车载动力电池、可充放电的储能系统和电动汽车的制作方法

文档序号:19321058发布日期:2019-12-04 00:32阅读:221来源:国知局
车载动力电池、可充放电的储能系统和电动汽车的制作方法

本发明属于能源技术领域,具体涉及一种车载动力电池、可充放电的储能系统和电动汽车。



背景技术:

电动汽车主要有传导式充电(有线充电)和非传导式充电(无线充电)两种充电方式。随着电动汽车保有量的增加和市场的扩大,无线充电方式的电动汽车以其便利性高、无须人工干预、维护成本低、占地面积小、无漏电风险和可实现车辆行驶中动态充电等优异特性,逐渐为现今汽车行业所认可,成为今后电动汽车产业的技术创新方向。

在目前采用无线充电的电动汽车中,装配于车身上的电子元器件较多,在生产和装配电动汽车时,需要根据每一电子元器件的具体结构对车身上安装该电子元器件的位置进行独立设计,使得电动汽车的生产过程较长,产线装配较复杂,降低了车辆的生产效率。



技术实现要素:

本申请实施例提供一种车载动力电池、可充放电的储能系统和电动汽车,用于简化所述车载动力电池、所述可充放电的储能系统和所述电动汽车的结构,缩短生产过程,降低产线装配的复杂程度,提高生产效率。

本申请实施例所述车载动力电池括外壳、充电受电线圈和电芯模组。所述外壳包括设于所述外壳外表面的凹槽和设于所述外壳内的收容腔,所述充电受电线圈收容于所述凹槽内,用以接收来自供电装置的能量并将能量输出,所述电芯模组收容于所述收容腔内且与所述充电受电线圈电连接,用以接收并存储所述充电受电线圈输出的能量。

本申请所述车载动力电池中,所述充电受电线圈和所述电芯模组共用所述外壳集成为一个部件,只需要单独装配所述车载动力电池即可同时实现对所述充电受电线圈和所述电芯模组的安装,不仅简化了所述车载动力电池的结构,还缩短了所述车载动力电池的生产过程,降低了产线装配的复杂程度,提高了生产效率。而且,所述车载动力电池在低温环境下工作时,由于所述充电受电线圈和所述电芯模组同时收容于所述收容腔内,所述充电受电线圈产生的热量可以起到加速加热所述电芯模组的作用,有效避免所述电芯模组在低温环境工作下因充电速度过快而导致电芯析锂的问题,延长了所述电芯模组的寿命,进而延长所述车载动力电池的使用寿命。

一些实施例中,所述车载动力电池还包括盖板,所述盖板可拆卸地装配于所述外壳上,以盖合所述凹槽,将所述充电受电线圈与外界的水分和空气隔绝,保护所述凹槽内的所述充电受电线圈,

一种实施方式中,所述盖板包括充电部分,所述充电部分由非金属材料制成,所述充电受电线圈通过所述充电部分接收来自所述供电装置的能量。

本申请实施例所述车载动力电池中,所述充电受电线圈和所述供电装置之间是依靠交变电磁场感应的原理来传输能量的,采用非金属材料制成的所述充电部分不会干扰所述供电装置和所述充电受电线圈之间的能量传递,有效保障了所述车载动力电池无线接收来自所述供电装置的能量,实现所述车载动力电池的无线充电。

一些实施例中,所述车载动力电池还包括整流器,所述整流器收容于所述收容腔内,且连接于所述充电受电线圈和所述电芯模组之间,所述整流器用以接收所述充电受电线圈输出的能量,对能量进行转换并将转换后的能量输出,所述电芯模组用以接收并存储所述整流器输出的能量。

本实施例所述车载动力电池中,所述整流器与所述充电受电线圈和所述电芯模组共用所述外壳集成为一个部件,进一步简化所述车载动力电池的结构,缩短所述车载动力电池的生产过程,降低产线装配的复杂程度,提高生产效率。而且,所述充电受电线圈、所述整流器和所述电芯模组都收容于所述外壳的收容腔内,三者之间可以采用铜排螺栓或铜排焊接等方式直接连接,而不需要利用高低压线缆和接口连接,不仅节省了昂贵的高压端子和高压线缆,降低了成本,提高了所述车载动力电池的电磁兼容性,还提高了所述车载动力电池的异物防护和防水性能,降低了漏电安装风险,提高了可靠性。

一种实施方式中,所述车载动力电池还包括充电补偿电容,所述充电补偿电容连接于所述整流器和所述充电受电线圈之间,所述充电补偿电容用以补偿所述充电受电线圈的电感量,提高所述充电受电线圈的工作效率。

一些实施例中,所述车载动力电池还包括散热器,所述散热器收容于所述收容腔内或者嵌设于所述外壳内,用以对所述充电受电线圈、所述整流器和所述电芯模组散热,将所述充电受电线圈、所述整流器和所述电芯模组工作时产生的热量及时散发出去,提高所述充电受电线圈、所述整流器和所述电芯模组的工作效率。本实施例中,所述散热器同时对所述充电受电线圈、所述整流器和所述电芯模组进行散热,不需要采用多个散热器分别对所述充电受电线圈、所述整流器和所述电芯模组进行散热,不仅节省了散热器成本,还简化了所述车载动力电池的整体结构。

一种实施方式中,所述散热器为金属散热板,所述金属散热板位于所述充电受电线圈远离所述盖板的一侧,。所述金属散热板不仅能对所述充电受电线圈、所述整流器和所述电芯模组进行有效散热,又能对所述充电受电线圈起电磁屏蔽作用,屏蔽所述充电受电线圈泄露的电磁场,不需要额外再为所述充电受电线圈做专门的屏蔽设计,能降低成本。而且将所述金属散热板设置于所述充电受电线圈远离所述盖板的一侧,还能避免所述金属散热板影响所述充电受电线圈通过所述充电部分接收来自所述供电装置的能量,进而提高所述车载动力电池的充电效率。

其中,所述电芯模组和所述整流器位于所述金属散热板背离所述充电受电线圈的一侧,防止所述电芯模组和所述整流器受到所述充电受电线圈的泄露的电磁场影响。

一种实施方式中,所述整流器和所述电芯模组通过导热胶与所述金属散热板接触,提高所述金属散热板对所述整流器和所述电芯模组的散热效率。

一些实施例中,所述车载动力电池还包括控制器,所述控制器收容于所述收容腔内,且与所述充电受电线圈、所述整流器和所述电芯模组电连接,同时监控所述充电受电线圈、所述整流器和所述电芯模组的电流、电压和温度等状态,不需要采用多个控制器分别控制所述充电受电线圈、所述整流器和所述电芯模组,不仅减少了控制器成本,还避免了多个控制器之间的通讯,节省了连接在控制器之间的端子和线束,优化了所述车载动力电池的充电过程。

一种实施方式中,所述控制器包括通信模块和控制模块,所述控制模块与所述通信模块电连接,所述控制模块用以根据所述电芯模组的电压和温度等信息发送控制信号,所述通信模块用以接收所述控制模块发送的所述控制信号,并无线发送所述控制信号,所述供电装置无线接收所述通信模块发送的所述控制信号并根据所述控制信号向所述车载动力电池发射能量,实现所述控制器与所述供电装置的无线通信。

一种实施方式中,所述通信模块为wifi模块或蓝牙模块。

一些实施例中,所述车载动力电池还包括逆变器,所述逆变器收容于所述收容腔内且与所述电芯模组电连接,用以转换所述电芯模组存储的能量,并将转换后的能量输出至外部负载。本申请实施例所述车载动力电池将逆变器也集成于所述收容腔内,使所述车载动力电池集充电、存储和放电功能于一体,进一步降低所述车载动力电池的体积、重量和成本,使所述车载动力电池的结构设计、散热系统设计和电气设计更加集成,最大程度上降低了所述车载动力电池对装配环境的要求,提高所述车载动力电池的电磁兼容性能。

一种实施方式中,所述逆变器与所述电芯模组位于所述金属散热板的同一侧,以防止所述逆变器受到所述充电受电线圈泄露的电磁场影响。

一些实施例中,所述车载动力电池还包括供电发射线圈和供电受电线圈,所述供电发射线圈位于所述收容腔内且与所述逆变器电连接,用以接收所述逆变器输出的能量并发射能量,所述供电受电线圈位于所述收容腔外,用以接收所述供电发射线圈发射的能量,并将能量输出给外部负载,实现所述车载动力电池对所述外部负载的无线供电。所述车载动力电池将所述逆变器输出的电能通过所述供电发射线圈和所述供电受电线圈输出给外部负载,取消所述逆变器和外部负载之间的高低压接插件,不仅节省了昂贵的高低压接插件,改善了所述车载动力电池的电磁兼容性能,还提高了所述车载动力电池的防水性能和涉水能力,降低了漏电风险,提高了可靠性。

一些实施例中,所述外壳设有一与所述收容腔连通的缺口,所述供电发射线圈和所述供电受电线圈分别位于所述缺口的两侧,所述供电受电线圈通过所述缺口接收所述供电发射线圈发射的能量。所述供电发射线圈和所述供电受电线圈之间是依靠交变电磁场感应的原理来传输能量的,所述缺口的设计有效保障了所述供电发射线圈和所述供电受电线圈之间的能量传递,实现所述车载动力电池对所述外部负载的无线供电。

一种实施方式中,所述外壳由金属材料制成。由金属材料制成的所述外壳能起到集中屏蔽高压设备的作用,降低了所述车载动力电池的电磁辐射,减少了所述车载动力电池对周围其他器件的电磁干扰,提高所述车载动力电池的电磁兼容性能。

一种实施方式中,所述外壳还包括供电部分,所述供电部分由非金属材料制成,所述供电受电线圈通过所述供电部分接收所述供电发射线圈发射的能量。所述供电发射线圈和所述供电受电线圈之间是依靠交变电磁场感应的原理来传输能量的,采用非金属材料制成的所述供电部分有效保障了所述供电发射线圈和所述供电受电线圈之间的能量传递,实现所述车载动力电池对所述外部负载的无线供电。

一种实施方式中,所述外壳还包括主体部分,所述主体部分由金属材料制成,且与所述供电部分围设形成所述收容腔。金属材料制成的所述主体部分能起到集中屏蔽高压设备的作用,降低了所述车载动力电池的电磁辐射,减少了所述车载动力电池对周围设备的干扰,提高了所述车载动力电池的电磁兼容性能。

其中,所述收容腔为封闭腔,防止外部异物进入所述收容腔内,提高所述车载动力电池的异物防护和防水性能,提高所述车载动力电池的涉水能力,降低漏电安全风险。

本申请实施例所述可充放电的储能系统包括供电装置和上述任一种车载动力电池,所述供电装置用以发射能量,所述车载动力电池用以接收并存储所述供电装置发射的能量。

本申请实施例所述可充放电的储能系统中,所述车载动力电池的充电受电线圈和电芯模组共用所述外壳集成为一体,在生产和装配所述可充放电的储能系统时,只需要单独安装所述车载动力电池即可同时实现对所述充电受电线圈和所述电芯模组的安装,简化了所述可充放电的储能可充放电的储能系统的结构,缩短了所述可充放电的储能可充放电的储能系统的生产过程,降低了产线装配的复杂程度,提升了生产效率。

一些实施例中,所述供电装置包括功率因数校正模块、逆变器模块和充电发射线圈。所述功率因数校正模块用以将从外部电网获取的交流电整流为直流电并输出,所述逆变器模块用以将接收的所述功率因数校正模块输出的直流电逆变为交流电并输出,所述充电发射线圈用以接收所述逆变器模块输出的交流电并产生同频率的交变磁场,实现所述供电装置向所述车载动力电池的能量发射。

一种实施方式中,所述供电装置还包括供电补偿电容,所述供电补偿电容连接于所述逆变器模块和所述充电发射线圈之间,用以补偿所述充电发射线圈的电感量,提高所述充电发射线圈的工作效率。

一种实施方式中,所述供电装置还包括直流调压模块,所述直流调压模块连接于所述功率因数校正模块和所述逆变器模块之间,所述直流调压模块用以接收的所述功率因数校正模块输出的直流电,对直流电进行调压并输出,所述逆变器模块用以接收的所述直流调压模块输出的直流电,将直流电逆变为交流电并输出。

本申请实施例所述电动汽车包括车身和上述任一所述车载动力电池,所述车载动力电池可拆卸地安装于所述车身的底盘上。

本申请实施例所述电动汽车中,所述车载动力电池的充电受电线圈和电芯模组共用外壳集成为一体,在生产和装配所述电动汽车时,只需要单独安装所述车载动力电池即可实现对所述充电受电线圈和所述电芯模组的安装,简化了所述电动汽车的结构,缩短了所述电动汽车的生产过程,降低了产线装配的复杂程度,提升了生产效率。

本申请实施例所述车载动力电池、所述可充放电的系统和所述电动汽车中,所述车载动力电池的所述充电受电线圈和所述电芯模组共用一个外壳集成为一个部件,只需要单独安装所述车载动力电池即可同时实现对所述充电受电线圈和所述电芯模组的安装,简化了所述车载动力电池、所述可充放电的储能系统和所述电动汽车的结构,缩短了生产过程,降低了产线装配的复杂程度,提高了生产效率。

附图说明

为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。

图1是本申请实施例所提供一种可充放电的储能系统的结构示意图;

图2是图1所示可充放电的储能系统中供电装置和车载动力电池的具体结构示意图;

图3是本申请实施例提供的一种电动汽车的结构示意图;

图4是本申请实施例提供的一种车载动力电池的剖面结构示意图;

图5是图4所示车载动力电池沿a-a方向的剖面结构示意图;

图6是图4所示车载动力电池中底板的放大结构示意图;

图7是图4所示车载动力电池中控制器的结构示意图;

图8是本申请实施例提供的第二种车载动力电池的结构示意图;

图9是本申请实施例提供的第三种车载动力电池的结构示意图;

图10是本申请实施例提供的第四种车载动力电池的结构示意图。

具体实施方式

下面结合本申请实施例中的附图对本申请实施例进行描述。

请参阅图1,图1是本申请实施例提供的一种可充放电的储能系统100的结构示意图。

本申请实施例提供的可充放电的储能系统100是一种集成了充电、存储电和放电功能于一体的储能系统。可充放电的储能系统100包括供电装置10和车载动力电池20,供电装置10用以接收外部电网200(比如市电)的能量并发射,车载动力电池20用以接收并存储供电装置10发射的能量。

请一并参阅图1和图2,图2是图1所示可充放电的储能系统100中供电装置10和车载动力电池20的具体结构示意图。

供电装置10一般安装于地面,也可称为地面端供电装置,或简称为地面端。具体的,供电装置10包括功率因数校正(pfc,powerfactorcorrection)模块101、逆变器模块102和充电发射线圈103。供电装置10以三相或单相的形式从外部电网200取电,经压过流保护电路和滤波电路(图未示)之后将50hz的工频交流电(以50hz的工频交流电为例)输出。功率因数校正模块101接收的50hz的工频交流电,将交流电整流为直流电并输出。逆变器模块102接收功率因数校正模块101输出的直流电,将直流电逆变为85khz的高频交流电并输出。充电发射线圈103接收逆变器模块102输出的85khz的高频交流电,85khz的高频交流电流动在充电发射线圈103中产生同频率的交变磁场,实现向车载动力电池20的能量发射。其中,85khz的高频交流电的工作频率是由iec(国际电工委员会,internationalelectrotechnicalcommission)61980规定的。

需要了解的是,在本申请的其他实施例中,供电装置还可以包括直流调压(dc-dcconverter,directcurrent-directcurrentconverter)模块和/或供电补偿电容。所述直流调压模块连接于所述功率因数校正模块和所述逆变器模块之间,所述直流调压模块接收所述功率因数校正模块输出的直流电,并根据实际需求进行直流调压(升压或者降压)并输出。所述逆变器模块接收所述直流调压模块输出的直流电,将直流电逆变为交流电并输出。所述供电补偿电容连接于所述逆变器模块和所述充电发射线圈之间,所述供电补偿电容补偿所述充电发射线圈的电感量,使所述充电发射线圈实现在85khz的谐振以提高所述充电发射线圈的效率。可以理解的是,所述直流调压模块和所述供电补偿电容可以根据实际需求而单独存在或同时存在,本申请对此不作具体限定。

车载动力电池20通过感应充电发射线圈103产生的交变磁场来接收供电装置10发射的能量。具体的,车载动力电池20包括外壳(图未示)、充电受电线圈2和电芯模组3。所述外壳包括设于所述外壳外表面的凹槽和设于所述外壳内的收容腔,充电受电线圈2收容于所述凹槽内,用以通过感应充电发射线圈103产生的交变磁场以产生同频率的感应电流接收来自供电装置10的能量并将能量输出。电芯模组3收容于所述收容腔内且与充电充电线圈2电连接,用以接收并存储充电受电线圈2输出的能量,从而实现车载动力电池20的充电和存储。当车载动力电池20在低温环境下使用时,由于充电受电线圈2和电芯模组3共用所述外壳集成为一个部件,充电受电线圈2产生的热量可以加速加热电芯模组3,避免电芯模组3在低温环境下工作因充电速度过快而导致电芯析锂,延长电芯模组3的使用寿命,进而延长车载动力电池20和可充放电的储能系统100的使用寿命。

在本申请实施例所提供的可充放电的储能系统100中,充电受电线圈2和电芯模组3共用所述外壳集成为一个部件,在生产和装配可充放电的储能系统100的过程中,只需要单独安装车载动力电池20即可同时实现对充电受电线圈2和电芯模组3的安装,简化了可充放电的储能系统100的结构,降低了可充放电的储能系统100产线装配的复杂程度,缩短了可充放电的储能系统100的生产装配时间,提升了可充放电的储能系统100的生产装配效率。

请参阅图3,图3是本申请实施例提供的一种电动汽车300的结构示意图。

电动汽车300包括车载动力电池20和车身30,车载动力电池20可拆卸地安装于车身30的底盘31上。当电动汽车300需要充电时,只要将电动汽车300行驶至车载动力电池20的充电受电线圈2与地面端供电装置10的充电发射线圈103相对即可进行充电,提高了电动汽车300的充电便捷性。

本申请实施例中,充电受电线圈2和电芯模组3共用所述外壳集成为一个部件,不仅便于车辆集成,减少整车成本,而且在生产和装配电动汽车300的过程中,只需要单独将车载动力电池20安装于底盘31即可同时实现对充电受电线圈2和电芯模组3的安装,降低了电动汽车300产线装配的复杂程度,缩短了电动汽车300的生产装配时间,提升了电动汽车300的生产装配效率。而且,车载动力电池20的充电受电线圈2和电芯模组3集成为一体,在车辆设计时不需要考虑底盘31的结构设计以及充电受电线圈2和电芯模组3之间的配合,简化了车辆底盘的结构设计,缩短了整车设计的时间。此外,当电动汽车300在低温环境下充电时,由于充电受电线圈2和电芯模组3集成为一体,充电受电线圈2产生的热量可以加速加热电芯模组3,避免电芯模组3在低温环境下工作因充电速度过快而导致电芯析锂,延长电芯模组3的使用寿命,进而延长电动汽车300的寿命。

请一并参阅图2至图4,图4是本申请实施例提供的一种车载动力电池20的剖面结构示意图。图4所示车载动力电池20与图1-图3所示车载动力电池20相对应。

本申请实施例中,车载动力电池20包括外壳1、充电受电线圈2、电芯模组3、盖板4、整流器5、散热器和控制器6,充电受电线圈2收容于凹槽101内,盖板4可拆卸地装配于外壳1上,以盖合凹槽101。电芯模组3、整流器4和控制器7均收容于收容腔101内,所述散热器嵌设于外壳1中。需要了解的是,在其他实施例中,所述散热器也可收容于所述收容腔内,本申请对所述散热器的具体结构不作具体限定。

需要了解的是,现有的电动汽车中,充电系统的车载端组件和动力电池包作为两个独立的车载设备单独安装在车辆底部,两者需要分别设计和安装,不仅延长了电动汽车的生产装配工序,所需的成本也较高。本申请实施例提供的车载动力电池20中,外壳1为动力电池包的外壳,充电受电线圈2收容于外壳1形成的凹槽101内,电芯模组3、整流器4和控制器7均收容于外壳1的收容腔11内,所述散热器嵌设于外壳1内,相当于取消现有车载端组件的外壳,将车载端组件的充电受电线圈和整流器集成于动力电池包内部,与动力电池包的电芯模组共用电池外壳,即车载端组件和动力电池包集成为一个部件,简化了车载端组件和动力电池包的整体结构。可以理解的是,在其他实施例中,所述外壳也可以为车载端组件的外壳,相当于取消动力电池包的外壳,而将动力电池包的电芯模组集成于车载端组件内,与车载端组件的充电受电线圈和整流器共用车载端组件的外壳,或者,同时取消车载端组件的外壳和动力电池包的外壳,将车载端组件的充电受电线圈和整流器以及动力电池包的电芯模组集成到一个新的外壳内集成为一个部件,本申请对此不作具体限定。

在车载动力电池20装配于电动汽车300上时,只需要将车载动力电池20装配于电动汽车300的底盘31即可同时实现对车载端组件与动力电池包的生产和装配,极大地简化了电动汽车300产线装配的复杂程度,缩短了产线装配所耗费的时间,提高了生产装配效率。而且,车载端组件和动力电池包集成为一体,在进行车辆设计时,不需要过多地考虑车辆底盘的结构设计以及车载端组件和动力电池包之间的配合,有利于简化底盘的结构设计,缩短整车的底盘设计过程,简化后期产线装配过程,提高生产效率。

一种实施方式中,外壳1包括底板11、与底板11相对设置的顶板12、连接在底板11和顶板12之间的两个侧板13。车载动力电池20装设于电动汽车300的底盘31上时,顶板12为外壳1与底盘31接触的部分,底板11为外壳1远离底盘31的部分。可以理解的是,在其他实施例中,所述外壳也可以包括上壳体和下壳体,所述上壳体和所述下壳体相扣和即可形成所述壳体,本申请实施例对所述外壳的结构组成不作具体限定。

本实施方式中,底板11朝向顶板12的方向凹设形成凹槽101,在车载动力电池20需要进行充电时,电动汽车300行驶至凹槽101的开口与供电装置10的充电发射线圈103相对,收容于凹槽102内的充电受电线圈2感应充电发射线圈103的交变磁场产生感应电流,以无线接收供电装置10发射的能量。可以理解的是,由于充电受电线圈2收容于凹槽101内,在车载动力电池20装配于底盘31上时,充电受电线圈2不会突出于外壳1的外表面,在电动汽车300行驶过程中不易被剐蹭而损坏。而且,由于充电受电线圈2收容于凹槽101内,而非凸设于外壳1上,底板12、顶板13和两个侧板14围设成外形方正的外壳1,不仅方便对车载动力电池20进行安装和拆卸,还进一步简化了电动汽车300的底盘31的结构设计,有利于提高电动汽车300的生产效率和产能。需要说明的是,在其他实施例中,所述底板背离所述顶板的方向也可以凸设有收容槽,所述充电受电线圈也可以收容于所述收容槽内。

盖板4可拆卸地装配于底板12上,以盖合凹槽101。具体的,盖板4装配于凹槽101的槽壁,以密封凹槽101,防止外界的水分或氧气进入凹槽101损坏充电受电线圈2。本实施方式中,充电受电线圈2可拆卸地装配于盖板4上,盖板7装配于外壳1上,以将充电受电线圈2固定于凹槽101内,不会在凹槽101内随意晃动而避免车载动力电池20在充电时无法与充电发射线圈103对准的问题。可以理解的是,在其他实施方式中,所述充电受电线圈也可以可拆卸地装配于所述凹槽的槽壁上,本申请对此不做具体限定。需要了解的是,本申请所述可拆卸的装配方式包括且不限于螺钉或螺栓等固定方式。

一种实施方式中,盖板4包括充电部分41和固定部分42。充电部分41由非金属材料制成,充电受电线圈2通过充电部分121接收供电装置10发射的能量,即充电受电线圈2通过充电部分121感应充电发射线圈103的交变磁场产生感应电流。需要了解的是,充电受电线圈2和充电发射线圈103之间是依靠交变电磁场感应的原理来传输能量的,采用非金属材料制成的充电部分121有效保障了充电受电线圈2和充电发射线圈103之间的能量传递,以实现车载动力电池20的充电。具体的,充电部分41为盖板4与充电受电线圈2正对的部分,也即充电受电线圈2在盖板4上的投影正好覆盖充电部分41,以使充电受电线圈2朝向充电部分41表面的每个位置都可以感应到充电发射线圈103的交变磁场而产生感应电流。固定部分42环绕设置于充电部分41的周缘,盖板4通过固定部分42装配于底板11上。可以理解的是,在其他实施方式中,所述充电部分也可以不为所述盖板与所述充电受电线圈正对的部分,或者所述盖板即为所述充电部分,本申请对所述充电部分在所述盖板上的位置不作具体限制。

本实施例中,底板11、顶板12和两个侧板13一体成型形成外壳1。外壳1由金属材料制成,金属材料制成的外壳1能集中屏蔽高压设备,极大地降低车载动力电池20的电磁辐射,不仅减少了车载动力电池20对其他车载部件的电磁干扰,提高车载动力电池20的电磁兼容性能,还能保证车载动力电池20泄露的电磁场在较低水平,确保位于车载动力电池20附近的人员安全。需要了解的是,由于充电受电线圈2收容于外壳1的凹槽101内,充电受电线圈2除却与充电发射线圈103相对的表面外,其他的表面均被底板11包围,金属材料制成的底板11能有效屏蔽充电受电线圈2其他表面泄露的电磁场,不仅可以防止充电受电线圈2产生的电磁场干扰电芯模组3、整流器4和控制器6的正常工作,还可以将车载动力电池20泄露的电磁场维持在较低水平,且不需要再单独为充电受电线圈2做电磁屏蔽设计,降低了车载动力电池20的制造成本。当然,在其他实施方式中,所述底板、所述顶板和两个所述侧板也可以为通过组装形成的一体式结构,以增加所述外壳的结构紧凑度。

一种实施方式中,底板11、顶板12和两个侧板13围设形成封闭的收容腔102,能防止外界异物进入收容腔102内,改善了车载动力电池20的异物防护性能,提高了车载动力电池20的涉水能力,降低了车载动力电池20的漏电安全风险。电芯模组3和整流器5都收容于收容腔11内,整流器5连接于充电受电线圈2和电芯模组3之间。充电受电线圈2通过充电部分41感应供电装置10中充电发射线圈103发射的交变磁场后产生感应电流,并将感应电流输出至整流器5,整流器5将充电受电线圈2输出的感应电流变换为直流电后输出电芯模组3,电芯模组3接收并存储整流器5输出的直流电,实现车载动力电池20的充电功能。其中,整流器5与充电受电线圈2之间还连接有充电补偿电容(图未示),所述充电补偿电容补偿充电受电线圈2的电感量,以使充电受电线圈2产生85khz的谐振来提高效率。

本实施方式中,车载动力电池20还具有高压输出接口21。高压输出接口21设于一个侧板14上且与电芯模组3电连接,用以将电芯模组3输出的高压直流电传递给高压外部负载(比如电动汽车的驱动电机),实现车载动力电池20对高压外部负载的供电。本申请实施例提供的车载动力电池20将充电、存储和放电功能集成于一体,车载动力电池20的结构设计和电气设计更加集成,最大程度上简化了电动汽车300的结构设计工作,降低电动汽车300整体的设计和生产成本。

请参阅图5,图5是图4所示车载动力电池20沿a-a方向的剖面结构示意图。

收容腔102内嵌设有多个隔板,多个所述隔板将收容腔102划分为多个子收容腔103,多个子收容腔103用以分别收容收容电芯模组2、整流器5和控制器7。具体的,收容腔102内嵌设有五块所述隔板。五块所述隔板包括四块第一隔板14和一块第二隔板15。四块第一隔板14平行且间隔设置于两个侧板13之间,第二隔板15连接于两个侧板13之间,以将收容腔102划分为十个子收容腔103。

本实施方式中,十个子收容腔103中九子收容腔103用以收容电芯模组3,剩下的一个子收容腔103用以收容整流器5和控制器6。具体的,电芯模组3包括九个子电芯模组31,每一子电芯模组31两端的端板上设有螺柱(图未示),每一子电芯模组31通过螺柱固定于一个子收容腔103内。整流器5和控制器6分别装设于两个防护壳体(图未示)中,两个所述防护壳体通过螺柱固定于同一个子收容腔103内。整流器5和控制器6分别装设于所述防护壳体内,不仅方便整流器5和控制器6的安装固定,所述防护壳体还能隔绝整流器4和控制器6与外界环境,保护整流器5和控制器6。可以理解的是,在其他实施方式中,所述子电芯模组和所述防护壳体也可以通过螺钉或螺栓的方式固定于所述子收容腔内,本申请对此不作具体限定。

本申请实施例所示车载动力电池20中,车载端组件和动力电池包集成为一个部件,车载端组件的整流器5和动力电池包的电芯模组3之间可以通过铜排螺栓或铜排焊接等方式实现电连接,不再需要单独的高低压线缆和接插件,不仅节省了昂贵的高压端子和高压线缆,降低了成本,还避免了高低压线缆和接插件带来的电磁兼容性问题。而且,在车载动力电池20装配于电动汽车300的底盘31上时,不需要考虑高低压线缆的布置,进一步简化了电动汽车300底盘31的结构设计和产线装配,简化了车载动力电池20的安装和拆卸过程,提高了生产效率和产能。而且,在电动汽车300有换电需求时,无高低压线缆和接插件的更换过程更简单,安全风险更小,可靠性高,能有效缩短换电时间,提高换电效率。

本申请实施例中,所述散热器嵌设于底板11内,对充电受电线圈2、电芯模组3和整流器5进行散热,提高充电受电线圈2、电芯模组3和整流器5的工作效率。具体的,所述散热器为动力电池包的散热器,所述散热器同时冷却车载端组件的充电受电线圈2和整流器5以及动力电池包的电芯模组3,相当于车载端组件共用动力电池包的散热器,即将车载端组件的散热器和动力电池包的散热器节省为一个散热器,不仅降低了散热器成本,还进一步简化了车载动力电池20的结构。

一种实施方式中,所述散热器为金属散热板,所述金属散热板位于充电受电线圈2远离盖板4的一侧,避免所述金属散热板影响充电受电线圈2通过充电部分41感应充电发射线圈103产生的交变磁场,进而提高车载动力电池20的充电效率。具体的,所述金属散热板位于充电受电线圈2和电芯模组3之间,整流器5与电芯模组3位于所述金属散热板的同一侧,即电芯模组3和整流器4位于所述金属散热板背离充电受电线圈2的一侧,避免电芯模组3和整流器4被充电受电线圈2泄露的电磁场干扰。其中,电芯模组3和整流器4均通过导热胶8与所述金属散热板接触,电芯模组3和整流器4工作时产生的热量通过导热胶7传递至所述金属散热板,提高了所述金属散热板对电芯模组3和整流器4的散热效率。可以理解的是,导热胶7的热传导系数大于空气的热传导系数,以加快对电芯模组3和整流器4的热传导效率。

请参阅图6,图6为图4所示车载动力电池20中底板11的放大结构示意图。

本实施方式中,所述散热器集成于底板11内,即所述散热器即为底板11。底板11包括相对设置的第一板体111和第二板体112。第一板体111朝向顶板12的表面设有冷凝水道113,用以供冷凝水流动,以将充电受电线圈2、电芯模组3和整理器4工作时产生的热量带走,实现对各个元器件的散热,提高各个元器件的工作效率。第二板体112盖合在冷凝水道113上,防止冷凝水道1113内的冷凝水流入收容腔102内,损坏收容腔102内的电子元器件。可以理解的是,由于充电受电线圈2收容于凹槽101内,即充电受电线圈2的三个面均由冷凝水道113环绕,冷凝水道113可以实现对充电受电线圈2的有效散热。本申请实施例车载动力电池20将所述散热器集成于底板11内,在底板11内开设冷凝水道113,采用一套水冷系统即可同时冷却车载端组件和动力电池包,节省了水冷系统的设计,减少了水冷系统所需要使用的水冷管道和连接器,节省了成本。

请一并参阅图7,图7是图4所示车载动力电池20中控制器6的具体结构示意图。

控制器6收容于收容腔102内,且与充电受电线圈2、整流器4和电芯模组3电连接。具体的,控制器6与整流器4位于同一子收容腔103内。本实施例中,车载动力电池20还具有低压接口22,低压接口22设于另一个侧板13上,且与控制器6电连接。低压接口22不仅用以将外部的低压电源输出的低压直流电传递给控制器6,实现对控制器6的供电,还用以使控制器6实现与外部的通信。需要说明的是,在其他实施例中,所述电芯模组和所述控制器之间还可以设有直流调压器,所述直流调压器用以将所述电芯模组输出的高压电转换成低压电输出给所述控制器,实现对所述控制器的供电,或者,所述直流调压器也可以将所述电芯模组输出的高压转换成低压电并通过所述控制器和所述低压接口实现对外部负载的低压供电。

具体的,控制器6包括控制模块61和通信模块62。控制模块61包括充电控制单元611和电池管理单元612。充电控制单元611与整流器4和充电受电线圈2电连接,用以监控整流器4和充电受电线圈2的电流、电压和温度等状态。电池管理单元612与电芯模组3电连接,用以监控电芯模组3的电流、电压和温度等状态。通信模块62与控制模块61电连接,通信模块62为wifi模块或蓝牙模块,用以实现控制器6与供电装置10的无线通信。

本实施例中,控制器6的控制模块61集成控制车载端组件的充电控制单元611和控制动力电池包的电池管理单元612,控制器6同时控制车载端组件的充电受电线圈2和整流器4以及动力电池包的电芯模组3,不需要采用多个控制器分别控制车载端组件和动力电池包,不仅节省了控制器成本,还避免了控制车载端组件的控制单元611和控制动力电池包的电池管理单元612之间的连接通讯,节省了端子和线束连接,降低了成本,还可以最大程度优化车载动力电池20的充电策略。

当装配于电动汽车300的底盘31上的车载动力电池20需要进行充电时,在电动汽车300行驶至距离供电装置10约五六米远的时候,电动汽车300的主控制器通过低压接口22向车载动力电池20的控制器6发送唤醒信号,控制器6中控制模块61的充电控制单元611接收该唤醒信号,并发送该唤醒信号,通信模块62接收该唤醒信号,并将该唤醒信号无线发送,供电装置10无线接收该唤醒信号准备充电。同时,控制模块61的电池管理单元612根据电芯模组3的电压和温度等信息核算所需要的充电电流等信息,并根据核算结果发送控制信号,充电控制单元611接收该控制信号并发送该控制信号,通信模块62接收该控制信号并将该控制信号无线发送,供电装置10无线接收该控制信号并根据该控制信号向车载动力电池20发射能量,从而实现控制器6与供电装置10的无线通信。

本实施例所提供的车载动力电池20中,充电受电线圈2通过充电部分41感应供电装置发射的高频交流磁场产生交流电,并将交流电输出至整流器5,整流器5将交流电变换为直流电,并将直流电输出至电芯模组3,电芯模组3进行电能存储,再将高压电从高压输出接口21输出至外部负载,实现车载动力电池20的充电、存储和放电的全过程。车载动力电池20中车载端组件和动力电池包在结构上完整融合,不需要采用车载端组件和动力电池包之间的高低压连接线缆和接口,在将车载动力电池20装配于电动汽车300上时,不需要过多考虑电动汽车300的底盘31的结构设计,可以极大地简化电动汽车300的设计工作和成本。

请参阅图8,图8是本申请实施例提供的第二种车载动力电池20的结构示意图。

本申请实施例提供的车载动力电池20与上述第一种车载动力电池20的不同之处在于,车载动力电池20还包括逆变器8,逆变器8收容于收容腔102内且与电芯模组3电连接,用以转换电芯模组3存储的能量,并将转换后的能量输出至外部负载400。具体的,逆变器8连接在电芯模组3和高压输出接口21之间。车载动力电池20向外部负载400提供高压交流电时,逆变器8将电芯模组2输出的高压直流电变换为高压交流电后,经线缆或铜排通过高压输出接口21输出至外部负载400,实现向外部负载400的供电。

本实施例中,逆变器8收容于子电芯模组31所在的子收容腔103内。具体的,逆变器8在收容腔102内的装配方式与整流器5和控制器6相同,逆变器8装设于所述防护壳体内,装设有逆变器8的所述防护壳体再通过螺柱固定于子收容腔103内。可以理解的是,在其他实施例中,所述逆变器也可以收容于所述整流器和所述控制器所在的子收容腔内,本申请对此不做具体限定。

需要说明的是,当上述第一种实施例提供的车载动力电池20需要向外部负载400提供高压交流电时,电芯模组3经高压输出接口21输出的高压直流电是需要先在收容腔11外经过逆变器变换成高压交流电再输出至外部负载的。本申请实施例提供的车载动力电池20中,将逆变器8也集成到外壳1的收容腔102内,电芯模组3输出的高压直流电先经逆变器8逆变成高压交流电后再从高压输出接口22输出至外部负载,使车载动力电池20集充电、存储和放电功能于一体,进一步降低了车载动力电池20的体积、重量和成本,车载动力电池20的结构设计、散热系统设计和电气设计将更加集成,最大程度地简化需要装配车载动力电池20的电动汽车的设计工作,降低电动汽车的设计和生产成本。

请参阅图9,图9是本申请实施例提供的第三种车载动力电池20的结构示意图。

本申请实施例提供的车载动力电池20与上述第二种车载动力电池20的不同之处在于,车载动力电池20包括供电发射线圈211和供电受电线圈212,供电发射线圈211位于收容腔11内且与逆变器8电连接,用以接收逆变器8输出的能量并发射能量,供电受电线圈212位于收容腔11外,用以接收供电发射线圈211发射的能量,并将能量输出给外部负载400,实现车载动力电池20对外部负载400的无线供电。具体的,供电发射线圈211和供电接收线圈212位于侧板13的相对两侧。供电发射线圈211装配于第一线圈盖213内,第一线圈盖213通过螺钉固定于侧板13朝向收容腔11的表面,以使供电发射线圈211收容于收容腔102内,且靠近逆变器8设置,以减小电磁辐射。供电发射线圈211经线缆或铜排接收逆变器8输出的高压交流电,高压交流电在供电发射线圈211中流动会产生同频率的交变磁场。供电受电线圈212装配于第二线圈盖214内,第二线圈盖214通过螺钉固定于侧板14背离收容腔11的表面。供电受电线圈212经侧板14耦合供电发射线圈211发射出的交流电磁场,感应出同频率的感应电流,再经线缆输出至外部负载400,实现向外部负载400的无线供电。

本实施例中,第一线圈盖213和第二线圈盖214均由金属材料制成。第一线圈盖213包覆供电发射线圈211中不与供电受电线圈212相对设置的表面,第二线圈盖214包括供电受电线圈212中不与供电发射线圈211相对设置的表面,以屏蔽供电发射线圈211和供电受电线圈212泄露的电磁场,降低车载动力电池20的电磁辐射,提高车载动力电池20的电磁兼容性。

可以理解的是,相比于充电发射线圈103和充电受电线圈2,供电发射线圈211和供电受电线圈212之间的距离更小且相对位置是固定的,供电发射线圈211和供电受电线圈212之间的能量传递效率很高,因此可以采用体积和重量较小的线圈来降低车载动力电池20的体积和成本。

本实施例中,外壳1设有一与收容腔102连通的缺口103,供电发射线圈211和供电受电线圈212分别位于缺口103的两侧,即供电受电线圈212通过缺口103感应供电发射线圈的交流电磁场产生感应电流。需要了解的是,供电发射线圈211和供电受电线圈212之间是依靠交变电磁场感应的原理来传输能量的,在由金属材料制成的外壳1上开设缺口103来实现供电发射线圈211和供电受电线圈212之间的能量传递,有效保障了能量传递的可靠性,实现车载动力电池20对外部负载400的供电。

本申请实施例提供的车载动力电池20中采用供电发射线圈211和供电受电线圈212来替代上述第二种实施例中高压输出接口22,充电受电线圈2、电芯模组3、整流器4、控制器6、逆变器8和供电发射线圈211均集成在收容腔102内,各个器件可以在收容腔102内直接连接,取消了现有技术中车载端组件和动力电池包以及逆变器与外部负载之间的高低压线缆和接插件,不仅节省了成本,还提高了车载动力电池20的电磁屏蔽性能。

请参阅图10,图10为本申请实施例提供的第四种车载动力电池20的结构示意图。

本申请实施例提供的车载动力电池20与上述第三种车载动力电池20的不同之处在于,外壳1包括供电部分14和主体部分。供电部分14由非金属材料制成,供电受电线圈212通过供电部分14接收供电发射线圈211发射的能量,即供电受电线圈212通过供电部分14感应供电发射线圈的交流电磁场产生感应电流。需要了解的是,供电发射线圈211和供电受电线圈212之间是依靠交变电磁场感应的原理来传输能量的,采用非金属材料制成的供电部分14有效保障了供电发射线圈211和供电受电线圈212之间的能量传递,实现车载动力电池20对外部负载400的供电。

一种实施方式中,供电部分14为侧板13与供电发射线圈211正对的部分,即供电发射线圈221在侧板14上的投影正好覆盖供电部分141,以使供电发射线圈211每个位置产生的交变磁场都能通过供电部分141传递给供电受电线圈212。可以理解的是,在其他实施方式中,所述供电部分也可以不为所述侧板与所述供电发射线圈正对的部分,本申请对此不作具体限制。

所述主体部分由金属材料制成,所述主体部分与供电部分14围设形成收容腔102。具体的,所述主体部分包括底板12、侧板13除去供电部分14的部分、顶板13和另一侧板14,即底板12、侧板13除去供电部分14的部分、顶板13和另一侧板14均由金属材料制成,能集中屏蔽高压设备,极大地降低车载动力电池20的电磁辐射,不仅减少了车载动力电池20对其他车载部件的电磁干扰,提高车载动力电池20的电磁兼容性能,还能保证车载动力电池20泄露的电磁场在较低水平,保证位于车载动力电池20附近的人员安全。

本申请实施例提供的车载动力电池20中采用供电发射线圈211和供电受电线圈212来替代上述第二种实施例中高压输出接口22,充电受电线圈2、整流器4、电芯模组3、控制器7、逆变器7和供电发射线圈211均集成在收容腔11内,各个器件可以在收容腔11内直接连接,取消了现有技术中车载端组件和动力电池包以及逆变器与外部负载之间的高低压线缆和接插件,不仅节省了成本,还提高了车载动力电池20的电磁屏蔽性能。

可以理解的是,在本申请的其他实施例中,当所述车载动力电池需要实现对外部负载的低压供电时,也可以取消低压接口,采用逆变器等器件将电芯模组输出的高压直流电经直流调压器转换成低压直流电后,再利用逆变器逆变成低压交流电,再通过一对无线供电线圈输出,最后利用整流器等器件将低压交流电变换为低压直流电输出,实现对外部负载的无线低压供电。

本申请实施例提供的可充放电的储能系统100、电动汽车300和车载动力电池20中,车载动力电池20的充电受电线圈2和所述电芯模组3共用一个外壳1集成为一个部件,只需要单独安装车载动力电池20即可实现对充电受电线圈2和所述电芯模组3的安装,简化了车载动力电池20、可充放电的储能系统100和电动汽车300的结构,缩短了生产过程,降低了产线装配的复杂程度,提高了生产效率。

以上所述,仅为本发明的部分实施例和实施方式,本发明的保护范围不局限于此,任何熟知本领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1