启动时以第一目标扭矩tc1从电动发电机14输出再生侧的反扭矩(扭矩)(符号f1)。这里,图8是示出反扭矩的输出状况的概略图。如图8所示,通过从电动发电机14输出作为再生扭矩的反扭矩tc,从而能够抵消从发动机13输入到马达驱动系统31的发动机扭矩te,能够抑制伴随着扭矩变化而产生振动。应予说明,从电动发电机14输出的反扭矩的大小是伴随着接合而上升的输入离合器24的扭矩容量的大小,即该反扭矩的大小根据输入离合器24的接合速度和/或液压油温度等被进行调整。

这样,在行驶过程中从马达行驶模式切换为发动机行驶模式的第一切换模式下,由于以第一接合速度快速地将输入离合器24接合,所以能够在跟随发动机转速ne的涡轮转速nt大幅上升之前将输入离合器24接合。由此,能够抑制伴随着发动机启动的涡轮转速nt的上冲(符号c2),能够抑制输入离合器24的接合冲击。即,由于变矩器25的涡轮转轮42等的惯性大,所以涡轮转速nt的上冲是使输入离合器24的接合冲击增加的主要原因,但通过将输入离合器24快速接合而抑制涡轮转速nt的上冲,从而能够抑制伴随着行驶模式的切换的输入离合器24的接合冲击。

[第二切换模式]

如图6所示,在马达行驶模式下的行驶过程中,如果制动踏板被踩踏(符号a1),且车轮速度即车速下降到预定车速v1(例如8[km/h])(符号b1),则输入离合器24的接合液压被提高(符号c1)。这里,在使输入离合器24的接合液压上升到预定的目标液压p1时(符号c2),组装到阀单元58的未图示的压力控制阀的阀口被打开到预定的目标开度x1(符号d1)。此外,在第二切换模式下将输入离合器24接合时,以第三接合速度将输入离合器24切换为接合状态。即,在第二切换模式下将输入离合器24接合时,以第三接合时间t3将压力控制阀的阀口打开到目标开度x1。应予说明,第三接合速度是比第一接合速度慢的接合速度且是比后述的第二接合速度快的接合速度。即,第三接合时间t3是比第一接合时间t1长的接合时间,且是比后述的第二接合时间t2短的接合时间。

然后,如果因空调单元67等进行工作,而在停车状态中输出发动机启动要求(符号e1),则发动机13的起动开始(符号f1),并且从电动发电机14输出反扭矩(符号g1)。由此,即使是在停车状态中切换为发动机行驶模式的情况下,也能够抑制发动机启动时的扭矩变化,能够抑制伴随着扭矩变化而产生振动。应予说明,从电动发电机14输出的反扭矩的大小根据发动机启动时上升的发动机扭矩被进行调整。

[第三切换模式]

如图7所示,在以马达行驶模式在结冰路面等行驶时,如果制动踏板被踩踏(符号a1),车轮30被锁止而使车轮速度急速下降(符号b1),则伴随着机械油泵55的压力下降,管线压力急速下降(符号c1)。在此情况下,由于难以在停车之前将输入离合器24接合,所以混合动力车辆11在输入离合器24未被接合的状态下停车(符号d1)。

然后,如果因空调单元67等进行工作,而在停车状态中输出发动机启动要求(符号e1),则发动机13的起动开始(符号f1),并且输入离合器24的接合液压被提高(符号d2)。这里,在使输入离合器24的接合液压上升到预定的目标液压p1时(符号d3),组装到阀单元58的未图示的压力控制阀的阀口被打开到预定的目标开度x1(符号g1)。此外,在第三切换模式下将输入离合器24接合时,以比前述的第一接合速度慢的第二接合速度将输入离合器24切换为接合状态。即,在第三切换模式下将输入离合器24接合时,以比前述的第一接合时间t1长的第二接合时间t2将压力控制阀的阀口打开到目标开度x1。

这样,在输入离合器24未被接合的状态下在马达行驶模式下停车,然后在将发动机13启动的同时将输入离合器24接合的第三切换模式中,输入离合器24以第二接合速度缓慢地接合。由此,能够使输入离合器24的扭矩容量缓慢地增加,能够避免发动机扭矩急剧地传递到马达驱动系统31。即,由于能够抑制马达驱动系统31的扭矩变化,所以能够抑制伴随着扭矩变化而产生振动。

此外,在发动机启动时,以比第一目标扭矩tc1小的第二目标扭矩tc2从电动发电机14输出反扭矩(符号h1)。即,由于通过输入离合器24的缓慢接合来抑制马达驱动系统31的扭矩变化,所以能够将电动发电机14的反扭矩抑制为较小。应予说明,在扭矩变化通过输入离合器24的接合控制而被充分地抑制的情况下,可以将电动发电机14的反扭矩控制为零。

[总结(第一切换模式和第三切换模式)]

如图5所示,作为在第一切换模式下启动发动机13的状况,是作为马达驱动系统31的旋转速度的主转速np高于预定的旋转阈值n1的状态。这样,在主转速np高于旋转阈值n1的状态下,在启动发动机13时,输入离合器24以第一接合速度被控制为接合状态。即,如图5所示,主转速np高于旋转阈值n1的状况是输入离合器24的输出侧正在旋转的状况,且是因发动机启动而使输入离合器24的前后的旋转速度差缩小的状况。在此情况下,由于难以通过输入离合器24的接合来使马达驱动系统31侧的扭矩急剧变化,所以通过以第一接合速度快速地将输入离合器24接合,从而快速地从马达行驶模式切换为发动机行驶模式。

与此相对,如图7所示,作为在第三切换模式下启动发动机13的状况,是作为马达驱动系统31的旋转速度的主转速np低于预定的旋转阈值n1的状态。这样,在主转速np低于旋转阈值n1的状态下,在启动发动机13时,输入离合器24以比第一接合速度慢的第二接合速度被控制为接合状态。即,如图7所示,主转速np低于旋转阈值n1的状况是输入离合器24的输出侧基本停止的状况,且是因发动机启动而使输入离合器24的前后的旋转速度差扩大的状况。在此情况下,由于易于通过输入离合器24的接合来使马达驱动系统31侧的扭矩急剧变化,所以通过以第二接合速度缓慢地将输入离合器24接合,从而抑制马达驱动系统31侧的扭矩变化。由此,能够抑制切换行驶模式时的振动。

而且,如图7所示,在将输入离合器24缓慢地进行了接合的情况下,由于能够抑制马达驱动系统13侧的扭矩变化,所以能够抑制电动发电机14的反扭矩或将该反扭矩控制为零。这样,由于能够减小电动发电机14的反扭矩,所以能够抑制因反扭矩而产生扭矩变化,从这一点也能够抑制切换行驶模式时的振动。此外,因空调单元67等的工作而引起的行驶模式的切换由于是乘员非刻意的行驶模式的切换,所以伴随着行驶模式的切换而产生的振动成为给乘员带来较大不适感的主要原因,但是能够避免产生这样的振动。

在图5、图7所示的例子中,将与主转速np进行比较的旋转阈值n1设定为0[rpm]附近。即,在判定为主转速np高于旋转阈值n1,马达驱动系统31正在旋转的情况下,以第一接合速度将输入离合器24接合,并以第一目标扭矩tc1控制反扭矩。另一方面,在判定为主转速np低于旋转阈值n1,马达驱动系统31基本停止的情况下,以第二接合速度将输入离合器24接合,并以第二目标扭矩tc2控制反扭矩。然而,不限于图5、图7所示的例子,可以将旋转阈值n1设定得比图5、图7的例子低,也可以将旋转阈值n1设定得比图5、图7的例子高。

即,通过将旋转阈值n1设定得比图5、图7所示的例子低,可以在判定为主转速np高于旋转阈值n1,马达驱动系统31正在旋转的情况下,以第一接合速度将输入离合器24接合,并以第一目标扭矩tc1控制反扭矩,另一方面,在判定为主转速np低于旋转阈值n1,马达驱动系统31停止的情况下,以第二接合速度将输入离合器24接合,并以第二目标扭矩tc2控制反扭矩。

此外,通过将旋转阈值n1设定得比图5、图7所示的例子高,可以在判定为主转速np高于旋转阈值n1,马达驱动系统31正在高速旋转的情况下,以第一接合速度将输入离合器24接合,并以第一目标扭矩tc1控制反扭矩,另一方面,在判定为主转速np低于旋转阈值n1,马达驱动系统31正在低速旋转的情况下,以第二接合速度将输入离合器24接合,并以第二目标扭矩tc2控制反扭矩。

应予说明,虽然使用主转速np作为马达驱动系统31的旋转速度,但并不限于此,也可以使用构成马达驱动系统31的各要素的旋转速度。例如,可以基于电动发电机14的旋转速度、副轴52的旋转速度、车轮30的旋转速度等,使切换行驶模式时的输入离合器24的接合速度和/或反扭矩的目标扭矩变化。

本发明不限定于前述实施方式,当然可以在不脱离其主旨的范围内进行各种变更。作为应用本发明的一个实施方式的车辆用控制装置10的混合动力车辆11,不限于图示结构的混合动力车辆11,只要是具备发动机13和行驶用马达的混合动力车辆11,则可以是任何混合动力车辆11。此外,在前述的说明中,通过液压离合器构成输入离合器24,但并不限于此,也可以通过电磁离合器构成输入离合器24。此外,在图示的例子中,在发动机13与输入离合器24之间具备变矩器25,但并不限于此,也可以将变矩器25从发动机13与输入离合器24之间删除。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1