一种纳米流体原位制备、表征及防团聚储存的装置及方法

文档序号:25742030发布日期:2021-07-06 18:52阅读:127来源:国知局
一种纳米流体原位制备、表征及防团聚储存的装置及方法

本发明属于纳米流体技术领域,涉及一种纳米流体原位制备、表征及防团聚储存的装置及方法。



背景技术:

纳米流体是将纳米级的固体颗粒分散到溶液中形成的均匀稳定的二元或多元流体,是一种新型、高效热性能的能量输运工质,可以有效提高液体的导热系数,强化液体的传热性能,满足特殊尺度下的强化传热要求,在工程领域具有广阔的应用前景与研究价值。

理想情况下,纳米粒子均匀悬浮分布于基液之中,但实际上在布朗运动的过程中以及其他各种作用力的影响下,悬浮的纳米粒子之间不可避免地会发生碰撞和团聚,形成团聚体,这种团聚现象会降低纳米流体内部能量传递的速率,削弱其强化传热性能。当团聚体的尺寸变大到一定程度时,甚至还会发生沉淀,从而使得纳米流体失去其原有的优越性能。因此,制备出分散性好、稳定性高的纳米流体,并使纳米粒子在较长时间内均匀、稳定地分散在液体介质中,是纳米流体制备与研究过程中的关键技术之一。

针对制备与表征纳米流体稳定性这一问题,中国发明专利cn110193318a公开了一种基于光声效应的纳米流体防团聚方法,其原理是利用金纳米粒子在通过石英光纤的激光的辐照下产生的微腔,该微腔在周期性的膨胀和收缩中产生定向的超声波,从而使得纳米流体振荡以防止颗粒团聚,同时借助ccd相机实时监测通过纳米流体的光信号强弱变化对其稳定性进行表征。该方案在理论上可一定程度上改善纳米流体的团聚问题,但是所涉及到的装置与材料较为复杂,对部件的精度以及装置复杂程度要求都相对较高。

中国专利cn111829924a公开了一种纳米流体稳定性监测系统及方法,可对纳米流体稳定性进行实时观测与多参数全面表征,其原理是将吸光度、黏度、表面张力等参数的测试系统集成于一体,并通过plc控制模块对数据统一进行处理。该方案在一定程度上对纳米流体的大部分稳定性表征参数进行了系统的表征与记录,但是其装置本身不便于样品的长期储存,且未考虑被监测的纳米流体一旦发生团聚后如何及时将其分散的问题,同时部分监测技术较为冗余。

此外,包括上述两项专利技术在内,目前所公开的相关技术方案都是直接对制备完成的纳米流体实施外加的分散或稳定性表征,因此都无法避免溶液在转移以及接触外部装置的过程中带来的误差、污染以及对体系分散状况的影响。



技术实现要素:

本发明的目的是提供一种纳米流体原位制备、表征及防团聚储存的装置及方法。经研究发现,开展纳米流体相关研究的关键前提之一是解决纳米流体易团聚的问题。本发明在解决纳米流体颗粒易团聚问题的同时,避免了移液带来的误差与污染,还实现了纳米流体稳定性的简便直观表征。

本发明的目的可以通过以下技术方案来实现:

一种纳米流体原位制备、表征及防团聚储存的装置,该装置包括用于原位制备纳米流体并储存纳米流体的容器、与容器相适配的纳米颗粒分散机构以及与容器相适配的背光表征系统,所述的纳米颗粒分散机构包括超声振动组件及磁力搅拌组件。纳米流体盛装在容器。

进一步地,该装置还包括与容器相适配的容器盖。在长期储存纳米流体时,将容器盖盖在容器上。

进一步地,所述的容器为长方体容器,该长方体容器位于背光表征系统的光路中,并且所述的长方体容器的长度方向与光路相垂直,宽度方向与光路相平行。长方体容器在透光方向上距离短,而在非透光方向上距离长。在后续的背光拍照稳定性表征环节中,这种设计可适应高颗粒密度的纳米流体悬浊液的透光性,从而缩短光程,而长方体容器的长边则有利于增大背光拍照表征过程中正视可视区的面积,从而便于对颗粒分散状况进行观察。

进一步地,所述的超声振动组件包括与容器的内部相适配的超声振动器。超声振动器采用超声振动方式对纳米流体进行分散。超声振动器在原位制备过程中利用高频超声将纳米颗粒分散,可以提高纳米流体的均匀性。

进一步地,所述的超声振动组件还包括与超声振动器相适配的调节支架,所述的超声振动器设置在调节支架上。调节支架能够带动超声振动器移动,用于将超声振动器伸入容器内进行纳米流体的分散,或者将超声振动器从容器内移出以便表征或储存纳米流体。

进一步地,所述的磁力搅拌组件包括磁力搅拌平台以及与磁力搅拌平台相适配的磁力转子,所述的容器设置在磁力搅拌平台上,所述的磁力转子设置在容器的内部。通过磁力搅拌平台与磁力转子的配合,对容器内的纳米流体进行分散,既可用于纳米流体的制备中,也可用于纳米流体的长期储存中。

进一步地,所述的背光表征系统包括分别设置在容器两侧的光源、相机,所述的光源发出的光穿过容器后到达相机的拍摄区域。采用背光拍照的方式进行表征。

进一步地,所述的背光表征系统还包括光源分散板,该光源分散板位于光源与容器之间。光源发出的光穿过光源分散板后可以提高其空间分布的均匀性,再透过盛有纳米流体的容器后一部分光被散射或吸收,相机拍摄得到的图像就可直观反映纳米流体的分散状况,图像中的亮度参数也可用于后续的处理与分析。

一种基于所述装置的纳米流体原位制备、表征及防团聚储存的方法,该方法为:

在原位制备时,将基液及纳米颗粒加入至容器中,之后利用超声振动组件进行分散,得到纳米流体;

在表征时,启动背光表征系统,利用容器内不同浓度纳米粒子对光的散射或吸收程度不同实现纳米流体的稳定性表征;

在储存时,利用磁力搅拌组件对容器中的纳米流体进行分散,防止团聚现象。

进一步地,在原位制备时,利用磁力搅拌组件进行辅助分散。可以利用容器下方的磁力搅拌平台驱动容器内部的磁力转子,无需转移液体便可达到并维持更为理想的分散效果,防止团聚现象。

与现有技术相比,本发明能够实现纳米流体的原位制备、稳定性在线表征和长期稳定储存。其中,容器用于原位制备纳米流体,避免移液过程中带来的误差与污染,同时在背光拍照稳定性表征环节中,容器也用于涵盖宽颗粒密度范围的纳米流体悬浊液中颗粒分散状况的测量;超声振动组件及磁力搅拌组件可用于提高纳米流体的分散程度和均匀性,防止团聚现象;背光表征系统中,光透过盛有纳米流体的容器后,相机拍摄得到的图像可直观反映纳米流体中颗粒的分散程度和均一情况,图像中的亮度参数也可用于后续的处理与分析。容器利用容器盖封闭后,与磁力搅拌组件配合,用于长期稳定储存纳米流体,以便后续按需进行测试表征及取用。

附图说明

图1为本发明的整体结构示意图(其中,虚线内部分为水平旋转90°后的正视图,以便于清晰展示部件结构);

图2为本发明中背光表征系统在工作时的俯视示意图;

图中标记说明:

1—光源、2—光源分散板、3—超声振动器、4—调节支架、5—磁力搅拌平台、6—磁力转子、7—容器、8—相机。

具体实施方式

下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。

实施例:

如图1、图2所示的一种纳米流体原位制备、表征及防团聚储存的装置,该装置包括用于原位制备纳米流体并储存纳米流体的容器7、与容器7相适配的纳米颗粒分散机构以及与容器7相适配的背光表征系统,纳米颗粒分散机构包括超声振动组件及磁力搅拌组件。该装置还包括与容器7相适配的容器盖。纳米颗粒分散机构用于原位制备中的分散以及贮存过程中的防团聚。

其中,容器7为长方体容器,该长方体容器位于背光表征系统的光路中,并且长方体容器的长度方向与光路相垂直,宽度方向与光路相平行。容器7在透光方向上距离短,而在非透光方向上距离长,用于适应纳米流体较低的透光性和增大正视可视区面积,以实现背光拍照法稳定性表征。

超声振动组件包括与容器7的内部相适配的超声振动器3。超声振动组件还包括与超声振动器3相适配的调节支架4,超声振动器3设置在调节支架4上。

磁力搅拌组件包括磁力搅拌平台5以及与磁力搅拌平台5相适配的磁力转子6,容器7设置在磁力搅拌平台5上,磁力转子6设置在容器7的内部。

超声振动器3利用高频振动可以分散团聚的纳米颗粒,提高纳米流体的均匀性,配合磁力转子6可以进一步提高并维持纳米颗粒的分散程度。

背光表征系统包括分别设置在容器7两侧的光源1、相机8,光源1发出的光穿过容器7后到达相机8的拍摄区域。背光表征系统还包括光源分散板2,该光源分散板2位于光源1与容器7之间。光依次穿过光源分散板2、盛有样品的容器7到达相机8。光穿过光源分散板2后可以提高其空间分布的均匀性,透过容器7后一部分光被散射或吸收,相机8拍摄得到的图像则可直观反映纳米流体的分散程度和均一状况,图像中的亮度参数也可用于后续的处理与分析。

基于上述装置的纳米流体原位制备、表征及防团聚储存的方法,该方法为:

在原位制备时,将基液及纳米颗粒加入至容器7中,之后利用超声振动组件进行分散,得到纳米流体;在原位制备时,可利用磁力搅拌组件进行辅助分散。

在表征时,启动背光表征系统,利用容器7内不同浓度纳米粒子对光的散射或吸收程度不同实现纳米流体的稳定性表征;

在储存时,利用磁力搅拌组件对容器7中的纳米流体进行分散,防止团聚现象。使用调节支架4移出超声振动器3,盖上容器盖,即可实现对稳定纳米流体的长期储存,以便后续按需进行测试表征及取用,磁力转子6可按不同需求选择启用或停止。

具体在操作时,可以包括以下步骤:

步骤1:在容器7中加入基液和纳米颗粒。

步骤2:使用调节支架4将超声振动器3调整到合适的位置,再打开超声振动器3进行分散。

步骤3:关闭超声振动器3,使用调节支架4将其移出容器7。按需启动磁力搅拌平台5,使其驱动磁力转子6进行搅拌。

步骤4:关闭磁力搅拌平台5,打开光源1和相机8。

步骤5:利用纳米粒子对光的散射或吸收实现背光拍照法稳定性表征,保存实验数据。

步骤6:重复步骤1-5,测量纳米流体在不同质量分数和ph值等条件下的稳定性。

完成所有实验后,导出实验数据并关闭所有仪器设备。

上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1