树脂制管的接合方法与流程

文档序号:13077488阅读:600来源:国知局
树脂制管的接合方法与流程

本发明涉及对分别由合成树脂构成的第1管以及第2管进行接合的树脂制管的接合方法。



背景技术:

以往,作为由树脂构成的管彼此的接合方法,已知有利用热熔接的方法、使用粘合剂的方法。

例如,在专利文献1中公开了一种通过热熔接使两个树脂制管的开口端部彼此连结的树脂制管的接合方法。另外,在专利文献2中,作为在气囊导管的制造过程中将气囊部用的树脂制管与导管部用的树脂制管接合的方法,公开了一种利用热熔接的方法及使用紫外线固化性粘合剂而接合的方法。

现有技术文献

专利文献

专利文献1:日本特开2012-101359号公报

专利文献2:日本专利520124号公报



技术实现要素:

发明所要解决的课题

然而,在以往的树脂制管的制造方法中,存在以下这种问题。

在利用热熔接的接合方法中,构成一个管的树脂与构成另一个管的树脂被限定为彼此相容性良好的材质。因此,一般来说,利用热熔接的接合方法在一个管的材质与另一个管的材质互不相同时难以被采用,具有材料选择的自由度较小这一问题。

另外,即使构成一个管的树脂与构成另一个管的树脂是彼此相容性良好的材质,也会因为需要将各个管的表面部分充分地热熔融,所以存在形成的接合部分变硬、所获得的管接合体的可挠性受损这一问题。

另一方面,在使用粘合剂的接合方法中,存在如下问题:由于粘合剂固化,导致形成的接合部分变硬,所获得的管接合体的可挠性受损。

另外,紫外线固化性粘合剂由于在固化时伴随着收缩,所以存在所获得的管接合体变形这一问题。

特别是,在气囊导管的制造中要求极高等级的粘合力/可靠性,因此选定粘合力较高的粘合剂,但这样的粘合剂一般粘度较高,所以存在将管彼此接合时的作业性较低这一问题。

因此,本发明的目的在于,提供一种管的材质选择的自由度较大、并且管的接合部分不会产生硬化或收缩等的不良情况的树脂制管的接合方法。

用于解决课题的手段

本发明的树脂制管的接合方法是一种树脂制管的接合方法,对分别由合成树脂构成的第1管以及第2管进行接合,其特征在于,该树脂制管的接合方法具有:

表面活性化工序,使所述第1管的接合区域以及所述第2管的接合区域的每一个活性化;以及

紧贴工序,使分别经过了所述表面活性化工序的所述第1管的接合区域以及所述第2管的接合区域相互紧贴。

在上述的树脂制管的接合方法中,优选的是,所述表面活性化工序是紫外线照射处理工序,对所述第1管的接合区域以及所述第2管的接合区域的每一个照射包含真空紫外线的光。

另外,优选的是,所述表面活性化工序是等离子体处理工序,使大气压等离子体接触所述第1管的接合区域以及所述第2管的接合区域的每一个。

另外,本发明的树脂制管的接合方法是一种对分别由合成树脂构成的第1管以及第2管进行接合的树脂制管的接合方法,其特征在于,该树脂制管的接合方法具有:

表面活性化工序,使用一种灯,在该灯的点亮过程中,在所述灯的内侧管内,将所述第1管以及所述第2管的每一个分别以接合区域朝向所述内侧管的状态通过,从而对所述第1管以及所述第2管各自的接合区域照射光来将各接合区域活性化,所述灯具有在内侧管以及外侧管之间形成有放电空间的双重管构造的放电容器,并且向该内侧管的内侧方向放射包含真空紫外线的光;以及

紧贴工序,使分别经过了所述表面活性化工序的所述第1管的接合区域以及所述第2管的接合区域相互紧贴。

在本发明的树脂制管的接合方法中,优选的是,所述第1管在其内周面具有所述接合区域,并且所述第2管在其外周面具有所述接合区域,

在所述表面活性化工序中,在将第1管以及第2管的接合区域活性化之前,以所述第1管以及所述第2管各自的接合区域重叠的方式向所述第1管内插入所述第2管,之后,将所述第1管中的包含接合区域的部分折回,从而使所述第1管的接合区域以及所述第2管的接合区域露出,在该状态下,将所述第1管的接合区域以及所述第2管的接合区域活性化,

之后,通过使所述第1管中的折回部分复原,从而执行所述紧贴工序。

另外,在本发明的树脂制管的接合方法中,优选的是,所述第1管在其内周面具有所述接合区域,并且所述第2管在其外周面具有所述接合区域,

对所述第1管以及所述第2管的每一个执行所述表面活性化工序,

在所述紧贴工序中,以使所述第1管的接合区域与所述第2管的接合区域不相互接触而是对置的方式,向所述第1管内插入所述第2管,之后,将所述第1管的接合区域与所述第2管的接合区域紧贴。

在这样的树脂制管的接合方法中,优选的是,所述第1管的内径比所述第2管的外径小。

另外,优选的是,在所述紧贴工序中,所述第1管的接合区域与所述第2管的接合区域的紧贴状态被保持预先设定的时间。

另外,优选的是,在所述紧贴工序中,将所述第1管以及所述第2管的每一个中的包含相互紧贴的接合区域的部分,在厚度方向上进行加压。

另外,优选的是,在所述紧贴工序中,将所述第1管以及所述第2管的每一个中的包含相互紧贴的接合区域的部分,在厚度方向上进行加压且进行加热。

发明效果

根据本发明的树脂制管的接合方法,通过将第1管的接合区域以及第2管的接合区域的每一个活性化,从而在第1管以及第2管的接合区域的每一个中将构成该管的材料改性。因此,即使第1管以及第2管为互不相同的材质,也能够实现良好的接合状态。因此,第1管以及第2管的材质选择的自由度较大,并且不需要将第1管以及第2管热熔融或使用粘合剂,因此管的接合部分不会产生硬化及收缩等不良情况。

附图说明

图1是表示在方法a中形成有由第1管以及第2管构成的管接合中间体的状态的说明用剖面图。

图2是表示管接合中间体中的包含第1管的接合区域的部分被折回的状态的说明用剖面图。

图3是表示使用于紫外线照射处理工序的光照射装置的一个例子中的结构的说明图。

图4是表示使用于等离子体处理工序的大气压等离子体装置的一个例子中的结构的说明图。

图5是表示在方法a的紧贴工序中,第1管的接合区域以及第2管的接合区域相互紧贴的状态的说明用剖面图。

图6是表示在方法b的紫外线照射处理工序中,包含接合区域的部分的直径扩大后的第1管以及第2管各自的接合区域被光照射的状态的说明用剖面图。

图7是表示在方法b的紧贴工序中,包含接合区域的部分的直径扩大后的第1管内插入了第2管的状态的说明用剖面图。

图8是表示在方法b的紧贴工序中,第1管的接合区域以及第2管的接合区域相互紧贴的状态的说明用剖面图。

图9是表示在方法b的表面活性化工序中,第1管以及第2管各自的整体的直径扩大后的状态的说明用剖面图。

图10是表示在方法b的紧贴工序中,整体的直径扩大后的第1管内插入了第2管的状态的说明用剖面图。

图11是沿管轴方向剖切地表示使用于方法c的紫外线照射处理工序的紫外线灯的一个例子中的结构的说明用剖面图。

图12是沿与管轴垂直的方向剖切地表示使用于方法c的紫外线照射处理工序的紫外线灯的一个例子中的结构的说明图。

具体实施方式

以下,对本发明的树脂制管的接合方法的实施方式进行说明。

本发明的树脂制管的接合方法是将分别由合成树脂构成的第1管以及第2管接合的方法。本发明的树脂制管的接合方法所应用的第1管以及第2管的材质为合成树脂即可,不被特别限定。作为构成第1管以及第2管的合成树脂的具体例,可列举有机硅树脂、含氟有机硅树脂等。

另外,第1管以及第2管可以分别由彼此相同种类的材料构成,也可以分别由不同的材料构成。

本发明的树脂制管的接合方法具有:表面活性化工序,使第1管的接合区域以及第2管的接合区域的每一个活性化;以及紧贴工序,使第1管的接合区域以及第2管的接合区域相互紧贴。另外,根据需要,以通过紧贴工序使第1管的接合区域以及第2管的接合区域相互紧贴的状态,执行将第1管以及第2管在各自的接合区域进行接合的接合工序。

本发明的树脂制管的接合方法只要是具有上述的表面活性化工序以及紧贴工序的方法即可,其他具体的方法不被特别限定,但优选的是下述的方法a、方法b以及方法c。下述的方法a、方法b以及方法c是在第1管的外周面具有接合区域、在第2管的内周面具有接合区域的情况下的例子。

[方法a]

在方法a中,在表面活性化工序中,如图1所示,在使第1管10以及第2管20的接合区域11、21活性化之前,以各自的接合区域11、21重叠的方式向第1管10的管内插入第2管20,由此制作管接合中间体15。之后,如图2所示,将管接合中间体15的包含第1管10中的接合区域11的部分折回,从而使第1管10的接合区域11以及第2管20的接合区域21露出。然后,一边使管接合中间体15以第1管10以及第2管20各自的中心轴c为旋转轴旋转,一边使第1管10以及第2管20各自的接合区域11、21活性化。这样,在方法a中,能够同时进行第1管10的接合区域11以及第2管20的接合区域21各自的活性化。在图2中,箭头表示包含真空紫外线的光l或者大气压等离子体ap。

〈表面活性化工序〉

表面活性化工序优选的是对第1管10的接合区域11以及第2管20的接合区域21中的每一个照射包含真空紫外线的光的紫外线照射处理工序、以及使大气压等离子体接触第1管10的接合区域11以及第2管20的接合区域20中的每一个的等离子体处理工序中的某一个。

(1)紫外线照射处理工序

图3是表示使用于紫外线照射处理工序的光照射装置的一个例子中的结构的说明图。该光照射装置具有在内部配置有紫外线灯35的灯罩30。在该灯罩30设有供来自紫外线灯35的紫外线透过而向外部出射的紫外线透过窗31。该紫外线透过窗31例如由合成石英玻璃构成。在紫外线透过窗31与管接合中间体15之间配置有具有透光部41以及遮光部42的掩模40。

作为紫外线灯35,可使用放射包含真空紫外线即波长为200nm以下的紫外线的光l的灯。

作为放射这样的光的紫外线灯35,能够适当地使用在波长172nm具有辉线的氙准分子灯等准分子灯、在波长185nm具有辉线的低压水银灯、在波长120~200nm的范围具有辉线的重氢灯。

照射到第1管10的接合区域11以及第2管20的接合区域21的真空紫外线的照度例如为10~20mw/cm2

光l对第1管10的接合区域11以及第2管20的接合区域21的照射时间根据构成第1管10以及第2管20的材料或真空紫外线的照度而适当地设定,例如是10~120秒钟。

然后,在紫外线照射处理工序中,一边使管接合中间体15以第1管10以及第2管20各自的中心轴c为旋转轴旋转,一边对第1管10以及第2管20各自的接合区域11、21照射来自紫外线灯35的光l。由此,第1管10以及第2管20各自的接合区域11、21被活性化。

(2)等离子体处理工序

图4是表示等离子体处理工序所使用的大气压等离子体装置的一个例子中的结构的说明图。该大气压等离子体装置具有例如由铝构成的长方体状的外壳50。在该外壳50内水平地配置有电连接于高频电源55的板状的电极53。在该电极53的下表面形成有电介质层54。在该例子的大气压等离子体装置中,外壳50接地,利用电极53构成了高压侧电极,利用外壳50构成了接地侧电极。

在外壳50的上表面设有向外壳50内供给工艺气体的气体供给口51。另外,在外壳50的下表面形成有将在外壳50内产生的大气压等离子体向外部释放的多个喷嘴52。

另外,在喷嘴50与管接合中间体15之间配置有掩模56,该掩模56具有供从喷嘴52释放的大气压等离子体通过的通过部57、以及遮挡大气压等离子体的遮挡部58。

在这样的大气压等离子体装置中,在大气压或者其附近的压力下,从气体供给口51向外壳50内供给工艺气体g。在该状态下,若通过高频电源55经由电介质层54向电极53与外壳50之间施加高频电场,则在电极53与外壳50之间产生电介质阻挡放电。其结果,外壳50与电介质层54之间所存在的工艺气体g被电离或者激励,产生大气压等离子体ap。然后,大气压等离子体ap被从外壳50的喷嘴52向外部释放。

以上,作为工艺气体g,优选的是使用以氮气、氩气等为主要成分并含有0.01~5体积%的氧气的气体。或者,也能够使用氮气与清洁干燥空气(cda)的混合气体。

另外,从高频电源供给的功率的频率为20~70khz,电压为5~15kvp-p。

另外,等离子体处理的处理时间例如是5~30秒钟。

然后,在等离子体处理工序中,一边使管接合中间体15以第1管10以及第2管20各自的中心轴c为旋转轴旋转,一边使来自大气压等离子体装置的大气压等离子体pg接触第1管10以及第2管20各自的接合区域11、21。由此,第1管10以及第2管20各自的接合区域11、21被活性化。

〈紧贴工序〉

这样,在执行表面活性化工序之后,如图5所示,使第1管10中的折回部分恢复原本的状态。由此,执行使第1管10的接合区域11以及第2管20的接合区域21相互紧贴的紧贴工序。

在紧贴工序中,优选的是第1管10的接合区域11与第2管20的接合区域21的紧贴状态被保持预先设定的时间。接合区域11、21的紧贴状态的保持时间优选的是1~24小时,更优选的是3~12小时。

这样,通过使接合区域11、21的紧贴状态被保持预先设定的时间,由此能够可靠地接合第1管10的接合区域11与第2管20的接合区域21。

另外,在紧贴工序中,虽然能够通过将第1管10的接合区域11与第2管20的接合区域21紧贴来将第1管10以及第2管20接合,但优选的是根据需要,将第1管10以及第2管各自中的、包含相互紧贴的接合区域11、21的部分,在厚度方向上加压,或将第1管10以及第2管20各自中的、包含相互紧贴的接合区域11、21的部分,在厚度方向上加压且加热。

在将包含接合区域11、21的部分加压的情况下,加压压力例如为0.1~1.0mpa。

作为第1管10,也可以使用内径比第2管20的外径小的管,从而利用在第1管10中将折回部分恢复到原本状态时产生的自收缩力,将包含第1管10以及第2管20的接合区域11、21的部分加压。第1管的内径与第2管的外径之差例如是-1.0~-2.0mm(第1管的内径减去第2管的外径而得的值)。

另外,在将包含接合区域11、21的部分加热的情况下,加热温度例如是100~200℃。

另外,进行加压或者加热加压的处理时间例如是100~300秒钟。

[方法b]

在方法b中,如图6的(a)所示,通过适当的手段,使第1管10中的包含接合区域11的部分的直径扩大,对于该第1管10,一边使其以其中心轴c为旋转轴旋转,一边进行接合区域11的活性化。另一方面,如图6的(b)所示,对于第2管20,一边使其以其中心轴c为旋转轴旋转,一边进行接合区域21的活性化。这样,分别对第1管10以及第2管20单独地执行表面活性化工序。

以上,表面活性化工序优选的是与方法a相同的工序,即照射包含真空紫外线的光l的紫外线照射处理工序以及使大气压等离子体ap接触的等离子体处理工序中的某一个。

紫外线照射处理工序以及等离子体处理工序中的具体的处理条件与方法a相同。另外,在方法b中,能够对第1管10以及第2管20以互不相同的条件进行紫外线照射处理工序或者等离子体处理工序。

接着,如图7所示,在维持第1管10的直径扩大的状态下,以使第1管10的接合区域11与第2管20的接合区域21不相互接触地对置的方式,向第1管10内插入第2管20。之后,通过解除第1管10的直径的扩大,如图8所示,使第1管10的接合区域11以及第2管20的接合区域21相互紧贴。这样,对第1管10的接合区域11以及第2管20的接合区域21执行紧贴工序。

在方法b的紧贴工序中,优选的是与方法a相同,将第1管10的接合区域11与第2管20的接合区域21的紧贴状态保持预先设定的时间。

另外,优选的是与方法a相同,将第1管10以及第2管20的每一个中的包含相互紧贴的接合区域11、21的部分在厚度方向上加压,或将第1管10以及第2管20的每一个中的包含相互紧贴的接合区域11、21的部分在厚度方向上加压并且加热。

在这样的方法b中,在执行表面活性化工序时,也可以如图9所示那样使第1管10整体的直径扩大。另外,在执行紧贴工序时,也可以如图10所示那样以扩大了第1管10整体的直径的状态,向第1管10内插入第2管20。

[方法c]

在方法c中,在表面活性化工序中,如图11以及图12所示那样使用如下紫外线灯60,该紫外线灯60具有在内侧管62以及外侧管63之间形成有放电空间s的双重管构造的放电容器61,向内侧管62的内侧方向放射包含真空紫外线的光。

若具体地说明,该紫外线灯60的放电容器61具有由电介质构成的直管状的内侧管62、以及沿该内侧管62的管轴包围该内侧管62地配置并具有比内侧管62的外径大的内径的电介质所构成的外侧管63。内侧管62的两端部与外侧管63的两端部被气密地接合。由此,在内侧管62与外侧管63之间形成有圆筒状的放电空间s。在该放电空间s封入有放电用气体。

在放电容器61中的内侧管62,与其内周面紧密接触地设有内侧电极64。另一方面,在放电容器61中的外侧管63,与其外周面紧密接触地设有外侧电极65。内侧电极64以及外侧电极65分别与高频电源67电连接。另外,在外侧管63的内周面形成有紫外线反射膜66。

作为构成放电容器61的电介质,使用了可供真空紫外线透过的电介质,例如合成石英玻璃。

内侧电极64可供来自放电空间s的真空紫外线通过或透过。作为这样的内侧电极64,能够使用例如将由铝构成的导电性线材沿内侧管62的内周面呈螺旋状卷绕而成的构造的电极、网状的电极、由导电性材料构成的膜在内侧管62的内周面按照网眼状等具有间隙的图案形成的电极、供真空紫外线透过的透明电极等。

作为外侧电极65能够使用与内侧电极64相同的构成的电极,由于不需要供真空紫外线通过或透过,因此也能够使用不透光性的带状的电极。

作为紫外线反射膜66,例如能够使用包含焦磷酸钙(ca2p2o7)、磷酸钙(ca3(po4)2、焦磷酸镁(mg2p2o7)、以及ba-na-si-o、sio2、al2o3中的某一种的材料。这些材料优选的是相对于紫外线反射膜66整体,具有超过50质量%的比例。

作为放电用气体,能够使用例如氙气、氩气、氪气等稀有气体。

在方法c中,使用上述的紫外线灯60,如以下那样将第1管10以及第2管接合。

首先,与方法a相同,制作由第1管10以及第2管20构成的管接合中间体15。然后,将第1管10中的包含接合区域11的部分折回,从而使第1管10的接合区域11以及第2管20的接合区域21露出。接着,在紫外线灯60的点亮过程中,使管接合中间体15通过紫外线灯60的内侧管62内。此时,第1管10以及第2管20各自的接合区域11、21为朝向内侧管52的内周面的状态。其结果,第1管10以及第2管20各自的接合区域11、21被照射来自紫外线灯60的光l。由此,第1管10以及第2管20各自的接合区域11、21被活性化。之后,与方法a相同,执行使第1管10的接合区域11以及第2管20的接合区域21相互紧贴的紧贴工序。

根据这样的方法,在紫外线照射处理工序中,能够以不使管接合中间体15(第1管10以及第2管20)旋转为前提,遍及第1管10以及第2管20各自的接合区域11、21的整个面地照射光l。

根据上述的树脂制管的接合方法,通过使第1管10的接合区域11以及第2管20的接合区域21的每一个活性化,从而在第1管10以及第2管20的接合区域11、21的每一个中将构成该管的材料改性。因此,即使第1管10以及第2管20是互不相同的材质,也能够实现良好的接合状态。因此,第1管10以及第2管20的材质选择的自由度较大,并且不需要将第1管10以及第2管20热熔融或使用粘合剂,因此管的接合部分不会产生硬化及收缩等不良情况。

这样的树脂制管的接合方法适合作为例如在气囊导管的制造中将气囊部用管与导管部用管接合所用的方法。

实施例

以下,对本发明的树脂制管的接合方法的具体的实施例进行说明,但本发明并不限定于下述的实施例。另外,以下的实施例是用于制造气囊导管的例子。

[条件设定预备试验]

1.试验用试料的制作

通过将由有机硅树脂(信越有机硅公司制)构成的气囊部用的树脂制管沿轴向切断,制作出树脂片材。将该树脂片材设为“树脂片材a”。

通过将由有机硅树脂(momentiveperformancematerials(迈图高性能材料)公司制)构成的气囊部用的树脂制管沿轴向切断,制作出树脂片材。将该树脂片材设为“树脂片材b”。

通过将由有机硅树脂(wackersilicones(瓦克有机硅)公司制)构成的导管部用的树脂制管沿轴向切断,制作出树脂片材。将该树脂片材设为“树脂片材c”。

2.表面活性化工序的条件设定

(1)紫外线照射处理工序的条件设定

将树脂片材a、树脂片材b以及树脂片材c的每一个以平坦化了的状态固定在工作台上,并通过图3所示的光照射装置(其中,未配置有掩模。)对该树脂片材照射光。

以上,作为紫外线灯,使用照射中心波长172nm的真空紫外光的氙准分子灯,作为紫外线透过窗,使用了由合成石英玻璃构成的部件。另外,光照射的条件如下述。

紫外线透过窗至树脂片材的距离:3mm

紫外线照射窗的外表面上的照度:40mw/cm2

树脂片材的周围的气氛:大气

然后,使光照射时间阶段性地变化,测定树脂片材的光照射面对于纯水的接触角,求出直至接触角的变化稳定为止的光照射时间。其结果,树脂片材a的光照射时间为60秒,树脂片材b的光照射时间为75秒,树脂片材c的光照射时间为45秒。

(2)等离子体处理工序的条件设定

将树脂片材a、树脂片材b以及树脂片材c的每一个以平坦化了的状态固定在工作台上,并通过图4所示的大气压等离子体装置(其中,未配置有掩模。)使大气压等离子体接触上述树脂片材。

以上的大气压等离子体装置的规格以及使用的工艺气体如下述。

外壳(50)的材质:铝

电极(53)的材质:超因瓦合金(superinvar)(通过喷镀在表面形成由500μm的氧化铝构成的覆膜而成))

电极(53)的表面的尺寸:50mm×300mm

外壳(53)与电介质层(54)的分离距离:0.5mm

电压:7.0kvp-p,频率:60khz,额定功率:1100va

工艺气体:氮气(流量150l/min)以及清洁干燥空气(流量1l/min)的混合气体(工艺气体中的氧浓度约为0.14体积%)

然后,使处理时间阶段性地变化,测定树脂片材中的接触大气压等离子体的接触面对于纯水的接触角,求出直至接触角的变化稳定为止的处理时间。其结果,树脂片材a的处理时间是5秒,树脂片材b的处理时间是10秒,树脂片材c的处理时间是5秒。

3.紧贴工序的条件设定

(试验1-1)

对于树脂片材a以及树脂片材c,与上述的紫外线照射处理工序的条件设定相同地照射了光。将对于树脂片材a的光照射时间设为60秒,将对于树脂片材c的光照射时间设为45秒。

接着,使树脂片材a与树脂片材c以各自的光照射面对接的方式紧贴,并利用冲压机,以加压压力为0.35mpa、加压时间为150秒的条件进行了加压。之后,解除对树脂片材a以及树脂片材c的加压,将树脂片材a与树脂片材c的紧贴状态保持24小时。然后,如下述那样评价了树脂片材a与树脂片材c的接合状态。将结果表示在表1中。

接合状态的评价方法:

对于由树脂片材a以及树脂片材c构成的接合体,以jisk6850为基准进行了拉伸剪切测试。然后,在对上述接合体作用了10分钟0.2mpa的拉伸剪切力时,根据两树脂片材是否产生剥离,评价了接合状态。

具体而言,将通过上述试验未产生两树脂片材的剥离的情况设为接合状态良好(○),将产生了两树脂片材的剥离的情况设为接合状态不良(×)。

(试验1-2)

在解除对树脂片材a以及树脂片材c的加压之后,除了不进行树脂片材a与树脂片材c的紧贴状态的保持以外,设为与试验1-1相同,评价了树脂片材a与树脂片材c的接合状态。

(试验1-3)

以与试验1-1相同的条件对树脂片材a以及树脂片材c照射了光。接着,使树脂片材a与树脂片材c以各自的光照射面对接的方式紧贴,利用冲压机以加压压力为0.35mpa、加压时间为150秒、加热温度为100℃的条件加压,之后,解除对树脂片材a以及树脂片材c的加压。然后,设为与试验1-1相同,评价了解除加压紧后的树脂片材a与树脂片材c的接合状态。将结果表示在表1中。

(试验1-4)

除了将对树脂片材a的光照射时间变更为45秒以外,设为与试验1-3相同,评价了解除加压紧后的树脂片材a与树脂片材c的接合状态。将结果表示在表1中。

(试验1-5)

在对树脂片材a以及树脂片材c的加压过程中,除了将加压压力变更为0.122mpa以外,设为与试验1-4相同,评价了解除加压紧后的树脂片材a与树脂片材c的接合状态。将结果表示在表1中。

(试验1-6)

在从大气压等离子体装置的喷嘴至被处理面的距离为3mm的位置配置了树脂片材a以及树脂片材c。然后,作为工艺气体,一边供给流量为150l/min的氮气以及流量为1l/min的清洁干燥空气(等离子体用气体中的氧浓度约为0.14体积%),一边使大气压等离子体装置工作,从而分别对树脂片材a以及树脂片材c进行了5秒钟的等离子体处理。接着,将树脂片材a与树脂片材c以使各自的被处理面对接的方式紧贴,并利用冲压机,以加压压力为0.35mpa、加压时间为150秒的条件加压,之后,解除对树脂片材a以及树脂片材c的加压。然后,设为与试验1-1相同,评价了解除加压紧后的树脂片材a与树脂片材c的接合状态。将结果表示在表1中。

(试验2-1)

除了取代树脂片材a而使用树脂片材b、并将对树脂片材b的光照射时间设为75秒以外,设为与试验1-1相同,评价了树脂片材b与树脂片材c的接合状态。将结果表示在表2中。

(试验2-2)

以与试验2-1相同的条件对树脂片材b以及树脂片材c照射了光。接着,使树脂片材b与树脂片材c以各自的光照射面对接的方式紧贴,利用冲压机以加压压力为0.35mpa、加压时间为150秒、加热温度为100℃的条件加压,之后,解除对树脂片材b以及树脂片材c的加压。然后,设为与试验1-1相同,评价了解除加压紧后的树脂片材b与树脂片材c的接合状态。将结果表示在表2中。

(试验2-3)

除了将对树脂片材b的光照射时间变更为45秒以外,设为与试验2-2相同,评价了解除加压紧后的树脂片材b与树脂片材c的接合状态。将结果表示在表2中。

(试验2-4)

在对树脂片材b以及树脂片材c的加压过程中,除了将加压压力变更为0.122mpa以外,设为与试验2-3相同,评价了解除加压紧后的树脂片材b与树脂片材c的接合状态。将结果表示在表2中。

(试验2-5)

除了将对树脂片材b以及树脂片材c的每一个的光照射时间变更为30秒以外,设为与试验2-4相同,评价了解除加压紧后的树脂片材b与树脂片材c的接合状态。将结果表示在表2中。

(试验2-6)

除了将对树脂片材b以及树脂片材c的每一个的光照射时间变更为20秒以外,设为与试验2-4相同,评价了解除加压紧后的树脂片材b与树脂片材c的接合状态。将结果表示在表2中。

(试验2-7)

除了将对树脂片材b以及树脂片材c的每一个的光照射时间变更为10秒以外,设为与试验2-4相同,评价了解除加压紧后的树脂片材b与树脂片材c的接合状态。将结果表示在表2中。

(试验2-8)

在从大气压等离子体装置的喷嘴至被处理面的距离为3mm的位置配置了树脂片材b以及树脂片材c。然后,作为工艺气体,一边供给流量为150l/min的氮气以及流量为1l/min的清洁干燥空气(等离子体用气体中的氧浓度约为0.14体积%),一边使大气压等离子体装置工作,从而对树脂片材b进行了10秒钟的等离子体处理,对树脂片材c进行了5秒钟的等离子体处理。接着,将树脂片材b与树脂片材c以使各自的被处理面对接的方式紧贴,并利用冲压机,以加压压力为0.35mpa、加压时间为150秒、加热温度为100℃的条件加压,之后,解除对树脂片材b以及树脂片材c的加压。然后,设为与试验1-1相同,评价了解除加压紧后的树脂片材b与树脂片材c的接合状态。将结果表示在表2中。

表1

表2

在作为表面活性化工序利用紫外线照射处理工序的情况下,根据试验1-2的结果可理解为,在将分别由有机硅树脂构成的树脂片材a以及树脂片材c接合的情况下,能够以不加热为前提获得良好的接合状态。

另外,根据试验2-1的结果可理解为,在将分别由有机硅树脂构成的树脂片材b以及有机硅树脂构成的树脂片材c接合的情况下,通过在解除加压之后将紧贴状态保持24小时,能够以不加热为前提获得良好的接合状态。虽然其理由并不明确,但可推测为以下那样。

在使被照射真空紫外线而活性化的树脂彼此紧贴时,有时即使在紧贴后进行加压而使树脂的光照射面大致均匀地紧贴,在刚紧贴之后,也未遍及紧贴面整个面地均匀地产生该紧贴面中的用于接合的反应。因此,在紧贴面中的反应相对较难产生的材料彼此的情况下,反应区域相对较窄,其结果,难以充分地进行两者的接合。因此,可能在刚解除加压紧后,接合力较小而不能获得良好的接合状态。然而,紧贴面中的用于接合的反应其反应寿命相对较长,在树脂材料中的通过紫外线照射而活性化后的表面彼此为紧贴状态的情况下,反应得以继续,最终接合会遍及紧贴面整个区域地进展。因此,认为即使在刚解除加压紧后、未充分进行接合的情况下,也通过将紧贴状态保持24小时而使接合遍及紧贴面整个区域地进展。

与此相对,认为在紧贴面中的反应相对较容易产生的材料彼此的情况下,即使反应区域不均匀地分布,但反应区域相对变宽,可在短时间内充分地进行两者的接合。

另外,根据试验2-7的结果可理解为,只要在树脂片材b以及树脂片材c的接合中,各自的光照射时间为10秒以上,在树脂片材b以及树脂片材c的加压中,加压压力为0.122mpa以上,加热温度为100℃,则可在刚解除加压紧后获得良好的接合状态。

另外,在利用等离子体处理工序作为表面活性化工序的情况下,根据试验1-6的结果可理解为,只要在树脂片材a以及树脂片材c的接合中,各自基于大气压等离子体的处理时间为5秒以上,在树脂片材a以及树脂片材c的加压中,加压压力为0.35mpa以上,则可在刚解除加压紧后获得良好的接合状态。

另外,根据试验2-8的结果可理解为,只要在树脂片材b以及树脂片材c的接合中,树脂片材b的基于大气压等离子体的处理时间为10秒以上,树脂片材c的基于大气压等离子体的处理时间为5秒以上,在树脂片材b以及树脂片材c的加压中,加压压力为0.35mpa以上,加热温度为100℃,则可在刚解除加压紧后获得良好的接合状态。

〈实施例1〉

1.树脂制管

作为第1管以及第2管,准备了下述的树脂制管。

第1管是由有机硅树脂(momentiveperformancematerials公司制)构成的气囊部用的管,外径为5.6mm,内径为5.3mm,全长为40mm,壁厚为0.15mm。

第2管是由有机硅树脂(wackersilicones公司制)构成的导管部用的管,外径为7.3mm,内径为4.3mm,壁厚为1.5mm。

另外,第1管在其两端部的内周面具有沿周向延伸的接合区域,第2管在其外周面中的与第1管的连接区域对应的位置具有沿周向延伸的接合区域。第1管以及第2管各自的接合区域中的轴向上的宽度为10mm。

2.紫外线照射处理工序

通过以第1管和第2管各自的接合区域重叠的方式向第1管内插入第2管,从而制作了管接合中间体。之后,将管接合中间体的包含第1管中的接合区域的部分折回,从而使第1管以及第2管各自的接合区域露出。然后,一边使管接合中间体以第1管以及第2管各自的中心轴为旋转轴,约以0.23圈/秒的旋转速度旋转,一边通过图3所示的构成的光照射装置向第1管以及第2管各自的接合区域照射光,从而执行了紫外线照射处理工序。

以上,作为紫外线灯,使用照射中心波长172nm的真空紫外线的氙准分子灯,作为紫外线透过窗,使用由合成石英玻璃构成的窗。另外,光照射的条件如下述那样。

从紫外线透过窗至管接合中间体的距离:3mm

紫外线照射窗的外表面上的照度:40mw/cm2

光照射时间:20秒钟

管接合中间体的周围的气氛:大气

3.紧贴工序

使管接合中间体中的第1管的折回部分恢复原本的状态,从而使第1管的接合区域与第2管的接合区域相互紧贴。然后,将管接合中间体配置于恒温槽内,使用加压用夹具,一边以0.152mpa的加压压力对包含接合区域的部分进行加压,一边以100℃、150秒的条件进行加热,由此接合了第1管与第2管。

4.接合状态的评价

通过经由预先形成的空气注入口向获得的管接合中间体中的第1管与第2管之间的间隙注入空气,从而使第1管膨胀而形成了气囊。在以该状态放置了5分钟时,确认到无空气泄漏,实现了良好的接合状态。

另外,在观察第1管以及第2管的接合区域时确认到,第1管的接合区域与第2管的接合区域之间不存在气泡等,遍及整个接合区域地以紧贴的状态接合。

〈实施例2〉

作为第1管以及第2管,使用了下述的树脂制管,除了在紧贴工序中不利用加压用夹具对包含接合区域的部分进行加压以外,与实施例1相同,将第1管与第2管接合。

第1管是由有机硅树脂(momentiveperformancematerials公司制)构成的气囊部用的管,外径为6.7mm,内径为6.5mm,全长为40mm,壁厚为0.1mm。

第2管是由有机硅树脂(wackersilicones公司制)构成的导管部用的管,外径为8mm,内径为5.0mm,壁厚为1.5mm。

另外,第1管在其两端部的内周面具有沿周向延伸的接合区域,第2管在其外周面中的与第1管的连接区域对应的位置具有沿周向延伸的接合区域。第1管以及第2管各自的接合区域中的轴向上的宽度为10mm。

通过经由预先形成的空气注入口向获得的管接合体中的第1管与第2管之间的间隙注入空气,从而使第1管膨胀而形成了气囊。在以该状态放置了5分钟时,确认到无空气泄漏,实现了良好的接合状态。

另外,在观察第1管以及第2管的接合区域时确认到,第1管的接合区域与第2管的接合区域之间不存在气泡等,遍及整个接合区域地以紧贴的状态接合。

〈实施例3〉

作为第1管以及第2管,使用了下述的树脂制管,除了在紧贴工序中不利用加压用夹具对包含接合区域的部分进行加压以外,与实施例1相同,将第1管与第2管接合。

第1管是由有机硅树脂(momentiveperformancematerials公司制)构成的气囊部用的管,外径为7.3mm,内径为7.0mm,壁厚为0.15mm。

第2管是由有机硅树脂(wackersilicones公司制)构成的导管部用的管,外径为8mm,内径为5.0mm,壁厚为0.15mm。

另外,第1管在其两端部的内周面具有沿周向延伸的接合区域,第2管在其外周面中的与第1管的连接区域对应的位置具有沿周向延伸的接合区域。第1管以及第2管各自的接合区域中的轴向上的宽度为10mm。

通过经由预先形成的空气注入口向获得的管接合体中的第1管与第2管之间的间隙注入空气,从而使第1管膨胀而形成了气囊。在以该状态放置了5分钟时,确认到无空气泄漏地实现了良好的接合状态。

另外,在观察第1管以及第2管的接合区域时确认到,第1管的接合区域与第2管的接合区域之间稍微存在气泡。

附图标记说明

10第1管

11接合区域

15管接合中间体

20第2管

21接合区域

30灯罩

31紫外线透过窗

35紫外线灯

40掩模

41透光部

42遮光部

50外壳

51气体供给口

52喷嘴

53电极

54电介质层

55高频电源

56掩模

57通过部

58遮挡部

60紫外线灯

61放电容器

62内侧管

63外侧管

64内侧电极

65外侧电极

66紫外线反射膜

67高频电源

ap大气压等离子体

c中心轴

l光

s放电空间

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1