扁平塑料光纤及使用这种光纤的照明设备的制作方法

文档序号:4426505阅读:211来源:国知局
专利名称:扁平塑料光纤及使用这种光纤的照明设备的制作方法
技术领域
本发明涉及塑料光纤以及使用这种光纤的设备。更具体地,本发明涉及大体扁平的塑料光纤、制造这种光纤的方法和系统、以及采用这种光纤的照明装置。
背景技术
塑料光纤POF已经得到了广泛的应用,包括通讯网络和照明装置。
对于通讯网络,POF用作短程高速网络的传输介质。在这种应用中,花费了相当大的努力来降低圆形截面POF的传输损失。这些损失可以由内在因素和外界因素引起。内在的损失因素包括C-H振动和瑞利散射的吸收。外部的损失因素包括过渡金属和有机杂质的吸收,以及灰尘和微孔的散射、POF纤芯截面尺寸的波动、取向双折射、和纤芯-涂复层边界缺陷。
对于照明装置,POF可以用于“端发光”或“侧面发光”。在端发光中,POF的主要功能是将来自光源的光线传输到远距离点,从POF的末端发光。在侧面发光中,POF的主要功能是以受控方式在POF长度方向的一个或多个位置将来自光源的光线从POF的一个或多个侧面传输出去。
圆形截面的POF常常用于照明装置。例如,圆形POF可以并排布置,形成侧面发光片或侧面发光板。然而,这种板片的制造比较麻烦、昂贵和低效。因此,对于侧面发光照明装置,使POF具有矩形截面或其它大体扁平的截面十分有利。大体扁平的POF还可用于某些数据通信应用。
已经研制出若干方法来控制光线从POF的侧面什么位置输出以及输出多少光线,这些方法包括研磨、蚀刻、压纹、开槽、以及剧烈地弯曲POF。通过某些控制方式,从POF侧面出来的光线可以形成特定形状的图案,如字母、数字、徽标或其它符号。通过其它控制方式,从POF侧面出来的光线可用于均匀照明。
迄今为止,侧面发光照明装置中的非受控传输损失往往被忽视,因为其通常所涉及的POF长度很短。然而,为了节省能量和提高亮度,要求这些照明装置更加高效。在不需要有光线从POF侧面输出的POF区域应使非受控传输损失降到最低。如果这些区域的POF纤芯的厚度(对于扁平POF来说)或直径(对于圆形POF来说)更加均匀,那么可以减少这些区域的非受控损失。反之,如果在对POF的一个或多个位置进行处理(比如采用研磨、蚀刻、开槽或其它可产生受控漏光的处理方法)之前这些位置的POF的厚度或直径更加均匀,那么就能更好地控制光线在这些位置从POF侧面输出。因此,对于侧面发光应用,必须减少大体扁平的POF的损失因素。对于通信应用,也必须减少大体扁平的POF的损失因素。
发光效率对于电池供电的照明装置,如便携式电子装置(如膝上电脑、蜂窝电话和个人数字助理)的显示和背光装置,十分重要。此外,便携式电子装置对空间和重量方面的限制也要求大体扁平的小厚度POF必须具有更均匀的厚度。
在现有技术中没有认识到或加以控制的一个工艺参数是POF纤芯挤出的方向。对于已经掌握的知识,所有先前的POF加工方法都是竖直向下(即随着重力方向)或沿水平方向挤出(即,受力通过开口而成形)POF纤芯。但令人惊奇的是,已发现竖直向上挤出POF(即,相对重力)可使生产的POF纤芯截面的波动小很多。
了解利用“向上纺丝”产生织物的“纤维状集合体”的美国专利4,399,084,纤芯截面均匀性的这种改进更加令人惊奇。如该专利说明书的16栏20-24行所述,其采用竖直向上挤出来产生不均匀不规则的织物纤维,“本发明的还有一个特征是,非圆形截面的纤丝沿其纵向以不定间隔不规则地改变尺寸,因此,其截面的形状也发生变化。”因此,先前使用竖直向上挤出来制造不规则的织物纤维并没有提示或建议使用竖直向上挤出来制造均匀的POF纤芯。

发明内容
本发明克服了现有技术的的缺点和限制,可提供具有均匀纤芯截面的大体扁平的塑料光纤、用于制造这种光纤的方法和系统、以及采用这种光纤的照明装置。
本发明的一个方面涉及具有均匀纤芯截面的大体扁平的塑料光纤。这种POF还具有围绕纤芯的涂复层。
本发明的另一个方面涉及制造POF的方法,其中第一聚合物初始材料在第一挤出机中被熔融,第二聚合物初始材料在第二挤出机中熔融。熔融的第一聚合物初始材料被挤出,形成具有均匀截面的大体扁平的POF纤芯。熔融的第二聚合物初始材料被共挤出,形成围绕POF纤芯的POF涂复层。
本发明的另一个方面涉及包括两个挤出机和一个挤出块的系统。一个挤出机熔融第一聚合物初始材料,另一个挤出机熔融第二聚合物初始材料。熔融的第一聚合物初始材料通过挤出块挤出,形成具有均匀截面的大体扁平的塑料光纤纤芯,并且共挤出熔融的第二聚合物初始材料,形成围绕塑料光纤纤芯的塑料光纤涂复层。
本发明的另一个方面涉及照明设备,其具有光学连接到POF的光源。这种POF具有均匀截面的大体扁平的纤芯。POF还包括围绕纤芯的涂复层。沿POF长度方向的一个或多个位置进行处理,使得光线能够在这些位置以受控方式输出。
本发明的另一个方面涉及制造照明设备的方法,包括对大体扁平的POF表面进行处理,将光源光学连接到POF。所述表面处理使得光线能够以受控方式在POF长度方向的一个或多个位置从POF的一个或多个侧面输出。在处理之前,所述POF具有均匀截面的大体扁平的纤芯。这种POF还具有围绕纤芯的涂复层。
在某些实施例中,POF通过连续螺旋共挤出形成。
在某些实施例中,均匀纤芯截面厚度的标准偏差小于平均POF纤芯截面厚度的百分之5.0。在某些实施例中,均匀纤芯截面厚度的标准偏差小于平均POF纤芯截面厚度的百分之1.0。在某些实施例中,均匀纤芯截面厚度的标准偏差小于平均POF纤芯截面厚度的百分之0.5。
在某些实施例中,POF纤芯是沿大体竖直向上方向挤出形成的。
为了使POF大体扁平,所述均匀纤芯的截面可以包括但不限于矩形、带有圆角的矩形、或具有两个相对直边和两个相对圆边的跑道形椭圆。
通过阅读下面对本发明的详细说明以及所附权利要求和附图,所属领域的技术人员将更加清楚地理解本发明的上述和其它的实施例及各个方面。


图1是连续生产具有大体扁平纤芯截面的塑料光纤的示例性系统的示意图;图2是带有更多部件的图1系统的示意图,这些部件用于测量塑料光纤均匀性、以受控方式冷却塑料光纤、和缠绕塑料光纤到线轴上;图3是更加详细地显示喷丝头组件的示意图;图4是详细显示多功能块350A&350B以及传送/加热块400A&400B的截面的示意图;图5是连续生产具有均匀纤芯截面的大体扁平的塑料光纤的示例性工艺过程的流程图;图6是大体扁平的塑料光纤的示例性纤芯截面的示意图,截面包括(a)矩形、(b)带有圆角的矩形、以及(c)具有两个相对直边和两个相对圆边的跑道形椭圆;和图7是制造照明装置的示例性过程的流程图,这种照明装置包括具有均匀纤芯截面的大体扁平的塑料光纤。
具体实施例方式
这部分介绍具有均匀纤芯截面的大体扁平的塑料光纤、制造这种光纤的方法和系统、以及采用这种光纤的照明装置。在下面的说明中,提供许多细节以便彻底地理解本发明。然而,所属技术领域中的普通技术人员应当认识到如果没有这些特定细节,本发明仍然可以实施。
图1示出了连续生产大体扁平纤芯截面的塑料光纤的示例性系统。图1中的系统包括用于连续挤出POF纤芯的A部分和连续挤出POF涂复层的B部分。A、B机械部分的构造差不多相同,其主要区别在于电动机/挤出机组合体的大小。该示例性系统包括挤出机驱动装置100A&100B、进料斗/干燥机系统200A&200B、挤出机螺杆/筒体组件300A&300B、筒体加热带310A&310B、多功能块350A&350B、传送/加热块400A&400B、传送/加热块400A&400B的带式加热器410A&410B、泵/驱动组件500A&500B、泵加热带510A&510B、行星齿轮泵520A&520B、流量分配器600A&600B、及流量分配器600A&600B的带式加热器610A&610B。
图2示出了带有更多部件的图1的系统,这些部件用于测量POF均匀性、以受控方式冷却POF、将POF卷绕到线轴上。另外的部件包括空转辊1300、单个的产品导向件1350、分段的空转辊1400、1级淬冷单元1100、2级淬冷单元1150、3级淬冷单元1000、分段的主动辊1200(对于主动辊1200的各段具有独立的控制电动机1250X)、激光测微仪1900、以及卷绕单元2000。卷绕单元2000包括电驱动的高精度拉伸辊2100、储存机构2200、以及用于POF线轴2400的横向往复机构2300。
在某些实施例中,去掉3级淬冷单元1000,而1级淬冷单元1100和2级淬冷单元1150降低以更接近喷丝头面板700。如图2所示,在某些实施例中,淬冷单元1000、1100和1150沿同一方向相互层叠,使得每个淬冷单元中的空气沿相同方向流动(比如图2中从右到左)。在其它实施例(未示出)中,淬冷单元相互交错层叠,使得相邻淬冷单元中的气流方向相反。举例来说,1级淬冷单元1100中的气流从右至左,而2级淬冷单元中的气流从左至右(3级淬冷单元1000去掉)。相反的气流有助于POF保持扁平。
在某些实施例中,各POF纤丝具有其自身的卷绕单元2000,能够独立调整纤丝速度。(为了清楚起见,图2中只示出了一个卷绕单元2000)。多个卷绕单元2000和多个喷丝头插件800可使得每个纤丝流束能够形成不同的POF。因此,如果需要的话,通过改变喷丝头插件800和/或卷绕单元2000的设定值,具有不同形状和/或尺寸的各种POF能够同时在挤出系统中实现。卷绕单元的储存机构2200使得即使在POF积聚过程更换线轴,卷绕器也能够连续运转。横向往复机构2300控制线轴2400的移动,并且通过电集成以调节缠绕速度,因此当累聚在线轴2400上的POF直径增大时,能够均匀地将POF 1600卷绕到线轴上。横向往复机构2300在POF 1600卷绕到线轴2400上时使POF线轴2400向内和向外移动。通过更换喷丝头插件800,比如改变喷丝头的尺寸和/或几何形状,可以对产生的每个POF流束进行更多的调整。
所属领域的普通技术人员应当认识到可以将更多的流量分配通道连接到更多的挤出机,以生产多层POF纤芯和/或多层POF涂复层。例如,为了制造分级指标POF,可以将旋转喷丝头组件950中更多的通道与更多的挤出机300连接,生产具有沿径向变化性能(如折射率)的多层POF纤芯。
图3示出了旋转喷丝头组件950,即通常包括多个子块的示例性挤出块。喷丝头组合件950包括多功能块350A&350B、传送/加热块400A&400B、过滤块535、流量分配器600A&600B、流量分配器600A&600B的带式加热器610A&610B、喷丝头面板700、喷丝头插件800、旋转面加热带825、以及过滤体/聚合物整合子组件850。过滤块535包括聚合物过滤器525。聚合物过滤器525可除去存在的任何聚合物凝胶,还能将任何潜在的炭化聚合物从挤出系统除去。示例性的过滤杯可从Mott Filter公司(84 Sprng Lane,Farmington,CT.06032)得到,这种过滤杯能够除去尺寸大约为10至100微米的微粒。喷丝头插件800使得能够快速更换,和改变喷丝头形状及喷丝头尺寸。如本技术领域公知的,聚合物整合子组件850可刚好在共挤出之前将熔融的纤芯和涂复层材料组合在一起,产生(纤芯+涂复层)的光纤结构(可参见美国专利5,533,883,本发明引用参考其公开的内容)。
图4更加详细地示出了多功能块350A&350B以及传送/加热块400A&400B的剖视图。多功能块350A&350B包括安全塞353A&353B(压力安全阀)、温度探测器352A&352B、以及压力传感器351A&351B。块350A&350B和400A&400B的设计方案使得对聚合物流的阻力减到最小,并可反馈工艺参数(如温度和压力)。块400A&400B可以分成两半,更加容易清洁。传送块400A&400B还包括破碎板(breaker plate)360A&360B以增进熔融聚合物的混合。图4示出了用于纤芯和涂复层的两个系统组成部分,分别用A或B表示。如上所述,所属领域的技术人员应当认识到旋转喷丝头组件950可以与另外的挤出机连接,生产多层POF纤芯和/或多层POF涂复层。例如,为了制造分级指标POF,系统可以与额外的挤出机连接,生产具有沿径向变化性能(如折射率)的多层POF纤芯。而且,旋转喷丝头组件950可以与额外的挤出机连接,以生产具有围绕POF涂复层的一个或多个外层。很多种材料可用作外层,包括但不限于聚乙烯、聚氯乙烯、氯化聚乙烯、尼龙、聚乙烯+尼龙、聚乙烯+含氟聚合物、聚乙烯+聚氯乙烯、或聚丙烯。
在此介绍的方法可应用于几乎所有POF纤芯和涂复层材料。
一种示例性的POF纤芯材料是聚甲基丙烯酸甲酯(PMMA)。ATOFINA Chemicals公司(900 First Avenue,King of Prussia,PA19406)生产牌号为“V825NA”的PMMA树脂,该树脂是一种优选的纤芯初始材料,因为具有高折射率(1.49),而且在可见光区域表现出小传输损耗。还可以使用具有较高熔融流动速率的树脂,如ATOFINA树脂VLD-100。
其它的示例性POF纤芯材料包括聚苯乙烯、聚碳酸酯、聚酯纤维和聚碳酸酯的共聚物、以及其它非晶态聚合物。此外,可以使用半晶状的聚烯烃,如环烯烃共聚物、高分子量的聚丙烯,和高密度高分子量的聚乙烯。
示例性的POF涂复层材料包括氟化聚合物,如聚偏二氟乙烯、聚四氟乙烯、六氟代丙烯偏二氟乙烯、以及其它氟烷基丙烯酸甲酯单体基的树脂。涂复层材料必须具有比纤芯聚合物更低的折射率。Dyneon LLC公司(6744 33ndStreet North,Oakdale,MN 55128)生产氟化热塑性塑料THV220G、THV220A、THV610G和THV815G,以及ATOFINA KYNAR Superflex 2500的折射率在1.35至1.41之间,低于ATOFINA树脂V825NA的折射率。
图5是流程图,显示了连续生产具有均匀纤芯截面的大体扁平的塑料光纤的示例性过程。如上所述,纤芯和涂复层挤出机以类似的方式工作,尽管大小可能不同。
在步骤5010,干净和纯化的POF纤芯和涂复层聚合物树脂颗粒(聚合物初始材料,一般由树脂生产商供应)分别送入进料斗/干燥机系统200A&200B。干燥机系统200A&200B利用压缩空气和加热系统连续地干燥聚合物树脂。干燥机系统200A&200B所用的温度一般在80至100℃之间,优选是90℃。通过使干燥机系统200A&200B工作在-40℃的露点下工作,从树脂中将水分除去。干燥机系统200A&200B都还具有两个串联的凝聚过滤器,用以除去小到0.01微米的液态水和油滴微粒。示例性的干燥机系统200是NovatecTm压缩空气干燥机(Novatec公司,222E.Thomas Ave.,Baltimore,Md.21225,www.novatec.com)。
在步骤5020,挤出机驱动装置100A&100B将干燥的聚合物分别输送到挤出机螺杆/筒体组件300A&300B,使干燥聚合物熔融。挤出机驱动装置100A&100B是专用驱动系统,能够保持每分钟工作转数恒定,可在连续挤出过程中提供稳定的压力。
可以改变挤出机驱动装置100A&100B的皮带轮的齿轮比,使驱动装置的电动机能够运行在电动机额定转速90-100%的优选速率下。稳定的电动机转速产生稳定的螺杆转速,从而产生了恒定的挤出物压力。使用时各种工作压力下所测得的压力波动小于2%。因此,挤出机驱动装置100A&100B的精确驱动能够更好地控制挤出机,使挤出物具有更好的输送均匀性。
在某些实施例中,可以对挤出机螺杆/筒体组件300A&300B通风以除去熔融树脂中的挥发性物质。在某些实施例中,挤出机组件的聚合物可以用氮气(或惰性气体)保护或者处于真空环境,以进一步降低树脂杂质和提高熔融物的均匀性。
在步骤5030,挤出机螺杆/筒体组合件300A&300B中的进料螺杆分别连续均匀地移动熔融纤芯和涂复层聚合物通过多功能块350A&350B和传送/加热块400A&400B,到达行星齿轮泵520A&520B。行星齿轮泵520A&520B分别由专用的驱动装置500A&500B驱动。泵520A&520B是有多个出口的单入口泵。在某些实施例中,POF纤芯和涂复层聚合物的温度单独控制,只在形成POF时温度才会合,所以能够同时挤出具有不同温度的纤芯和涂复层聚合物。
在步骤5040,熔融纤芯和涂复层聚合物以连续均匀的方式移回到其各自的传送/加热块400A&400B中。泵520A&520B在熔融聚合物分开时加压,将聚合物流体分配到传送块400A&400B的独立分配通道中。为了清楚起见,图4只是示出了传送/加热块400A内的一个独立通道(即通道450A)。类似地,图4只是示出了传送/加热块400B内的一个独立通道(即通道450B)。
块400A&400B中的通道450A和450B分别具有低约束的高聚合物流动速率,从而减少了聚合物熔融体中的剪切生热(以及并发的温度不均匀性)。喷丝头组件950中聚合物流的方向可以90°增量变化。因此,通过喷丝头组件950的挤出可以竖直向上、竖直向下或沿水平方向。加热带610A&610B使经过喷丝头组件950的熔融聚合物的温度控制(从而粘度控制)更加容易。
在步骤5050,就在熔融的纤芯和涂复层进入喷丝头面板700之前,聚合物整合子组件850中的熔融涂复层材料在熔融POF纤芯材料周围均匀地流动。喷丝头面板700中装有喷丝头插件800。喷丝头插件800使得能够快速改变喷丝头孔径、形状以及销长度-直径比。旋转面加热器825控制纤芯和涂复层挤出物在离开喷丝头插件800形成POF1600时的温度均匀性。对于ATOFINA树脂V825NA的纤芯和Dyneon LLC氟化热塑塑料THV220G涂复层,喷丝头面板700的温度一般在250至270℃之间,优选的温度为262℃。
在步骤5060,熔融聚合物纤芯和涂复层通过喷丝头面板700共挤出。迫使熔融聚合物纤芯通过喷丝头插件800中矩形或其它类似形状的开口可形成截面大体扁平的POF纤芯。图6示出了大体扁平的POF纤芯的示例性纤芯截面,包括(a)矩形、(b)带有圆角的矩形、和(c)跑道形椭圆。通过喷丝头插件800的开口共挤出围绕熔融纤芯材料流动的熔融涂复聚合物可在大体扁平的POF纤芯周围形成涂复层。可以更换喷丝头插件800使得能够同时生成不同尺寸和/或形状的POF,从而增加了生产系统的多用性。
在某些实施例中,喷丝头面板700和喷丝头插件800可以用带有狭长切口的面板替代,能够挤出具有均匀厚度的宽的纤芯材料薄片。在某些实施例中,接着可以将片状纤芯材料切成条(比如用激光器或其它切割工具)。纤芯材料条可以用复层材料涂覆,产生大体扁平的POF。
在某些实施例中,为了提高POF纤芯截面的均匀性,步骤5060进行的挤出是相对重力沿大体竖直向上的方向进行的。
如果采用竖直向上挤出,在挤出过程开始时,金属杆或其它惰性表面与离开喷丝头插件800的POF1600接触,然后通过单独产品导向件1350向上托起POF1600至空转辊1300,接着到主动辊1200上。然后用与水平或竖直向下挤出过程通常采用的相同方式使POF1600经过分段空转辊1400并通过系统的其余部分。如果同时挤出具有不同尺寸的POF流束,空转辊1400的各段能够以不同的速度旋转。或者,如果同时挤出相同尺寸的POF流束,空转辊1400的各段能够以相同的速度旋转。
在步骤5070,POF1600以受控方式冷却。在某些实施例中,POF1600是在两级或三级冷却区系统中进行冷却。
在去掉了3级淬冷单元1000的两级冷却系统中,1级淬冷单元1100靠近喷丝头表面700设置,且一般与离开喷丝头插件800的POF1600相距3.5英寸。1级淬冷单元1100通过将空气吹到纤维上使POF1600逐渐冷却。1级淬冷单元1100一般工作在0至30℃之间,优选的是20℃。1级淬冷单元1100的风扇一般工作在0至1750转/分钟之间(对应于测得的空气速度为0-493英尺/分钟),优选的风扇转速是650转/分钟(96英尺/分钟)。2级淬冷单元1150一般工作在比1级淬冷单元1100更低的温度,其工作温度在0至30℃之间,优选的是15℃。2级淬冷单元1150的风扇一般工作在0至1750转/分钟之间(对应于测得的空气速度为0-573英尺/分钟),优选的风扇转速是650转/分钟(134英尺/分钟)。2级淬冷单元1150与1级淬冷单元1100相互交错层叠,使得淬冷单元1100和1150中的气流方向相反。2级淬冷单元1150一般距离POF1600的中心线2英寸。这种交错构造方式使得能够更加均匀地施加冷空气到POF1600上,从而能够更加均匀地冷却,以防止扁平POF产生卷曲。在某些实施例中,淬冷系统被分成分立的围绕各POF纤丝流束的腔室,能够对单独的POF纤丝流束周围的空气温度和空气速度进行个别控制。
在某些实施例中,1级淬冷单元1100、2级淬冷单元1150和3级淬冷单元1000直接相互叠置。这种实施例对于圆形光纤是优选的,因为“卷曲”作用不太容易发生。该实施例中的淬冷系统也可以分段,能够对每个POF周围的空气温度和气流速度进行单独控制。表1和表2给出了共挤出纤芯/涂复层的示例性工艺条件,用于生产大体扁平的的POF1600。
表1


表2

6,500微米宽×500微米厚的POF以每分钟5.8米生产。
在步骤5080,测量POF截面的均匀性。为了测量POF纤芯截面的均匀性,可以单独挤出POF纤芯并进行测量(即,在进行这些测量时涂复层没有挤出到POF纤芯周围)。然而,如表3所示,POF纤芯截面的均匀性基本上与整个POF(纤芯+涂复层)截面的均匀性相同,因为涂复层厚度(通常为10-30微米)比纤芯厚度小很多。在某些实施例中,测量是用激光测微仪1900进行。一种示例性激光测微仪1900是Beta LaserMike直径测量仪(Beta LaserMike公司,位于8001 Technology Blvd.,Dayton,Ohio 45424,www.betalasermike.com)。在某些实施例中,为了提高POF截面的均匀性,激光测微仪1900可以是在线自动反馈控制系统的一部分。与激光测微仪1900结合的自动反馈系统可发出信息,用于控制各POF纤丝的伺服电动机系统,从而单独控制各POF纤丝的尺寸和操作。
如图2所示,在步骤5090,POF1600输送至卷绕单元2000的S缠绕系统2100并卷绕到POF线轴2400上。
除了上述步骤之外,在挤出后还可以用各种不同的方法拉拔(即拉伸)POF1600,这些方法包括但不限于(1)纺丝拉伸;(2)纺丝拉伸及固态拉伸;和(3)连续增量拉伸。
在纺丝拉伸中,POF1600在共挤出和卷绕到线轴上之后立即拉伸。这种拉伸方法一般可提供出色的涂复层均匀性,而且在涂复层和POF纤芯之间没有相分离。这种拉伸方法通常用于生产具有低分子取向和中等强度的POF。
在纺丝拉伸及固态拉伸中,POF1600在共挤出和卷绕到线轴上后立即拉伸。然后在二次工艺过程中将POF1600从线轴上去绕并在固态下以大拉伸比进行拉伸。这种拉伸方法通常用于生产高取向高强度的POF,具有出色的涂复层均匀性。然而,固态拉伸步骤中纤芯和涂复层之间的相分离可能在POF1600中产生缺陷。
在连续增量拉伸中,共挤出的POF1600通过提高POF1600经过的每个辊的线速度连续拉伸。例如,第二辊的线速度将大于第一辊的线速度,POF于是在第二辊和第一辊之间拉伸。这种增量拉伸过程可在更多辊之间和不同的拉伸温度下重复进行。这种拉伸过程在没有单独的固态拉伸步骤的情况下也可以产生大拉伸比和高分子取向。这种拉伸方法通常用于生产高强度的POF,具有出色的物理和环境稳定性、出色的截面均匀性、POF1600的涂复层和纤芯之间没有相分离。
可以制造具有各种宽度和厚度的大体扁平的POF1600。表3示出了带有和不带涂复层的大体扁平的POF的示例性尺寸数据,其中包括两种标称厚度-宽度组合,即0.5毫米厚乘6.5毫米宽,和0.9毫米厚乘40毫米宽。POF纤芯截面厚度的标准偏差小于平均POF纤芯截面厚度的百分之1.0。在某些情况下,POF纤芯截面厚度的标准偏差小于平均POF纤芯截面厚度的百分之0.5。如上面所指出的,POF纤芯截面的均匀性基本上与整个POF(纤芯+涂复层)截面的均匀性相同,因为涂复层厚度比纤芯厚度小很多。表3中的数据来自沿向上方向连续挤出的样品,纤芯采用ATOFINA V825NA树脂,Dyneon的THV220G用作涂复层。
表3


图7是流程图,示出了制造照明装置的示例性过程,这种照明装置具有均匀纤芯截面的大体扁平的POF。
在步骤7010,在POF1600长度方向的一个或多个位置对POF1600表面进行处理,以控制光线从POF1600的侧面输出的位置以及光线输出量。示例性的表面处理方法包括研磨、蚀刻、压纹、开槽、以及剧烈地弯曲POF。这些方法的示例在美国专利4,756,701;5,136,480;5,187,765;5,195,162;5,312,570;5,499,912;6,079,838;6,289,150;6,361,180;6,416,390以及美国专利申请2001/0050667 A1中作了介绍,本发明引用参考其内容。
在步骤7020,将光源(如发光二极管、激光二极管、垂直腔表面发射激光器(VCSEL)或白炽灯)光学连接到POF1600,形成照明装置。这种连接方法的示例在美国专利4,756,701;5,136,480;5,187,765;5,195,162;6,079,838;6,361,180和6,416,390;以及美国专利申请2001/0050667 A1作了介绍。
上述各实施例应当认为只是作为对本发明的说明。这些实施例不能认为是无遗漏的,也不能用来将本发明限定于所公开的具体形式。所属领域的技术人员应当知道在不脱离上述本发明总体精神的情况下可以实施其它修改和变化。因此,应当认识到本发明是由所附权利要求限定的。
权利要求
1.一种塑料光纤,包括具有均匀截面的大体扁平的塑料光纤纤芯,和围绕所述塑料光纤纤芯的塑料光纤涂复层,其中,所述塑料光纤通过沿大体竖直向上方向连续螺旋共挤出形成,且所述均匀截面的厚度标准偏差小于平均纤芯截面厚度的百分之0.5。
2.一种塑料光纤,包括具有均匀截面的大体扁平的塑料光纤纤芯,和围绕所述塑料光纤纤芯的塑料光纤涂复层。
3.根据权利要求2所述的塑料光纤,其特征在于,所述塑料光纤是通过连续螺旋共挤出形成的。
4.根据权利要求2所述的塑料光纤,其特征在于,所述均匀截面的厚度标准偏差小于平均纤芯截面厚度的百分之5.0。
5.根据权利要求2所述的塑料光纤,其特征在于,所述均匀截面的厚度标准偏差小于平均纤芯截面厚度的百分之1.0。
6.根据权利要求2所述的塑料光纤,其特征在于,所述均匀截面的厚度标准偏差小于平均纤芯截面厚度的百分之0.5。
7.根据权利要求2所述的塑料光纤,其特征在于,所述塑料光纤通过沿大体竖直向上方向共挤出形成。
8.根据权利要求2所述的塑料光纤,其特征在于,所述塑料光纤是一种阶跃指标塑料光纤。
9.根据权利要求2所述的塑料光纤,其特征在于,所述塑料光纤是一种分级指标塑料光纤。
10.一种制造塑料光纤的方法,包括以下步骤熔融第一挤出机中的第一聚合物初始材料,熔融第二挤出机中的第二聚合物初始材料,挤出所述熔融的第一聚合物初始材料,形成具有均匀截面的大体扁平的塑料光纤纤芯,和共挤出所述熔融的第二聚合物初始材料,在所述塑料光纤纤芯周围形成塑料光纤涂复层。
11.根据权利要求10所述的方法,其特征在于,所述第一挤出机和所述第二挤出机是连续螺旋挤出机。
12.根据权利要求10所述的方法,其特征在于,所述均匀截面的厚度标准偏差小于平均纤芯截面厚度的百分之5.0。
13.根据权利要求10所述的方法,其特征在于,所述均匀截面的厚度标准偏差小于平均纤芯截面厚度的百分之1.0。
14.根据权利要求10所述的方法,其特征在于,所述均匀截面的厚度标准偏差小于平均纤芯截面厚度的百分之0.5。
15.根据权利要求10所述的方法,其特征在于,所述挤出沿大体竖直向上的方向进行。
16.一种制造塑料光纤的系统,包括可使第一聚合物初始材料熔融的第一挤出机,可使第二聚合物初始材料熔融的第二挤出机,和挤出块,用于挤出所述熔融的第一聚合物初始材料,形成具有均匀截面的大体扁平的塑料光纤纤芯,以及共挤出所述熔融的第二聚合物初始材料,在所述塑料光纤纤芯周围形成塑料光纤涂复层。
17.根据权利要求16所述的系统,其特征在于,所述第一挤出机和所述第二挤出机是连续螺旋挤出机。
18.根据权利要求16所述的系统,其特征在于,所述均匀截面的厚度标准偏差小于平均纤芯截面厚度的百分之5.0。
19.根据权利要求16所述的系统,其特征在于,所述均匀截面的厚度标准偏差小于平均纤芯截面厚度的百分之1.0。
20.根据权利要求16所述的系统,其特征在于,所述均匀截面的厚度标准偏差小于平均纤芯截面厚度的百分之0.5。
21.根据权利要求16所述的系统,其特征在于,所述挤出块沿大体竖直向上的方向进行挤出。
22.一种制造塑料光纤的系统,包括在第一挤出机中使第一聚合物初始材料熔融的机构,在第二挤出机中使第二聚合物初始材料熔融的机构,挤出所述熔融的第一聚合物初始材料的机构,可形成具有均匀截面的大体扁平的塑料光纤纤芯,和共挤出所述熔融的第二聚合物初始材料的机构,可在所述塑料光纤纤芯周围形成塑料光纤涂复层。
23.一种照明设备,包括光源,通过共挤出形成的塑料光纤,其包括具有均匀截面的大体扁平的塑料光纤纤芯;围绕所述塑料光纤纤芯的塑料光纤涂复层;沿所述光纤长度方向的一个或多个位置,经过处理使光线能够以受控方式在所述位置输出;其中,所述光源光学连接到所述塑料光纤。
24.根据权利要求23所述的照明设备,其特征在于,所述塑料光纤通过连续螺旋共挤出形成。
25.根据权利要求23所述的照明设备,其特征在于,所述均匀截面的厚度标准偏差小于平均纤芯截面厚度的百分之5.0。
26.根据权利要求23所述的照明设备,其特征在于,所述均匀截面的厚度标准偏差小于平均纤芯截面厚度的百分之1.0。
27.根据权利要求23所述的照明设备,其特征在于,所述均匀截面的厚度标准偏差小于平均纤芯截面厚度的百分之0.5。
28.根据权利要求23所述的照明设备,其特征在于,所述塑料光纤通过沿大体竖直向上方向共挤出形成。
29.一种制造照明设备的方法,包括对具有均匀截面的大体扁平的塑料光纤的表面进行处理,使得光线能够以受控方式在所述光纤长度方向的一个或多个位置从所述光纤的一个或多个侧面输出,和将所述光纤光学连接到光源。
30.根据权利要求29所述的方法,其特征在于,所述塑料光纤通过连续螺旋共挤出形成。
31.根据权利要求29所述的方法,其特征在于,所述均匀截面的厚度标准偏差小于平均纤芯截面厚度的百分之5.0。
32.根据权利要求29所述的方法,其特征在于,所述均匀截面的厚度标准偏差小于平均纤芯截面厚度的百分之1.0。
33.根据权利要求29所述的方法,其特征在于,所述均匀截面的厚度标准偏差小于平均纤芯截面厚度的百分之0.5。
34.根据权利要求29所述的方法,其特征在于,所述塑料光纤通过沿大体竖直向上方向共挤出形成。
全文摘要
介绍了具有均匀纤芯截面的大体扁平的塑料光纤(见图6)、制造这种光纤的方法和系统、以及采用这种光纤的照明装置。
文档编号B29C47/30GK1832848SQ200480022593
公开日2006年9月13日 申请日期2004年6月10日 优先权日2003年6月13日
发明者J·F·彼得森二世, P·卡佩利尼, H·博达希 申请人:第一优质光纤有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1