中空成形体的制造方法、中空成形体及制造装置与流程

文档序号:11566878阅读:148来源:国知局
中空成形体的制造方法、中空成形体及制造装置与流程

本申请是申请日为2013年03月28日、申请号为201380016095.x、发明名称为“中空成形体的制造方法、中空成形体及制造装置”的申请的分案申请。

本发明涉及中空成形体的制造方法、中空成形体及制造装置。

本申请基于2012年3月29日在日本申请的日本特愿2012-077649号、及2012年3月29日在日本申请的日本特愿2012-077993号而主张优先权,并将其内容援引于此。



背景技术:

以往,已知有在内部具有收纳空间、且气密地密闭的树脂制的成形体(以下,有时称为中空成形体)。作为这样的成形体的具体例子,可列举出在具有绝缘性的容器内部封入电子电路等部件、并用盖子(盖)进行密闭的中空封装体。

作为制造这样的中空成形体的方法,已知有将容器和盖子通过激光熔敷进行一体化的方法(例如,参照专利文献1)。

现有技术文献

专利文献

专利文献1:日本特开2004-235484号公报



技术实现要素:

发明所要解决的课题

在这样的中空成形体中,为了防止封入内部的部件因大气中的水分、氧气而破损,有时要求高的气密性,与以往已知的中空成形体相比,要求进一步的改善。

因此,需要制造气密性高的中空成形体的方法。

此外,需要能够容易地制造气密性高的中空成形体的制造装置。

本发明是鉴于这样的情况而进行的,以提供具有高的气密性的中空成形体为目的。此外,以提供这样的中空成形体的制造方法一并作为目的。

此外,以提供通过这样的中空成形体的制造方法制造的中空成形体一并作为目的。

此外,以提供能够制造气密性优异的中空成形体的制造装置一并作为目的。

用于解决课题的方案

[1]本发明的第一方案提供一种中空成形体,其是具有容器、及将上述容器密闭的盖的中空成形体,上述中空成形体为使上述容器和上述盖进行激光熔敷而形成的中空成形体,上述容器及上述盖为包含热塑性树脂的形成材料的注射成形体,分别具有在注射成形时形成的浇口痕迹,

上述热塑性树脂具有沿熔融状态的流动方向进行取向并固化的性质,

上述容器的浇口痕迹的全部位于上述容器的外表面或底表面上,但是位于除了以从上述容器的底表面的重心至上述底表面的外周为止的距离为基准,距上述重心为上述距离的三分之二以内的区域以外的位置,

上述盖的浇口痕迹的全部位于上述盖的上表面、侧面或下表面上,但是位于除了以从上述盖的上表面重心至上述上表面的外周为止的距离为基准距上述上表面的重心为上述距离的三分之二以内的区域、和以从上述盖的下表面的重心至上述下表面的外周为止的距离为基准距上述下表面的重心为上述距离的三分之二以内的区域以外的位置。

[2]根据[1]所述的中空成形体,其中,上述容器的底部的平均壁厚tb与上述容器的侧壁的平均壁厚tw满足下述式(i)。

4tb≥tw>3/4tb...(i)

[3]根据[1]或[2]所述的中空成形体,其中,上述底表面的形状为多边形,

上述容器的浇口痕迹的至少一部分位于以上述底表面的角为中心,从上述底表面的角至上述容器的邻接的角为止的距离的六分之一以内的区域,

上述盖的浇口痕迹的至少一部分位于:在上述盖的上表面,以上述上表面的角为中心,从上述上表面的角至上述盖的邻接的角为止的距离的六分之一以内的区域;在上述盖的下表面,以上述下表面的角为中心,从上述下表面的角至上述盖的邻接的角为止的距离的六分之一以内的区域;或在上述盖的侧面,从连接上述盖的上表面及下表面的邻接的角彼此的棱线至相对的棱线为止的距离的六分之一以内的区域。

[4]根据[1]到[3]中任一项所述的中空成形体,其中,外形形状为长方体。

[5]根据[1]到[4]中任一项所述的中空成形体,其中,上述热塑性树脂为液晶聚酯。

[6]本发明的第二方案提供一种中空成形体的制造方法,其具有以下工序:使用包含具有沿熔融状态的流动方向进行取向并固化的性质的热塑性树脂的形成材料,将容器进行注射成形的工序;

使用包含具有沿熔融状态的流动方向进行取向并固化的性质的热塑性树脂的形成材料,将盖进行注射成形的工序;

将上述容器的开口部用上述盖封闭,将上述容器与上述盖互相接触的接触部进行激光熔敷的工序;

上述将容器进行注射成形的工序包括:使用模具将上述容器进行注射成形,所述模具按照上述容器的浇口痕迹的全部位于上述容器的外表面或底表面上的方式、但是处于除了以从上述容器的底表面的重心至上述底表面的外周为止的距离为基准距上述重心为上述距离的三分之二以内的区域以外的位置的方式设定浇口位置,

上述将盖进行注射成形的工序包括:使用模具将上述盖进行注射成形,所述模具按照上述盖的浇口痕迹的全部位于上述盖的上表面、侧面或下表面的方式、但是处于除了以从上述盖的上表面的重心至上述上表面的外周为止的距离为基准距上述上表面的重心为上述距离的三分之二以内的区域、和以从上述盖的下表面的重心至上述下表面的外周为止的距离为基准距上述下表面的重心为上述距离的三分之二以内的区域以外的位置的方式设定浇口位置。

[7]本发明的第三方案提供一种中空成形体的制造方法,其具有以下工序:使用将包含热塑性树脂的形成材料成形而成的容器、和将透光性材料成形而成的盖,在将由上述容器的侧壁和底部包围的收纳空间减压的状态下,将上述侧壁的顶部与上述盖的周缘部接触的接触部进行激光熔敷而密封,从而得到将上述收纳空间减压了的状态的中空成形体。

[8]根据[7]所述的中空成形体的制造方法,其中,将上述容器用上述盖封闭后,通过将载置上述容器和上述盖的操作空间进行减压而将上述收纳空间减压,然后进行激光熔敷而密封。

[9]根据[7]所述的中空成形体的制造方法,其中,在预先减压的环境下将上述容器用上述盖密闭后,进行激光熔敷而密封。

[10]根据[7]到[9]中任一项所述的中空成形体的制造方法,其中,上述热塑性树脂为液晶聚酯。

[11]根据[7]到[10]中任一项所述的中空成形体的制造方法,其中,上述透光性材料为包含液晶聚酯的形成材料。

[12]本发明的第四方案提供一种中空成形体,其是通过[7]到[11]中任一项所述的中空成形体的制造方法而制造的。

[13]本发明的第五方案提供一种制造装置,其具有:载置进行激光熔敷的对象物的载置台、

对上述对象物照射激光的激光光源、

面向上述载置台、且可按照能够变更与上述载置台的脱离距离的方式移动的相对构件、

将包含弹性材料的形成材料以闭环状成形而成、位于上述载置台与上述相对构件之间、且将上述载置台的载置上述对象物的区域包围的壁材和

减压装置,

上述相对构件设置有按照与上述壁材的开口部平面重叠的方式配置、且透射上述激光的激光透射部,

上述载置台与上述相对构件在通过使上述相对构件朝向上述载置台移动而缩短上述脱离距离时,夹持上述壁材,形成由上述载置台和上述相对构件和上述壁材包围而密闭的操作空间,

在上述载置台、上述相对构件或上述壁材中,设置有与上述操作空间和上述减压装置连接的通孔,上述减压装置介由上述通孔将上述操作空间进行减压。

[14]根据[13]所述的制造装置,其中,上述相对构件具有由透光性材料构成且设置在上述激光透射部上的散热构件、和支承上述散热构件的支承体。

[15]根据[13]或[14]所述的制造装置,其中,上述相对构件在与上述载置台相对的面上具有保持上述对象物的夹具。

为了解决上述的课题,本发明的第六方案提供一种中空成形体,其是使容器和将上述容器密闭的盖激光熔敷而成的中空成形体,上述容器及上述盖为包含热塑性树脂的形成材料的注射成形体,分别具有注射成形时的浇口痕迹,上述热塑性树脂具有沿熔融状态的流动方向进行取向并固化的性质,上述容器的浇口痕迹位于成为上述中空成形体的外侧的位置、且除了以从上述容器的底表面的形状的重心至上述底表面的外周为止的距离为基准距上述重心为上述距离的三分之二以内的区域以外的位置,上述盖的浇口痕迹位于除了以从上述盖的上表面及下表面的俯视形状的重心至各个面中的俯视形状的外周为止的距离为基准距各个面的上述重心为上述距离的三分之二以内的区域以外的位置。

在本发明的第六方案中,优选上述容器的底部的平均壁厚tb与上述容器的侧壁的平均壁厚tw满足下述式(i)。

4tb≥tw>3/4tb...(i)

在本发明的第六方案中,优选上述底表面的形状为多边形,上述容器的浇口痕迹位于以上述底表面的角为中心,从上述底表面的角至上述容器的邻接的角为止的距离的六分之一以内的区域,上述盖的浇口痕迹在上述盖的上表面及下表面,位于以上述上表面及以上述下表面的角为中心,从各个角至相同的面内的上述盖的邻接的角为止的距离的六分之一以内的区域,在上述盖的侧面,位于从连接上述盖的上表面及下表面的邻接的角彼此的棱线至相对的棱线为止的距离的六分之一以内的区域。

在本发明的第六方案中,优选外形形状为长方体。

在本发明的第六方案中,优选上述热塑性树脂为液晶聚酯。

此外,本发明的第七方案提供一种中空成形体的制造方法,其具有:使用包含具有沿熔融状态的流动方向进行取向并固化的性质的热塑性树脂的形成材料,将容器和盖进行注射成形的工序;和将上述容器的开口部用上述盖封闭,将上述容器与上述盖的接触部进行激光熔敷的工序,在上述注射成形的工序中,将上述容器使用在除了以从上述容器的底表面的重心至上述底表面的外周为止的距离为基准距上述重心为上述距离的三分之二以内的区域以外的位置、且成为将上述容器用上述盖封闭的中空成形体的外侧的位置设定浇口位置的模具进行注射成形,将上述盖使用在除了以从上述盖的上表面及下表面的俯视形状的重心至各个面中的俯视形状的外周为止的距离为基准距各个面的上述重心为上述距离的三分之二以内的区域以外的位置设定浇口位置的模具进行注射成形。

为了解决上述的课题,本发明的第八方案提供一种中空成形体的制造方法,其具有以下工序:使用将包含热塑性树脂的形成材料成形而成的容器、和将透光性材料成形而成的盖,在将由上述容器的侧壁和底部包围的收纳空间减压的状态下,将上述侧壁的顶部与上述盖的接触部进行激光熔敷,在将上述收纳空间减压的状态下进行密封。

在本发明的第八方案中,优选将上述容器用上述盖封闭后,通过将载置上述容器和上述盖的操作空间进行减压而将上述收纳空间减压,然后进行激光熔敷。

在本发明的第八方案中,优选在预先减压的环境下将上述容器用上述盖密闭后,进行激光熔敷。

在本发明的第八方案中,优选上述热塑性树脂为液晶聚酯。

在本发明的第九方案中,优选上述透光性材料为包含液晶聚酯的形成材料。

此外,本发明的第九方案提供一种中空成形体,其是通过中空成形体的制造方法而制造的。

此外,本发明的第十方案提供一种制造装置,其具有载置进行激光熔敷的对象物的载置台、对上述对象物照射激光的激光光源、面向上述载置台且能够相对地变更与上述载置台的脱离距离的相对构件、和将包含弹性材料的形成材料以闭环状成形而成且在上述载置台与上述相对构件之间将上述载置台的载置上述对象物的区域的周围包围的壁材,上述相对构件设置有至少与上述壁材的开口部平面重叠且透射上述激光的激光透射部,上述载置台与上述相对构件通过缩短上述脱离距离而夹持上述壁材,形成由上述载置台和上述相对构件和上述壁材包围而密闭的操作空间,且通过扩大上述脱离距离,将上述载置台或上述相对构件与上述壁材之间脱离,在上述载置台、上述相对构件或上述壁材中,设置有与上述操作空间连接的通孔,还具有介由上述通孔将上述操作空间进行减压的减压装置。

在本发明的第十方案中,优选上述相对构件具有由透光性材料构成且设置在上述激光透射部上的散热构件、和支承上述散热构件的支承体。

在本发明的第十方案中,优选上述相对构件在与上述载置台相对的面上具有保持上述对象物的夹具。

发明效果

根据本发明,能够提供具有高的气密性的中空成形体。此外,能够提供这样的中空成形体的制造方法。此外,能够提供能制造气密性优异的中空成形体的制造装置。

附图说明

图1a是表示本实施方式的中空成形体的一个例子的示意图。

图1b是表示本实施方式的中空成形体的一个例子的示意图。

图2a是能够制造本实施方式的中空成形体的容器的说明图。

图2b是能够制造本实施方式的中空成形体的盖的说明图。

图2c是能够制造本实施方式的中空成形体的盖的说明图。

图3是说明由容器及盖的浇口痕迹的位置带来的效果的图。

图4是说明由容器及盖的浇口痕迹的位置带来的效果的图。

图5是表示呈长方体形状的容器的浇口痕迹的适宜的位置的示意图。

图6是表示呈长方体形状的盖的浇口痕迹的适宜的位置的示意图。

图7是容器的概略垂直截面图。

图8是盖的概略垂直截面图。

图9是说明用于激光熔敷的熔敷装置的示意图。

图10a是激光熔敷的工序图。

图10b是激光熔敷的工序图。

图11a是表示实施例及比较例中成形的容器的形状的示意图。

图11b是实施例及比较例中成形的容器的概略垂直截面图。

图11c是表示实施例及比较例中成形的盖的形状的示意图。

图11d是实施例及比较例中成形的容器的概略垂直截面图。

图12a是表示通过本实施方式的制造方法制造的中空成形体的一个例子的示意图。

图12b是表示通过本实施方式的制造方法制造的中空成形体的一个例子的概略垂直截面图。

图13是说明本实施方式的制造装置的示意图。

图14a是本实施方式的中空成形体的制造方法的工序图。

图14b是本实施方式的中空成形体的制造方法的工序图。

图15a是本实施方式的中空成形体的制造方法的工序图。

图15b是本实施方式的中空成形体的制造方法的工序图。

具体实施方式

[本发明的第一方案中的中空成形体]

本发明的第一方案中的中空成形体是具有容器、及将上述容器密闭的盖的中空成形体,是使上述容器和上述盖进行激光熔敷而形成的,上述容器及上述盖为包含热塑性树脂的形成材料的注射成形体,分别具有在注射成形时形成的浇口痕迹,上述热塑性树脂具有沿熔融状态的流动方向进行取向并固化的性质,上述容器的浇口痕迹的全部位于上述容器的外表面或底表面上,但是位于除了以从上述容器的底表面的重心至上述底表面的外周为止的距离为基准,距上述重心为上述距离的三分之二以内的区域以外的位置,上述盖的浇口痕迹的全部位于盖的上表面、侧面或下表面上,但是位于除了以从上述盖的上表面的重心至上述上表面的外周为止的距离为基准距上述上表面的上述重心为上述距离的三分之二以内的区域、及以从上述盖的下表面的重心至上述下表面的外周为止的距离为基准距上述下表面的重心为上述距离的三分之二以内的区域以外的位置。

以下,依次进行说明。

图1a及图1b是表示本发明的第一方案的中空成形体的一个例子的示意图,图1a为分解立体图,图1b为概略垂直截面图。如图1a及图1b中所示的那样,本实施方式的中空成形体1具有通过注射成形而成形的成形体即容器2和盖3。在本实施方式的中空成形体1中,容器2与盖3使用激光熔敷法而接合。

容器2是具有由底部21和与底部21交叉的侧壁22包围、且在一面上形成有开口部23的收纳空间s的成形体。容器2的形状可以根据收纳空间s中收纳的部件的形状而适当设定。例如,在一般将具有长方体的形状的半导体元件收纳在收纳空间s中的情况下,优选如图1a及图1b中所示的那样,具有与长方体的底部21正交的侧壁22,将收纳空间s制成长方体形状。此外,也可以制成具有圆柱状的外形、或底表面的形状为多边形的多角柱状的外形的中空成形体。进而,还可以制成具有圆锥台、多角锥台的外形的中空成形体。

本说明书中,容器的“底部”意味着构成容器的底的部分,容器的“侧壁”是形成于容器的底部的上面的部分,意味着构成容器的壁(相对于容器的底大致垂直的部分)的部分。容器的“底表面”意味着按照盖成为容器的上面的方式用盖将容器密闭时成为下侧的容器的表面,容器的“外表面”是与底表面交叉的面,意味着容器的侧面。

容器2中,含有吸收激光并将能量转换成热的着色剂。

作为该着色剂,可列举出炭黑、单偶氮染料、蒽醌染料、苝染料、酞菁染料、苯胺黑染料、钛黑、黑色氧化铁、黄色氧化铁、红色氧化铁、镉黄、镍钛黄、锶黄、含水氧化铬、氧化铬、铝酸钴、群青等,可以使用1种或2种以上。它们中,由于耐热性高,优选炭黑、钛黑、黑色氧化铁。

这样的着色剂相对于容器2的总量(100质量份)优选包含0.01质量份以上且10质量份以下,更优选包含0.05质量份以上且5质量份以下。

此外,在容器2中,在不损害本发明的效果的范围内,还可以含有无机填料、各种添加剂等。

另外,在容器2的注射成形时,还可以将连接收纳空间s和容器2的外部的端子埋入侧壁22中。例如,通过将预先加工成端子形状的引线框插入模具中后,进行注射成形,可以制成具有外部连接端子的容器2。

盖3是具有在俯视下与容器2相同形状的板状的成形体。图中,盖3与俯视矩形的容器2同样具有俯视矩形的形状。此外,盖3中在面向容器2的一侧(即下表面侧),在中央部设置有嵌合入容器2的开口部23中的凸部31。图中,按照容器2的开口部23的形状,凸部31也具有俯视矩形的形状。

本说明书中,盖的“上表面”意味着按照盖成为容器的上面的方式用盖将容器密闭时成为上侧的盖的表面,盖的“下表面”意味着按照盖成为容器的上面的方式用盖将容器密闭时成为下侧的盖的表面,盖的“侧面”意味着与这些面交叉的面。

另外,本实施方式中,盖3的形状根据容器2的俯视形状、开口部23的形状,可以制成相同的俯视形状,但容器2与盖3的俯视形状也可以不同。此外,盖3的中央部可以向上隆起,也可以凹陷。

当然,也可以使用不具有图中所示的盖3那样的凸部31的平板状的盖。

另外,盖3中,在不损害本发明的效果的范围内,还可以含有无机填料、各种添加剂等。

容器2与盖3在容器2的开口部23中嵌合了盖3的凸部31的状态下,使容器2的侧壁22的顶部24与盖3的包围凸部31的周缘部32接触,将接触部使用激光熔敷法而接合。本实施方式的中空成形体中,在通过激光熔敷法将容器2及盖3进行熔敷的情况下,分别使一部分熔融而接合。因此,容器2及盖3优选使用熔点或流动起始温度相同的形成材料,更优选使用除了上述着色剂的添加的有无以外相同的材料。

作为本实施方式的容器2及盖3的形成材料,可以使用在主链骨架中具有芳香环、且结构成为直线状的树脂材料。这样的树脂材料在流动时容易发生取向,但在本实施方式的中空成形体中,使用这样的树脂材料,可以制成具有高的气密性的中空成形体。

作为可以使用的树脂材料,具体而言,可例示出聚碳酸酯树脂、芳香族聚酰胺、聚苯醚树脂、聚苯硫醚树脂、聚砜树脂、聚芳酯树脂、聚醚酰亚胺树脂、聚醚砜树脂、聚醚酮树脂、液晶聚酯、聚酰胺酰亚胺树脂、聚酰亚胺树脂等,它们中,从流动性、耐热性、刚性及阻气性良好的方面出发,优选液晶聚酯。

(液晶聚酯)

作为本实施方式的中空成形体的形成材料可以使用的液晶聚酯是在熔融状态下显示液晶性的液晶聚酯,优选为在450℃以下的温度下熔融的液晶聚酯。另外,液晶聚酯可以是液晶聚酯酰胺,可以是液晶聚酯醚,也可以是液晶聚酯碳酸酯,还可以是液晶聚酯酰亚胺。液晶聚酯优选为作为原料单体仅使用芳香族化合物而成的全芳香族液晶聚酯。

作为液晶聚酯的典型的例子,可列举出:

(i)使选自由芳香族二元醇、芳香族羟基胺及芳香族二胺组成的组中的至少1种化合物、芳香族羟基羧酸与芳香族二羧酸聚合(缩聚)而成的液晶聚酯;

(ii)使多种芳香族羟基羧酸聚合而成的液晶聚酯;

(iii)使选自由芳香族二元醇、芳香族羟基胺及芳香族二胺组成的组中的至少1种化合物与芳香族二羧酸聚合而成的液晶聚酯;以及

(iv)使聚对苯二甲酸乙二醇酯等聚酯与芳香族羟基羧酸聚合而成的液晶聚酯。其中,芳香族羟基羧酸、芳香族二羧酸、芳香族二元醇、芳香族羟基胺及芳香族二胺也可以分别独立地使用其能够聚合的衍生物来代替其一部分或全部。

芳香族羟基羧酸是指从芳香族化合物中将其芳香环上键合的氢原子的2个分别用羟基及羧基取代而得到的化合物。

芳香族二羧酸是指从芳香族化合物中将其芳香环上键合的氢原子的2个分别用羧基取代而得到的化合物。

芳香族二元醇是指从芳香族化合物中将其芳香环上键合的氢原子的2个分别用羟基取代而得到的化合物。

芳香族羟基胺是指从芳香族化合物中将其芳香环上键合的氢原子的2个分别用羟基及氨基取代而得到的化合物。

芳香族二胺是指从芳香族化合物中将其芳香环上键合的氢原子的2个分别用氨基取代而得到的化合物。

作为芳香族羟基羧酸及芳香族二羧酸等具有羧基的化合物的能够聚合的衍生物的例子,可列举出将羧基转换成烷氧基羰基或芳氧基羰基而得到的酯、将羧基转换成卤代甲酰基而得到的酰卤化物、及将羧基转换成酰氧基羰基而得到的酸酐。

作为芳香族羟基羧酸、芳香族二元醇及芳香族羟基胺等具有羟基的化合物的能够聚合的衍生物的例子,可列举出将羟基酰化而转换成酰氧基的酰化物。

作为芳香族羟基胺及芳香族二胺那样的具有氨基的化合物的能够聚合的衍生物的例子,可列举出将氨基酰化而转换成酰基氨基而成的物质(酰化物)。

液晶聚酯优选具有下述通式(1)所表示的重复单元(以下,有时称为“重复单元(1)”。),更优选具有重复单元(1)、下述通式(2)所表示的重复单元(以下,有时称为“重复单元(2)”。)和下述通式(3)所表示的重复单元(以下,有时称为“重复单元(3)”。)。

(1)-o-ar1-co-

(2)-co-ar2-co-

(3)-x-ar3-y-

(式中,ar1为亚苯基、亚萘基或亚联苯基;ar2及ar3分别独立地为亚苯基、亚萘基、亚联苯基或下述通式(4)所表示的基团;x及y分别独立地为氧原子或亚氨基;上述ar1、ar2及ar3中的一个以上的氢原子也可以分别独立地被卤素原子、烷基或芳基取代。)

(4)-ar4-z-ar5-

(式中,ar4及ar5分别独立地为亚苯基或亚萘基;z为氧原子、硫原子、羰基、磺酰基或烷叉基。)

作为能够与ar1、ar2或ar3所表示的上述基团中的氢原子置换的卤素原子,可列举出氟原子、氯原子、溴原子及碘原子。

作为能够与ar1、ar2或ar3所表示的上述基团中的氢原子置换的烷基的例子,其碳原子数优选为1~10,例如可列举出甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正己基、正庚基、2-乙基己基、正辛基、壬基及正癸基等。

作为能够与ar1、ar2或ar3所表示的上述基团中的氢原子置换的芳基的例子,其碳原子数优选为6~20,例如可列举出苯基、邻甲苯基、间甲苯基、对甲苯基等那样的单环式芳香族基、1-萘基及2-萘基等那样的缩环式芳香族基。

在ar1、ar2或ar3所表示的上述基团的氢原子被这些基团取代的情况下,其数目在每个ar1、ar2或ar3所表示的上述基团中分别独立地优选为1个或2个,更优选为1个。

作为上述烷叉基的例子,可列举出甲叉基、乙叉基、异丙叉基、正丁叉基及2-乙基己叉基等,其碳原子数优选为1~10。

重复单元(1)是来自规定的芳香族羟基羧酸的重复单元。作为重复单元(1),优选ar1为对亚苯基的重复单元(即来自对羟基苯甲酸的重复单元)、及ar1为2,6-亚萘基的重复单元(即来自6-羟基-2-萘甲酸的重复单元)。

重复单元(2)是来自规定的芳香族二羧酸的重复单元。作为重复单元(2),优选ar2为对亚苯基的重复单元(即来自对苯二甲酸的重复单元)、ar2为间亚苯基的重复单元(即来自间苯二甲酸的重复单元)、ar2为2,6-亚萘基的重复单元(即来自2,6-萘二羧酸的重复单元)、及ar2为二苯基醚-4,4’-二基的重复单元(即来自二苯基醚-4,4’-二羧酸的重复单元)。

重复单元(3)是来自规定的芳香族二元醇、芳香族羟基胺或芳香族二胺的重复单元。作为重复单元(3),优选ar3为对亚苯基的重复单元(即来自氢醌、对氨基苯酚或对亚苯基二胺的重复单元)、及ar3为4,4’-亚联苯基的重复单元(即来自4,4’-二羟基联苯、4-氨基-4’-羟基联苯或4,4’-二氨基联苯的重复单元)。

重复单元(1)的含量相对于构成液晶聚酯的全部重复单元的合计量(即通过将构成液晶聚酯的各重复单元的质量除以该各重复单元的式量,求出各重复单元的与物质的量相当的量(摩尔),并将它们合计而得到的值),优选为30摩尔%以上,更优选为30~80摩尔%,进一步优选为40~70摩尔%,特别优选为45~65摩尔%。

重复单元(2)的含量相对于构成液晶聚酯的全部重复单元的合计量,优选为35摩尔%以下,更优选为10~35摩尔%,进一步优选为15~30摩尔%,特别优选为17.5~27.5摩尔%。

重复单元(3)的含量相对于构成液晶聚酯的全部重复单元的合计量,优选为35摩尔%以下,更优选为10~35摩尔%,进一步优选为15~30摩尔%,特别优选为17.5~27.5摩尔%。

例如,在液晶聚酯由重复单元(1)、重复单元(2)及重复单元(3)构成的情况下,优选重复单元(1)的含有率为30摩尔%以上且80摩尔%以下,重复单元(2)的含有率为10摩尔%以上且35摩尔%以下,重复单元(3)的含有率为10摩尔%以上且35摩尔%以下。

液晶聚酯中,重复单元(1)的含量越多,则熔融流动性、耐热性、强度·刚性容易提高,但若过多,则熔融温度、熔融粘度容易变高,成形所需要的温度容易变高。

重复单元(2)的含量与重复单元(3)的含量的比例以[重复单元(2)的含量]/[重复单元(3)的含量](摩尔/摩尔)表示,优选为0.9/1~1/0.9,更优选为0.95/1~1/0.95,进一步优选为0.98/1~1/0.98。

另外,液晶聚酯也可以分别独立地具有2种以上的重复单元(1)~(3)。此外,液晶聚酯还可以具有重复单元(1)~(3)以外的重复单元,但其含量相对于构成液晶聚酯的全部重复单元的合计量,优选为10摩尔%以下,更优选为5摩尔%以下。

液晶聚酯中,作为重复单元(3),优选具有x及y分别为氧原子的重复单元、即具有来自规定的芳香族二元醇的重复单元,作为重复单元(3),更优选仅具有x及y分别为氧原子的重复单元。通过这样构成,液晶聚酯的熔融粘度容易变低。

液晶聚酯优选通过使与构成其的重复单元对应的原料单体熔融聚合,并使所得到的聚合物(即预聚物)进行固相聚合来制造。由此,能够以良好的操作性制造耐热性、强度·刚性高的高分子量的液晶聚酯。熔融聚合也可以在催化剂的存在下进行,作为此时的催化剂的例子,可列举出乙酸镁、乙酸亚锡、钛酸四丁酯、乙酸铅、乙酸钠、乙酸钾、三氧化锑等金属化合物、4-(二甲基氨基)吡啶、1-甲基咪唑等含氮杂环式化合物,优选使用含氮杂环式化合物。

液晶聚酯的流动起始温度优选为270℃以上,更优选为270℃以上且400℃以下,进一步优选为280℃以上且380℃以下。流动起始温度越高,则耐热性、强度·刚性越容易提高,但若过高,则为了使其熔融需要高温,在成形时变得容易热劣化,熔融时的粘度变高,流动性降低。

另外,流动起始温度也称为流动温度(flowtemperature),是使用毛细管流变仪,在9.8mpa(100kgf/cm2)的负载下,边以4℃/分钟的速度升温边使液晶聚酯熔融,从内径为1mm及长度为10mm的喷嘴挤出时,显示4800pa·s(48000泊)的粘度的温度,成为液晶聚酯的分子量的标准(参照小出直之编、“液晶聚合物-合成·成形·应用-”、株式会社cmc、1987年6月5日、p.95)。

(浇口痕迹)

容器2和盖3优选分别在成为中空成形体1的外侧的位置具有注射成形时的浇口痕迹。“外侧”意味着中空成形体1的外表面,在容器中为包含外表面及底表面的区域,在盖中为包含上表面及侧面的区域。在图1a中所示的容器2中,在侧壁的外表面29的下部且角的附近具有注射成形时的浇口痕迹2x。此外,在盖3中,在侧面39的角的附近具有注射成形时的浇口痕迹3x。在本实施方式的中空成形体1中,可以使用在这样的位置具有浇口痕迹的容器2及盖3。

在容器及盖的模具中,设置有用于将形成材料注射到模具中的浇口。在注射成形时,形成材料从浇口流入模具内部。此时,由于与浇口对应的位置的流动方向与周围的流动方向不同(即,由于周围的流动方向成为相对于与浇口对应的位置的流动方向正交那样的流动方向),所以在形成材料固化后,仅与浇口对应的位置以与周围不同的取向进行固化。由于为与周围不同的取向,所以与浇口对应的区域能够进行视觉辨认。本说明书中,将该能够视觉辨认的区域设为“浇口痕迹”。另外,浇口痕迹的形状只要是与浇口的截面形状对应的形状即可,没有特别限定。浇口痕迹例如也可以是固化后的形成材料从外表面突出的突起状的痕迹。

本说明书中,“浇口痕迹的全部”意味着与浇口对应的区域全部,“浇口痕迹的至少一部分”意味着与浇口对应的区域的至少一部分。

另外,作为用于制造本实施方式的中空成形体1的容器、盖,并不限定于浇口痕迹位于图1a中所示那样的位置的容器、盖。图2a、图2b及图2c是能够制造本实施方式的中空成形体1的容器及盖的说明图,是说明浇口痕迹的位置的图。

图2a是关于容器从底表面侧看的概略立体图,图2b是关于盖从上表面侧看的概略立体图,图2c是关于盖从下表面侧看的概略立体图。

如图2a中所示的那样,在构成本实施方式的中空成形体1的容器2中,浇口痕迹的全部位于除了以从容器2的底表面的重心g1至底表面25的外周为止的距离l1为基准,距重心g1为距离l1的三分之二以内的区域ar1的位置。图2a中,将不能配置容器2的浇口痕迹的区域ar1以斜线表示。

在本说明书中,“至外周为止的距离”意味着从重心至外周上的任意的点为止的距离。

在本说明书中,“面的重心”意味着在面中一次矩为0的点。此外,在面为矩形的情况下,意味着对角线的交点。

此外,如图2b中所示的那样,在构成本实施方式的中空成形体1的盖3的上表面33a中,浇口痕迹的全部位于除了以从上表面33a的重心g2至上表面33a的外周为止的距离l2为基准,距重心g2为距离的三分之二以内的区域以外的位置。图2b中,将不能配置盖3的浇口痕迹的区域ar2以斜线表示。

进而,如图2c中所示的那样,在构成本实施方式的中空成形体1的盖3的下表面33b中,浇口痕迹的全部位于除了以从盖3的下表面33b的重心g3至下表面33b的外周为止的距离l3为基准,距重心g3为距离的三分之二以内的区域以外的位置。图2c中,将不能配置盖3的浇口痕迹的区域ar3以斜线表示。

另外,在容器2及盖3中,在这些位置具有浇口痕迹的情况下,意味着容器2及盖3使用在这些浇口痕迹的位置具有对应的浇口的模具进行注射成形而成。

图3、4是说明由容器及盖的浇口痕迹的位置带来的效果的图。图3是表示在图2a及图2b中所示的区域ar1、ar2内具有浇口痕迹时的示意图,图4是表示在图2a及图2b中所示的区域ar1、ar2的外侧具有浇口痕迹时的示意图。图4中所示的容器及盖相当于图1a及图1b中所示的容器及盖。另外,在图3、4中,将成形时的熔融树脂的流动以箭头表示。

首先,如图3中所示的那样,若使用在成为容器2a的底表面的中心的位置设定有浇口位置(图中,以符号2y表示)的模具进行注射成形,则熔融树脂从浇口以放射状扩展后,例如如符号α1所示的箭头那样,向侧壁22a的顶部24a流动。另一方面,若使用在盖3a的上表面33a的中心设定有浇口位置(图中,以符号3y表示)的模具进行注射成形,则熔融树脂从浇口以放射状扩展,例如如符号β1所示的箭头那样向周缘部32a流动。

这样的话,如符号α1、β1所示的箭头那样,在将容器2a和盖3a进行熔敷的部分、即容器2a的顶部24a和盖3a的周缘部32a中,产生许多成形时的树脂的流动方向交叉的部分。

本实施方式的中空成形体中作为形成材料使用的树脂在熔融时沿树脂的流动方向进行取向而固化。因此,在图3所示那样的浇口位置的情况下,在将容器2a与盖3a进行熔敷的部分、即容器2a的顶部24a和盖3a的周缘部32a中,彼此的树脂的取向方向变得不同。发明者们发现,在使树脂成为这样的取向状态的构件彼此进行熔敷的情况下,在熔敷部分中得不到充分的强度,结果是,成为容易破损且气密性低的中空成形体。

另一方面,如图4中所示的那样,若使用在成为容器2的浇口痕迹2x的位置设定浇口位置的模具进行注射成形,则熔融树脂相对于浇口向对角侧的角(符号26)流动。这样的话,在侧壁22的顶部24的附近流动的树脂的多半如符号α2所示的箭头那样沿着顶部24在顶部24的面方向上流动。

此外,若使用在成为盖3的浇口痕迹3x的位置设定浇口位置的模具进行注射成形,则熔融树脂相对于浇口向对角侧的角(符号34)流动。这样的话,在周缘部32的附近流动的树脂的多半如符号β2所示的箭头那样沿着盖3的外周流动。

这样的话,如符号α2、β2所示的箭头那样,在将容器2和盖3进行熔敷的部分、即容器2的顶部24和盖3的周缘部32中,产生许多成形时的树脂的流动方向成为同方向的部分。在这样的部位中,彼此的树脂的取向方向变得一致。发明者们发现,在使这样的树脂取向状态的容器2和盖3进行熔敷的情况下,在熔敷部分中容易得到充分的强度,结果是可以制成不易破损且气密性高的中空成形体。

图5是表示呈长方体形状的容器的浇口痕迹的适宜的位置(即,成形时的浇口位置的适宜的位置)的示意图。图5是对于容器从底表面侧看的概略立体图。

如图5中所示的那样,容器2优选容器2的浇口痕迹的至少一部分(优选全部)位于以容器2的底表面25侧的角27为中心,从底表面25侧的角27至邻接的角为止的距离的六分之一以内的区域。具体而言,在容器为长方体的情况下,分别确定从底表面25侧的角27至3个邻接的角为止的距离达到六分之一的点(即1/6w、1/6d、1/6h1),容器的浇口痕迹更优选位于由将这些点以弧线连接而成的圆弧或椭圆弧包围的区域。进而,在容器为长方体的情况下,分别确定从底表面25侧的角27至3个邻接的角为止的距离达到六分之一的点,更优选位于由将这些点以直线连接而成的3个三角形包围的区域。

图中,将容器2中优选配置浇口痕迹的区域以符号28表示。另外,图5中,将容器2的宽度、深度、高度分别以符号w、d、h1表示。具体而言,在容器具有宽度w为5~500mm、深度d为5~500mm、高度h1为0.5~500mm的长方体的情况下,分别确定从底表面25侧的角27至3个邻接的角为止的距离达到六分之一的点、即1/6w、1/6d、1/6h1分别达到5/6~500/6mm、5/6~500/6mm、0.5/6~500/6mm的点,进一步优选位于由将这些点以弧线连接而成的圆弧或椭圆弧包围的区域,特别优选位于由将这些点以直线连接而成的3个三角形包围的区域。

此外,容器的宽度w与深度d及高度h1的比分别优选为w/d=0.2~5、w/h1=0.5~20。

在本说明书中,“角”是指2个棱线相交所成的角。

在本说明书中,“邻接的角”是指2个棱线相交所成的角中相邻的角。

此外,图6是表示呈长方体形状的盖的浇口痕迹的适宜的位置(即、成形时的浇口位置的适宜的位置)的示意图。图6是对于盖从上表面侧看的概略立体图。

如图中所示的那样,在盖3的上表面33a及下表面33b中,盖3的浇口痕迹的一部分或全部(优选全部)优选位于以盖3的上表面33a侧的角35为中心从上表面33a侧的角35至邻接的角为止的距离的六分之一以内、及以盖3的下表面33b侧的角36为中心从下表面33b侧的角36至邻接的角为止的距离的六分之一以内的区域、即由圆弧或椭圆弧包围的区域中。进而,从提高气密性的观点出发,盖的浇口痕迹优选位于容器与盖的接触部分以外的区域(即盖的周缘部以外的区域)。

在本说明书中,关于“圆弧”及“椭圆弧”,在底表面的形状为多边形的情况下如从达到一个角至邻接的角为止的距离的六分之一的各二个点通过那样,以该一个角为中心,在它们为相同的距离的情况下画圆,在它们的距离不同的情况下画椭圆,此外在底表面的形状为圆或椭圆的情况下基于以该端部为中心画的以存在浇口痕迹的端部或成为最短的端部为中心具有以从该端部至最远的端部为止的长度为基准的六分之一的长度的半径的圆而算出。

具体而言,在图5中,在宽度w与深度d为相同值的情况下,1/6w与1/6d也成为相同的值。因此,在容器的底表面中,由圆弧包围的区域意味着由以点27为原点的x2+y2=(1/6w)2所表示的圆的一部分即圆弧包围的区域。

另外,x及y可以通过以下的式子求出。

(式)x=1/6w·cosθ、y=1/6w·sinθ、0≤θ≤π/2

在宽度w与高度h1为相同值的情况下,1/6w与1/6h1也成为相同的值。因此,在容器的外表面中,由圆弧包围的区域意味着由以点27为原点的x2+y2=(1/6w)2所表示的圆的一部分即圆弧包围的区域。

另外,x及y可以通过以下的式子求出。

(式)x=1/6w·cosθ、y=1/6w·sinθ、0≤θ≤π/2

在深度d与高度h1为相同值的情况下,1/6d与1/6h1也成为相同的值。因此,在容器的外表面中,由圆弧包围的区域意味着由以点27为原点的x2+y2=(1/6d)2所表示的圆的一部分即圆弧包围的区域。

另外,x及y可以通过以下的式子求出。

(式)x=1/6d·cosθ、y=1/6d·sinθ、0≤θ≤π/2

此外,在宽度w与深度d为不同的值的情况下,在容器的底表面中,由椭圆弧包围的区域意味着由以点27为原点的x2/(1/6w)2+y2/(1/6d)2=1所表示的椭圆的一部分即椭圆弧包围的区域。

另外,x及y可以通过以下的式子求出。

(式)x=1/6w·cosθ、y=1/6d·sinθ、0≤θ≤π/2

此外,在宽度w与高度h1为不同的值的情况下,在容器的外表面中,由椭圆弧包围的区域意味着由以点27为原点的x2/(1/6w)2+y2/(1/6h1)2=1所表示的椭圆的一部分即椭圆弧包围的区域。

另外,x及y可以通过以下的式子求出。

(式)x=1/6w·cosθ、y=1/6h1·sinθ、0≤θ≤π/2

此外,在深度d与高度h1为不同的值的情况下,在容器的外表面中,由椭圆弧包围的区域意味着由以点27为原点的x2/(1/6d)2+y2/(1/6h1)2=1所表示的椭圆的一部分即椭圆弧包围的区域。

另外,x及y可以通过以下的式子求出。

(式)x=1/6d·cosθ、y=1/6h1·sinθ、0≤θ≤π/2

此外,在图6中,在宽度w与深度d为相同值的情况下,1/6w与1/6d也成为相同的值。因此,在盖的上表面及下表面中,由圆弧包围的区域意味着由以点35为原点的x2+y2=(1/6w)2所表示的圆的一部分即圆弧包围的区域。

另外,x及y可以通过以下的式子求出。

(式)x=1/6w·cosθ、y=1/6w·sinθ、0≤θ≤π/2

此外,在宽度w与深度d为不同的值的情况下,在盖的上表面及下表面中,由椭圆弧包围的区域意味着由以点35为原点的x2/(1/6w)2+y2/(1/6d)2=1所表示的椭圆的一部分即椭圆弧包围的区域。

另外,x及y可以通过以下的式子求出。

(式)x=1/6w·cosθ、y=1/6d·sinθ、0≤θ≤π/2

此外,在盖3的侧面39中,盖3的浇口痕迹的至少一部分(优选全部)优选位于从连接盖3的上表面33a及下表面33b的邻接的角彼此的棱线(例如、符号37所示的棱线)至相对的棱线为止的距离的六分之一以内的区域。

具体而言,在盖为长方体的情况下,盖的浇口痕迹的至少一部分(优选全部)优选位于:在上表面中,分别确定从上表面的角至2个邻接的上表面的角为止的距离达到六分之一的点(即、1/6w、1/6d),由将它们以弧线连接而成的圆弧或椭圆弧包围的区域;在下表面中,分别确定从下表面的角至2个邻接的下表面的角为止的距离达到六分之一的点(即、1/6w、1/6d),由将它们以弧线连接而成的圆弧或椭圆弧包围的区域;或在侧面中,从连接上述盖的上表面及下表面的角、且邻接的角彼此的棱线至连接上述上表面中的点和上述下表面中的点的直线(即、连接上表面中的1/6w的点和下表面中的1/6w的点的直线、及连接上表面中的1/6d的点和下表面中的1/6d的点的直线)为止的区域以内。

进而,在盖为长方体的情况下,盖的浇口痕迹的至少一部分(优选全部)更优选位于:在上表面中,分别确定从上表面的角至2个邻接的上表面的角为止的距离达到六分之一的点,由将它们以直线连接而成的三角形包围的区域;在下表面中,分别确定从下表面的角至2个邻接的下表面的角为止的距离达到六分之一的点,由将它们以直线连接而成的三角形包围的区域;或在侧面中,从连接上述盖的上表面及下表面的角、且邻接的角彼此的棱线至连接上述上表面中的点和上述下表面中的点的直线为止的区域以内。

图中,将在盖3中优选配置浇口痕迹的区域以符号38用斜线表示。另外,图6中,将盖3的宽度、深度、高度分别以符号w、d、h2表示。

具体而言,在盖为具有宽度w为5~500mm、深度d为5~500mm、高度h2为0.2~20mm的长方体的情况下,盖的浇口痕迹进一步优选位于:在上表面中,分别确定从上表面的角至2个邻接的上表面的角为止的距离达到六分之一的点、即1/6w、1/6d分别达到5/6~500/6mm、5/6~500/6mm的点,由将这些点以弧线连接而成的圆弧或椭圆弧包围的区域;在下表面中,分别确定从下表面的角至2个邻接的下表面的角为止的距离达到六分之一的点、即1/6w、1/6d分别达到5/6~500/6mm、5/6~500/6mm的点,由将这些点以弧线连接而成的圆弧或椭圆弧包围的区域;或在侧面中,从连接上述盖的上表面及下表面的角、且邻接的角彼此的棱线至连接上述上表面中的点和上述下表面中的点的直线为止的区域以内。

此外,在盖为具有宽度w为5~500mm、深度d为5~500mm、高度h2为0.2~20mm的长方体的情况下,盖的浇口痕迹特别优选位于:在上表面中,分别确定从上表面的角至2个邻接的上表面的角为止的距离达到六分之一的点、即1/6w、1/6d分别达到5/6~500/6mm、5/6~500/6mm的点,由将这些点以直线连接而成的三角形包围的区域;在下表面中,分别确定从下表面的角至2个邻接的下表面的角为止的距离达到六分之一的点、即1/6w、1/6d分别达到5/6~500/6mm、5/6~500/6mm的点,由将这些点以直线连接而成的三角形包围的区域;或在侧面中,从连接上述盖的上表面及下表面的角、且邻接的角彼此的棱线至连接上述上表面中的点和上述下表面中的点的直线为止的区域以内。

此外,盖的宽度w与深度d及高度h2的比分别优选为w/d=0.2~5、w和d中较小的值/h2=2~50。

在容器2及盖3中,在这些位置具有浇口痕迹的情况下,意味着容器2及盖3使用在这些位置配置了浇口的模具进行注射成形而成。在这样的成形体(容器2、盖3)中,在将容器2和盖3进行熔敷的部分、即容器2的顶部24和盖3的周缘部32中,产生许多成形时的树脂的流动方向成为相同方向的部分,树脂的取向方向容易变得一致。因此,在使容器2和盖3进行熔敷的情况下,容易得到熔敷部分的强度,结果是,可以制成不易破损且气密性高的中空成形体。此外,在这样从角附近注射树脂进行成形的情况下,若目标中空成形体的外形形状如本实施方式那样为长方体,则在将容器2和盖3进行熔敷的部分中树脂的取向方向容易一致,从而优选。

图7是容器2的概略垂直截面图。浇口位置根据注射成形的模具的开口位置而定,在图中所示的容器2中,可例示出在底表面25的端部且侧壁的外表面29的面方向(符号l)、在底表面25的端部且底表面方向(符号m)、底部21的与收纳空间s侧的面相同的高度且底表面方向(符号n)上注射树脂的位置的浇口。此外,从在侧壁22的顶部24中使树脂在顶部24的面方向上流动的观点出发,也可以是在与顶部24相同的高度且顶部24的面方向(符号x)上注射树脂的位置的浇口。

另外,容器2优选底部21的平均壁厚tb与侧壁22的平均壁厚tw显示以下的式(i)所示的关系。

4tb≥tw>3/4tb...(i)

tb与tw优选4tb≥tw≥tb。若tb与tw满足tw>3/4tb,则在容器2中焊缝线变得不易位于底部21中,能够防止由于焊缝线位于底部21而容易发生的气密的泄漏,得到所希望的树脂的取向状态。此外,若为4tb≥tw,则在容器2中不易产生翘曲。

图8是盖3的概略垂直截面图。若设图7中所示的侧壁22的顶部24的宽度为la,则周缘部32的厚度tf相对于la优选为0.2≤tf/la≤1,更优选为0.2≤tf/la≤0.5。若为tf/la≥0.2,则所得到的中空成形体的强度变得充分。若为tf/la≤1,则能够抑制到达侧壁22的顶部24的光量的衰减。这是由于,在激光熔敷时透过周缘部32的激光一部分在周缘部32发生散射而向与激光的光线轴交叉的方向照射的成分增加。若为tf/la≤1,则即使发生散射也容易在激光扩展前照射至顶部24。

另外,在盖3中没有照射激光的凸部31优选平均厚度tr相对于周缘部32的厚度tf为0.8≤tf/tr≤1.2。若为tf/tr≤1.2,则容易获得熔敷部的熔敷强度、气密性,若为0.8≤tf/tr,则能够抑制盖3中的翘曲的发生。

另外,底部21的平均壁厚tb和侧壁22的平均壁厚tw可以通过游标卡尺、千分尺、光学测长机、图像分析等进行测定。

本实施方式的中空成形体可以制成以上那样的构成。

本申请的第六方案中的中空成形体也可以制成与上述的第一方案中的中空成形体同样的构成。

[本发明的第四方案中的中空成形体]

图12a及图12b是表示本发明的第四方案中的中空成形体的一个例子的示意图,图12a是分解立体图,图12b是概略垂直截面图。如图12a及图12b中所示的那样,中空成形体1’具有通过注射成形等公知的方法而成形的容器2’和盖3’。在本实施方式的中空成形体1’中,容器2’和盖3’使用激光熔敷法而接合。

容器2’是具有由底部21’和与底部21’交叉的侧壁22’包围、且在一个面上形成有开口部23’的收纳空间s’的成形体。容器2’的形状可以根据收纳空间s’中收纳的部件的形状而适当设定。例如,在一般将具有长方体的形状的半导体元件收纳在收纳空间s’中的情况下,如图12a及图12b中所示的那样,优选具有长方体的底部21’和正交的侧壁22’,将收纳空间s’制成长方体形状。此外,也可以制成具有圆柱状的外形、多角柱状的外形的中空成形体。进而,还可以制成具有圆锥台、多角锥台的外形的中空成形体。

在容器2’中,含有吸收激光且将能量转换成热的着色剂。

作为该着色剂,可列举出炭黑、单偶氮染料、蒽醌染料、苝染料、酞菁染料、苯胺黑染料、钛黑、黑色氧化铁、黄色氧化铁、红色氧化铁、镉黄、镍钛黄、锶黄、含水氧化铬、氧化铬、铝酸钴、群青等,可以使用1种或2种以上。它们中,从耐热性高的方面出发,优选炭黑、钛黑、黑色氧化铁。

这样的着色剂相对于容器2’的总量(100质量份)优选含有0.01质量份以上且10质量份以下,更优选含有0.05质量份以上且5质量份以下。

此外,在容器2’中,在不损害本发明的效果的范围内,还可以含有无机填料、各种添加剂等。

另外,在容器2’的注射成形时,还可以将连接收纳空间s’和容器2’的外部的端子埋入侧壁22’中。例如,通过将预先加工成端子形状的引线框插入模具中后,进行注射成形,可以制成具有外部连接端子的容器2’。

盖3’具有在俯视与容器2’相同的形状,是以透光性材料作为形成材料的板状的成形体。

这里,在本说明书中“透光性材料”的“透光性”是指,在使用激光熔敷法使容器2’和盖3’熔敷这样的主旨中,具有将用于进行激光熔敷的激光透射而能够对容器2’照射激光的程度的透光率。因此,某种材料即使不是在全部波长区域中透光率高的透明的材料,但在与所使用的激光的波长的关系中,相对于该波长的光显示高的透光率,能够成形为能够对容器2’照射激光的盖3’的情况下,该材料也为本说明书的“透光性材料”。具体而言,激光的透射率优选为30~100%,优选为50~100%。另外,上述透射率可以通过用瓦特表测定从激光振荡装置发出的激光而得到的能量e1与在激光振荡装置和瓦特表之间按照与光正交的方式配置材料而测定的能量e2的比率e2/e1而求出。

在图12a及图12b中,盖3’与俯视矩形的容器2’同样具有俯视矩形的形状。此外,在盖3’中在面向容器2’的一侧,在中央部设置有嵌合入容器2’的开口部23’中的凸部31’。图中,对照容器2’的开口部23’的形状,凸部31’也具有俯视矩形的形状。

另外,在本实施方式中,盖3’的形状根据容器2’的俯视形状、开口部23’的形状,制成相同的俯视形状,但容器2’与盖3’的俯视形状也可以不同。此外,盖3’的中央部可以向上隆起,也可以凹陷。

当然,也可以使用不具有图中所示的盖3’那样的凸部31’的平板状的盖。

凸部31’的周围(周缘部32’)的厚度tf’相对于侧壁22’的顶部24’的宽度la’,优选为0.2≤tf’/la’≤1,更优选为0.2≤tf’/la’≤0.5。若为tf’/la’≥0.2,则所得到的中空成形体的强度变得充分。若为tf’/la’≤1,则能够抑制到达侧壁22’的顶部24’的光量的衰减。这是由于,在激光熔敷时透过周缘部32’的激光一部分在周缘部32’中发生散射而向与激光的光线轴交叉的方向照射的成分增加,若为tf’/la’≤1,则即使发生散射也容易在激光扩展前照射至顶部24’。

另外,在盖3’中,在不损害本发明的效果的范围内,还可以含有无机填料、各种添加剂等。

容器2’与盖3’在容器2’的开口部23’中嵌合了盖3’的凸部31’的状态下,使顶部24’与周缘部32’接触,将接触部使用激光熔敷法而接合。即,在本实施方式的中空成形体的制造方法中,容器2’与盖3’的接触部是将中空成形体1’俯视时的顶部24’与周缘部32’的重叠部分。由于顶部24’的上表面和周缘部32’的下表面均成为水平面(彼此平行的面),所以接触部的大小、形状与顶部24’的大小、形状一致。

作为容器2’及盖3’的形成材料,可例示出具有透光性的树脂材料即聚苯乙烯树脂、丙烯酸树脂、聚碳酸酯树脂、聚酯树脂、聚酰胺树脂、聚缩醛树脂、聚苯醚树脂、氟树脂、聚苯硫醚树脂、聚砜树脂、聚芳酯树脂、聚醚酰亚胺树脂、聚醚砜树脂、聚醚酮树脂、液晶聚酯、聚酰胺酰亚胺树脂、聚酰亚胺树脂等,它们中,从流动性、耐热性、刚性及阻气性良好的方面出发,优选液晶聚酯。

作为本发明的第四方案的中空成形体的形成材料可以使用的液晶聚酯可列举出与上述的作为本发明的第一方案的中空成形体的形成材料可以使用的液晶聚酯相同的物质。

此外,在本发明的第四方案中,作为盖3’的形成材料,还可以使用具有透光性的无机材料。

作为盖3’的形成材料,例如可列举出钠钙玻璃、石英玻璃、磷硅酸玻璃、氟化物玻璃、铅玻璃、镧玻璃、钡玻璃、硼硅酸玻璃、铝硅酸玻璃等玻璃等。

在盖3’的形成材料为玻璃那样的无机材料的情况下,周缘部32’优选在不损害本发明的效果的范围内,利用选自由氟化镁、氧化锆、氧化铝组成的组中的1种以上的处理剂进行表面处理。表面处理可以通过例如制备将处理剂溶解或分散到适当的溶剂中而得到的溶液或分散液并将其通过旋涂等进行涂布来进行。此外,通过使用由构成处理剂的物质形成的靶,进行溅射处理、蒸镀处理,也可以对周缘部32’进行表面处理。

具体而言,作为利用氟化镁的表面处理,例如可列举出:作为溅射气体使用氩气,作为反应气体使用以氩稀释的氟气,溅射镁靶,使通过溅射而产生的气体堆积在周缘部32’的表面的方法;作为蒸镀材料使用氟化镁,对其照射电子束而加热蒸镀,将蒸发气体蒸镀到周缘部32’的表面的方法;将经氟酸及乙酸镁调整的溶胶液通过旋涂等涂抹到周缘部32’的表面的方法等。

作为利用氧化锆的表面处理,例如可列举出:作为蒸镀材料使用氧化锆,对其照射电子束而加热蒸镀,将蒸发气体蒸镀到周缘部32’的表面的方法;将氧化锆溶胶通过旋涂等进行涂抹的方法等。

作为利用氧化铝的表面处理,例如可列举出:作为溅射气体使用氩气,作为反应气体使用氧气,溅射铝靶,使通过溅射而产生的气体堆积在周缘部32’的表面的方法;作为蒸镀材料使用金属铝,对其照射电子束而加热,将所产生的蒸发气体与氧气一起蒸镀到周缘部32’的表面的方法;使用氧化铝溶胶,通过旋涂等进行涂抹的方法等。

此外,在盖3’的形成材料为玻璃那样的无机材料的情况下,周缘部32’还可以实施用于提高熔敷强度的粗化处理。该粗化处理可以通过例如利用铬酸及硫酸的混合水溶液、氟酸等蚀刻液进行蚀刻处理的方法、或喷砂法来实施。

另外,上述的周缘部32’的表面处理和粗化处理也可以彼此组合来实施。

若使用激光熔敷法,则通过至少使容器2’部分熔融,从而使容器2’和盖3’熔敷,但为了得到更高的熔敷强度,容器2’及盖3’的形成材料均优选为热塑性树脂。这种情况下,容器2’及盖3’优选使用熔点或流动起始温度相同的形成材料,更优选使用除了着色剂的添加的有无以外相同的材料。

本实施方式的中空成形体可以成为以上那样的构成。

本申请的第九方案中的中空成形体也可以制成与上述的第四方案中的中空成形体同样的构成。

[本发明的第二方案中的中空成形体的制造方法]

本发明的第二方案中的中空成形体的制造方法具有:使用包含具有沿熔融状态的流动方向进行取向并固化的性质的热塑性树脂的形成材料,将容器进行注射成形的工序;使用包含具有沿熔融状态的流动方向进行取向并固化的性质的热塑性树脂的形成材料,将盖进行注射成形的工序;将上述容器的开口部用上述盖封闭,将上述容器与上述盖互相接触的接触部进行激光熔敷的工序;上述将容器进行注射成形的工序包括:使用按照上述容器的浇口痕迹的全部位于上述容器的外表面或底表面上的方式、但是处于除了以从上述容器的底表面的重心至上述底表面的外周为止的距离为基准距上述重心为上述距离的三分之二以内的区域以外的位置的方式设定浇口位置的模具将上述容器进行注射成形,上述将盖进行注射成形的工序包括:使用按照上述盖的浇口痕迹的全部位于上述盖的上表面、侧面或下表面的方式、但是处于除了以从上述盖的上表面的重心至上述上表面的外周为止的距离为基准距上述上表面的重心为上述距离的三分之二以内的区域、和以从上述盖的下表面的重心至上述下表面的外周为止的距离为基准距上述下表面的重心为上述距离的三分之二以内的区域以外的位置的方式设定浇口位置的模具将上述盖进行注射成形。

首先,容器及盖如上述那样从设定在除了规定的区域的位置的浇口进行注射成形而形成。接着,使所得到的容器与盖按照将容器的开口部用盖封闭的方式接触后,将接触部进行激光熔敷而形成。

图9是说明激光熔敷中使用的熔敷装置的示意图。

图中所示的熔敷装置100具备载置应当进行激光熔敷的容器2及盖3的载置台101、将容器2及盖3夹持在与载置台101之间的散热器102、和具有开口部103a且抑制散热器102的框体103。在框体103的开口部103a中,还可以嵌合由透光性材料形成的透明构件。

载置台101是使用金属材料、无机材料等材料而形成的板状的构件。

散热器102是后述的激光的透射率为50%以上、且热导率为1~200w/mk的构件。散热器102优选激光的透射率为90~100%。此外,热导率优选为5~200w/mk。作为这样的散热器102的形成材料,例如可列举出透明氧化铝、透明氧化铍、透明镁、石英玻璃、蓝宝石、硅等。

此外,作为透射率的测定方法,可列举出由用瓦特表测定从激光振荡装置发出的激光而得到的能量e1与在激光振荡装置与瓦特表之间按照与光正交的方式配置散热器而测定的能量e2的比率e2/e1求出的方法。作为热导率的测定方法,可列举出激光闪光法、ai-phase法、温度梯度法。

载置台101通过弹簧、油压汽缸那样的升降机104升降自如地设置,载置台101与框体103以多个(图中为4根)支柱105连接。图中,以升降机104为油压汽缸来表示。

此外,射出激光的激光光源106能够在水平方向上扫描地设置,能够在载置台101的方向(下方向)上射出激光地设置。激光光源106可以为通过使用光学镜、光纤、透镜等,对微小区域选择性地照射激光、或将激光的焦点距离错开而进行照射等根据用途能够改变激光的传导路径的构成。

作为从激光光源106照射的激光的种类,可列举出色素激光、准分子激光、氩激光、氪激光、氦-氖激光等气体激光、红宝石激光、yag激光等固体激光、半导体激光等。它们中,具有800~1200nm的范围的波长的激光由于不会使容器2及盖3劣化,能够使容器2与盖3稳定地熔敷,所以优选。

另外,在图中所示的熔敷装置100中,制成将连接着升降机104的载置台101升降的构成,但只要能够使载置台101与散热器102的脱离距离相对地变化,则也可以采用其他的构成。例如,也可以制成将载置台101固定,使散热器102和框体103升降的构成。

图10a及图10b是激光熔敷的工序图。

首先,如图10a中所示的那样,根据需要在容器2的收纳空间s中收纳半导体元件等后,将容器2及盖3重合,载置到载置台101上。

接着,通过升降机104使载置台101上升。通过载置台101的上升,盖3与散热器102抵接,容器2及盖3被夹持在载置台101与框体103之间而加压。由此,容器2及盖3密合并固定。为了不损害容器2及盖3的形状,此时的压力优选为0.01~10mpa。另外,在载置台101与容器2之间,还可以夹持由硅橡胶等形成的弹性构件。

接着,如图10b中所示的那样,从激光光源106对容器2与盖3的接触部照射激光lb。为了抑制容器2的分解·劣化、变形,激光lb的能量为1~100w较佳。此外,激光光源106的扫描速度优选2~30mm/秒。

激光lb透过盖3而照射到容器2中。由于容器2中含有吸收激光lb并发热的着色剂,所以当激光lb照射至容器2中的与盖3的接触部上时,接触部被加热而容器2及盖3互相熔融。之后,通过将熔融的树脂冷却而固化,能够得到容器2被盖3密闭的本实施方式的中空成形体1。

此时,由于在本实施方式的容器2与盖3的接触部中,树脂的取向方向一致的部分多,所以容易获得熔敷部分的强度,结果是能够制成不易破损且气密性高的中空成形体1。

本发明的第二方案的中空成形体的制造方法成为以上那样的构成。

本申请的第七方案中的中空成形体的制造方法也可以制成与上述的第二方案中的中空成形体的制造方法同样的构成。

[本发明的第三方案中的中空成形体的制造方法、及本发明的第五方案中的制造装置]

图13是说明本发明的第五方案的制造装置的示意图。

图中所示的制造装置100a’具备载置应当进行激光熔敷的容器(对象物)2’及盖(对象物)3’的载置台101’、将容器2’及盖3’夹持在与载置台101’之间的散热器(散热构件、激光透射部)102’、和具有开口部103a’且抑制散热器102’的框体(支承体)103’。具有散热器102’和框体103’的构件相当于本发明中的相对构件。在框体103’的开口部103a’中,还可以嵌合由透光性材料形成的透明构件。

这里“散热构件”意味着热导率为1w/mk以上的构件。具体而言,例如由透明氧化铝、透明氧化铍、透明镁、石英玻璃、蓝宝石、硅等形成。

载置台101’是使用金属材料、无机材料等通气性低、或没有通气性的材料而形成的板状的构件。

散热器102’是后述的激光的透射率为50%以上、且热导率为1~200w/mk的构件。散热器102’优选激光的透射率为90~100%。此外,热导率优选为5~200w/mk。作为这样的散热器102’的形成材料,例如可列举出透明氧化铝、透明氧化铍、透明镁、石英玻璃、蓝宝石、硅等。

此外,作为透射率的测定方法,可列举出由用瓦特表测定从激光振荡装置发出的激光而得到的能量e1与在激光振荡装置与瓦特表之间按照与光正交的方式配置散热器而测定的能量e2的比率e2/e1求出的方法。作为热导率的测定方法,可列举出(激光闪光法、ai-phase法、温度梯度法)。

载置台101’通过弹簧、油压汽缸那样的升降机104’升降自如地设置,成为能够相对地变更载置台101’与散热器102’及框体103’(相对构件)的脱离距离的构成。载置台101’与框体103’以多个(图中为4根)支柱105’连接。图中,表示升降机104’为油压汽缸。

此外,射出激光的激光光源106’能够在水平方向上扫描地设置,能够在载置台101’的方向(下方向)上射出激光地设置。激光光源106’可以为通过使用光学镜、光纤、透镜等,对微小区域选择性地照射激光、或将激光的焦点距离错开而进行照射等根据用途能够改变激光的传导路径的构成。

作为从激光光源106’照射的激光的种类,可列举出色素激光、准分子激光、氩激光、氪激光、氦-氖激光等气体激光、红宝石激光、yag激光等固体激光、半导体激光等。它们中,具有800~1200nm的范围的波长的激光由于不会使容器2’及盖3’劣化,能够使容器2’与盖3’稳定地熔敷,所以优选。

在载置台101’上,设置有将载置台101’中载置容器2’及盖3’的区域的周围以闭环状包围的壁材107’。壁材107’朝向散热器102’开口,壁材107’的开口部与散热器102’平面重叠。

壁材107’使用硅橡胶等合成橡胶、天然橡胶等弹性材料而形成。壁材107’通过缩短载置台101’与相对构件的脱离距离,从而形成夹持在两者之间、且被载置台101’和散热器102’和壁材107’包围的操作空间。

此外,壁材107’通过扩大载置台101’与散热器102’的脱离距离,从而与散热器102’脱离,能够从壁材107’的上方的开口部将作为激光熔敷的对象物的容器2’及盖3’取出和放入。

壁材107’的高度考虑将作为激光熔敷的对象物的容器2’及盖3’重合时的高度(以下,将该高度称为“基准高度”进行说明)来进行设定。

在将壁材107’的高度设定得比基准高度高的情况下,壁材107’因夹持在载置台101’与散热器102’之间的压力使壁材107’发生变形而与载置台101’及散热器102’密合。其结果是,容易形成密闭的操作空间。

此外,通过容器2’及盖3’因夹持在载置台101’与散热器102’之间的压力而发生变形,使载置台101’与散热器102’之间的间隙变成基准高度以下的情况下,也可以将壁材107’的高度设定得比基准高度低。

这种情况下,由于载置台101’与散热器102’的压力首先施加给容器2’及盖3’,所以容易使容器2’及盖3’牢固地密合。

具体而言,优选为壁材的高度∶基准高度=1.05∶1~1.5∶1。

另外,壁材107’也可以不是壁材107’整体由弹性材料形成。例如,也可以是与载置台101’相接的部分由与载置台101’相同的材料(例如、金属材料)形成,仅与散热器102’相接的壁材107’的上端侧由弹性材料形成。

在载置台101’上,面向被载置台101’和散热器102’和壁材107’包围的操作空间,设置有与该操作空间连接的通孔108a’。在通孔108a’中介由配管108’连接有减压装置109’。作为减压装置109’,可以使用通常所知的真空泵。通孔优选设置在载置台上。更具体而言,更优选设置在载置台的壁材107’与容器2’之间。

另外,在图中所示的制造装置100a’中,制成将连接有升降机104’的载置台101’升降的构成,但只要能够使载置台101’与散热器102’的脱离距离相对地发生变化,则也可以采用其他的构成。例如,也可以制成将载置台101’固定,而使散热器102’和框体103’升降的构成。

图14a及图14b是激光熔敷的工序图。

首先,如图14a中所示的那样,根据需要在容器2’的收纳空间s’中收纳半导体元件等后,将容器2’及盖3’重合,载置到载置台101’上。

接着,通过升降机104’使载置台101’上升。通过载置台101’的上升,盖3’与散热器102’抵接,容器2’及盖3’被夹持在载置台101’与框体103’之间而加压。由此,容器2’及盖3’密合并固定。此外,与此同时,壁材107’与散热器102’抵接,形成由载置台101’和散热器102’和壁材107’包围的操作空间。

此时,为了不损害容器2’及盖3’的形状,及为了提高所形成的操作空间α’(图14b中所示)的气密性,通过载置台101’的上升而对容器2’、盖3’及壁材107’施加的压力优选为0.01~10mpa。另外,在载置台101’与容器2’之间,还可以夹持由硅橡胶等形成的底座那样的弹性构件。

若具有这样的弹性构件,则即使在对容器2’及盖3’施加的压力过高的情况下,也能够缓和压力,抑制容器2’、盖3’的破损。

接着,如图14b中所示的那样,将被载置台101’和散热器102’和壁材107’包围的操作空间α’介由通孔108a’、配管108’并使用未图示的减压装置进行脱气。图中,将所排出的气体以箭头g’表示。由此,操作空间α’内被减压。进而,从容器2’及盖3’的接触部分中略微产生的间隙,容器2’的收纳空间s’的内部也被脱气并减压。

之后,由激光光源106’对容器2’与盖3’的接触部照射激光lb’。为了抑制容器2’的分解·劣化、变形,激光lb’的能量为1~100w较佳。此外,激光光源106’的扫描速度优选为2~30mm/秒。

激光lb’透过盖3’而照射至容器2’中。由于容器2’中含有吸收激光lb’并发热的着色剂,所以在对容器2’中的与盖3’的接触部照射激光lb’时,接触部被加热而容器2’及盖3’互相熔融。

如上述那样照射激光而将容器2’与盖3’进行激光熔敷后,通过使熔融的树脂冷却并固化,能够得到容器2’被盖3’密闭的中空成形体1’。

本实施方式的中空成形体的制造方法成为以上那样的构成。

这样操作而得到的中空成形体1’由于以收纳空间s’被减压的状态密封,所以与收纳空间s’没有被减压的中空成形体相比,即使在后面的制造工序中进行退火、回流等加热处理,收纳空间s’也不易变成正压且不易破损。因此,根据以上那样的中空成形体的制造方法,能够容易地制造气密性优异、进而即使进行加热处理也能够维持高的气密性的中空成形体。

此外,根据以上那样的构成的中空成形体,由于使用上述的中空成形体的制造方法而制造,所以能够提供气密性优异的中空成形体。

此外,根据以上那样的构成的制造装置,能够制造气密性优异的中空成形体。

(变形例)

另外,在图14b中所示的状态下,在容器2’及盖3’的接触部分中,没有形成能够从容器2’的收纳空间s’的内部脱气的程度的间隙的情况下,可以使用图15a及图15b中所示那样的制造装置100b’。图15a及图15b是使用制造装置100b’的激光熔敷的工序图,是与图14a及图14b对应的图。

图中所示的制造装置100b’在散热器102’中与载置台101’相对的面上具备保持盖3’的夹具110’。夹具110’例如为以钩状弯曲的板弹簧状的构件,可以采用从下面支承盖3’的周缘部,并且若通过容器2’的上升而容器2’抵接,则利用由容器2’施加的压力避让至盖的外侧从而释放盖3’那样的构成的构件。此外,也可以是从旁边支承盖3’的侧面那样的构成。

在使用制造装置100b’的情况下,首先如图15a中所示的那样,在夹具110’中保持盖3’的状态下使载置台101’上升,使壁材107’与散热器102’抵接,形成被载置台101’和散热器102’和壁材107’包围的操作空间α’。在制造装置100b’中,壁材107’的高度设定得比容器2’与盖3’的合计高度高。因此,能够在散热器102中保持的盖3’不与容器2’接触的状态下,形成操作空间α。

在该状态下,从操作空间α’介由通孔108a’及配管108’并使用未图示的减压装置进行脱气。图中,将所排出的空气以箭头表示。由此,操作空间α’内被减压,同时,容器2’的收纳空间s’的内部也被脱气并减压。

之后,如图15b中所示的那样,通过使载置台101’进一步上升,容器2’及盖3’被夹持在载置台101’与框体103’之间并加压。由此,在收纳空间s’的内部被减压的状态下容器2’及盖3’密合并固定。

接着,由激光光源106’对容器2’与盖3’的接触部照射激光lb’,进行激光熔敷。由此,能够制造以收纳空间s’被减压的状态密封的中空成形体1’。

通过以上那样的中空成形体的制造方法,能够容易地制造即使进行加热处理也能够维持高的气密性的气密性优异的中空成形体。

根据以上那样的构成的中空成形体,能够提供具有高的气密性的中空成形体。

此外,根据以上那样的制造方法,能够容易地制造具有高的气密性的中空成形体。

另外,本实施方式的中空成形体通过在内部的收纳空间中封入半导体元件,可以作为半导体元件收纳用盒使用。此外,除了半导体元件以外,还可以作为封入了图像传感器、加速度传感器等传感器、振子等的电子部件收纳用盒使用。

本申请的第八方案中的中空成形体的制造方法也可以是与上述的第三方案中的中空成形体的制造方法同样的构成。

本申请的第十方案中的制造装置也可以是与上述的第五方案中的制造装置同样的构成。

实施例

以下,对本发明的实施例进行说明。另外,本发明并不限定于实施例。

[实施例1a~6a、比较例1a~6a]

将含有着色剂的液晶聚酯(住友化学制、sumikasuperlcpe6808thfbz、流动起始温度306℃、分解起始温度499℃)注射成形而成形为容器,将不含有着色剂的液晶聚酯(住友化学制、sumikasuperlcpe6808thfz、流动起始温度306℃、分解起始温度499℃)注射成形而成形为盖。容器和盖的形状为与图1a及图1b中所示的同样的形状。

图11a到图11d是表示实施例及比较例中成形的容器及盖的形状的示意图。图11a是从底表面侧看容器的容器的概略立体图,图11b是容器的垂直截面图。图11c是从上表面侧看盖的盖的概略立体图,图11d是盖的垂直截面图。

所制成的容器的尺寸为外部尺寸(wa×da×ha)为8.6mm×8.6mm×1.44mm、收纳空间内部尺寸(wb×db×hb)6.8mm×6.8mm×0.94mm。

盖的尺寸为9mm×9mm见方(wc×dc),内侧的凸部的厚度(hc)为0.35mm,周缘部的厚度(hd)为0.3mm,宽度(wd)为1.2mm。

在熔敷装置的载置台上,以将容器用盖封闭的状态载置容器和盖,进而在盖上载置由石英玻璃形成的散热器的状态下,以弹簧加力而使容器、盖、散热器彼此密合。对容器与盖的接触部,由激光振荡器(finedeviceco.ltd.制、fd-200-50)边以10mm/秒的速度进行扫描边照射激光(波长940nm、焦点处的激光直径0.2mm、激光输出功率9.7w)。此时,边按照激光的焦点的中心从容器的侧壁的顶部的中心线通过的方式照射边扫描。

之后,将容器及盖冷却而得到中空成形体。中空成形体合计制作了10个。

中空成形体通过以下的方法(气泡泄漏测试)确认气密性。

(气泡泄漏测试)

在加温至125℃的fluorinert中,浸渍中空成形体,在1分钟内确认有无气泡的产生,若没有气泡的产生则设为合格。将合格数为0~3的情况评价为“c”,将合格数为4~6的情况评价为“b”,将合格数为7~10的情况评价为“a”,将“c”的情况评价为不合格。

[实施例7a]

除了将容器的外部尺寸中的高度(ha)设为1.19mm以外,与实施例1a同样地制作中空成形体,进行气密性的评价。

[实施例8a]

除了将容器的外部尺寸中的高度(ha)设为1.84mm以外,与实施例1a同样地制作中空成形体,进行气密性的评价。

[实施例9a]

除了将容器的外部尺寸中的高度(ha)设为2.14mm以外,与实施例1a同样地制作中空成形体,进行气密性的评价。

在实施例1a~9a及比较例1a~6a中,容器的浇口痕迹位于图11a中所示的符号a~d中的任一者上。符号a~d的浇口位置详细而言为以下那样的位置。此外,在用于注射成形的模具中,浇口直径为0.3mm。

a:按照浇口中心为容器的垂直方向的棱线(符号200)上、且成为距容器底表面为0.25mm的位置的方式设定的浇口的位置

b:按照浇口中心为容器侧壁的中间位置(距棱线200为1/2da的位置)、且成为距容器底表面为0.25mm的位置的方式设定的浇口的位置

c:按照浇口中心为容器底表面的角附近且成为距2边的距离为0.7mm的位置的方式设定的浇口的位置

d:按照浇口中心成为容器底表面的中心(即,容器底表面的重心)的方式设定的浇口的位置

此外,在实施例1a~9a及比较例1a~6a中,盖的浇口位置位于图11c中所示的符号i~iii中的任一者上。符号i~iii的浇口位置详细而言为以下那样的位置。此外,在用于注射成形的模具中,浇口直径为0.2mm。

i:按照浇口中心为盖的垂直方向的棱线(符号300)上、且成为距图11d中以符号310表示的基准面为0.15mm上方的位置的方式设定的浇口的位置

ii:按照浇口中心为盖侧壁的中间位置(距棱线300为1/2dc的位置)、且成为距基准面310为0.15mm的位置的方式设定的浇口的位置

iii:按照浇口中心成为盖上表面的中心(即,盖上表面的重心)的方式设定的浇口的位置

在实施例1a~9a及比较例1a~6a中,将关于所得到的中空成形体的气泡泄漏测试的结果示于表1中。

[表1]

评价的结果如比较例1a~6a那样,使用了浇口痕迹成为容器的底表面中心的成形条件(条件d)、或成为盖的上表面中心的成形条件(条件iii)的构件中的任一者的中空成形体的气密性变低。

与此相对,获知如实施例1a~9a那样,使用容器的浇口痕迹为条件a~c的构件、及盖的浇口位置为条件i、ii的构件的中空成形体具有高的气密性。

进而获知,容器的底部的壁厚(tb)与侧壁的壁厚(tw)满足4tb≥tw≥tb的实施例7a、8a的中空成形体与不满足该关系的实施例9a的中空成形体相比,具有高的气密性。

由这些结果确认,本发明的中空成形体的气密性高,获知通过本发明的中空成形体的制造方法,能够提供气密性高的中空成形体。

[实施例1b]

将含有着色剂的液晶聚酯(住友化学制、sumikasuperlcpe6808thfbz、流动起始温度306℃、分解起始温度499℃)进行注射成形而成形为容器,将不含有着色剂的液晶聚酯(住友化学制、sumikasuperlcpe6808thfz、流动起始温度306℃、分解起始温度499℃)进行注射成形而成形为盖。容器和盖的形状为与图12a及图12b中所示的同样的形状。

所成形的容器的外部尺寸为8.6mm×8.6mm×1.44mm,中空部内部尺寸为6.8mm×6.8mm×0.94mm。

此外,所成形的盖为俯视9mm×9mm见方,周缘部的宽度为1.2mm,周缘部的厚度为0.3mm,凸部的厚度为0.35mm。

作为制造装置,使用与图13中所示的制造装置100a’同样的装置。与图13中所示的制造装置100a’的差别是使用弹簧来代替升降机104’将载置台向上方加力。在以下的说明中,使用与图13中所示的符号相同的符号进行说明。

在实施例中使用的制造装置中,在载置台101’上,将以硅橡胶(硬度50°)作为形成材料的壁材107’用粘接剂固定。壁材107’的高度为3mm。

在载置台101’上,载置由硅橡胶形成的底座(图13中未图示),在底座上,在使凸部31’嵌合到容器2’中而将容器2’用盖3’封闭的状态下载置容器2’和盖3’。将底座、容器2’及盖3’重叠的合计高度为3.7mm。

在盖3’上载置由石英玻璃形成的散热器102’,以弹簧加力而使底座、容器2’、盖3’、散热器102’彼此密合。同时,使壁材107’的上端与散热器102’密合,形成由载置台101’、散热器102’及壁材107’包围的操作空间。

之后,运转介由载置台101’的通孔108a’而连接的减压装置(干式泵),将操作空间减压至20kpa。

在运转干式泵的状态下,对容器2’与盖3’的接触部,由激光光源106(finedeviceco.ltd.制、fd-200-50)边以10mm/秒的速度扫描边照射激光(波长940nm、焦点处的激光直径0.2mm、激光输出功率9.7w)。

之后,将容器及盖冷却而得到中空成形体。中空成形体合计制作了10个。

中空成形体通过以下的气泡泄漏测试确认气密性。

此外,对于气泡泄漏测试合格的中空成形体,通过以下的回流测试,确认加热后的气密性的变化。

(气泡泄漏测试)

在加温至125℃的fluorinert中,浸渍中空成形体,在1分钟内确认有无气泡的产生,若没有气泡的产生则设为合格。将合格数为0~3的情况评价为“c”,将合格数为4~6的情况评价为“b”,将合格数为7~10的情况评价为“a”,将“c”的情况评价为不合格。

(回流测试)

在氮气氛下,将中空成形体以200秒从室温(23℃)升温至280℃后,在280℃下保持10秒钟,进一步用330秒降温至50℃。之后,再次进行上述气泡泄漏测试。

[实施例2b]

除了在减压至50kpa的环境下进行激光熔敷以外,与实施例1b同样地制作中空成形体,进行气密性的评价。

[比较例1b]

除了在常压(101.3kpa)下进行激光熔敷以外,与实施例1b同样地制作中空成形体,进行气密性的评价。

在实施例1b、2b及比较例1b中,将关于所得到的中空成形体的气泡泄漏测试、回流测试的结果示于表2中。

[表2]

评价的结果是,通过实施例1b、2b的制造方法得到的收纳空间s’被减压的中空成形体的加热前的气泡泄漏测试全部合格,并且回流测试也全部合格,在加热后也维持气密。

与此相对,通过比较例1b的制造方法得到的收纳空间s’为常压的中空成形体的加热前的气泡泄漏测试全部合格,但在回流测试中合格数减少,在加热后气密性降低。此外,回流测试合格的中空成形体的盖均膨起。认为这是由于在回流测试时内压升高,结果发生变形。

由这些结果确认,通过本发明的中空成形体的制造方法,能够提供气密性高的中空成形体。

产业上的可利用性

根据本发明,能够提供具有高的气密性的中空成形体。此外,能够提供这样的中空成形体的制造方法。此外,能够提供能制造气密性优异的中空成形体的制造装置。

符号说明

1...中空成形体、2...容器、2x...浇口痕迹、3...盖、3x...浇口痕迹、21...底部、22...侧壁、23...开口部、24...顶部、25...底表面、27...角、28...区域、29...外表面、31...凸部、32...周缘部、33a...上表面、35,36...角、37...棱线、38...区域、39...侧面、100...熔敷装置、101...载置台、102...散热器、103a...开口部、103...框体、104...升降机、105...支柱、106...激光光源、ar1...区域、ar2...区域、g1...重心、g2...重心、l1...距离、l2...距离、s...收纳空间、1’...中空成形体、2’...容器、21’...底部、22’...侧壁、23’...开口部、24’...顶部、3’...盖、31’...凸部、32’...周缘部、100’...熔敷装置、101’...载置台、102’...散热器、103a’...开口部、103’...框体、104’...升降机、105’...支柱、106’...激光光源、107’...壁材、108’...配管、108a’...通孔、109’...减压装置、110’...夹具、s’...收纳空间、α’...操作空间。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1