层叠体的制造方法及印刷基板的制造方法与流程

文档序号:15731373发布日期:2018-10-23 20:44阅读:150来源:国知局
层叠体的制造方法及印刷基板的制造方法与流程

本发明涉及层叠体的制造方法、以及使用制造方法的印刷基板的制造方法。



背景技术:

印刷基板例如经过如下工序制造:将在绝缘层(聚酰亚胺等)上层叠作为导体层的金属箔层(铜箔等)而得到的层叠体所具有的金属箔的不需要部分通过蚀刻除去,从而形成图案电路。

作为绝缘层与金属箔层或者绝缘层之间的粘接材料,一直以来使用环氧树脂及丙烯酸树脂等,但从提高印刷基板的电可靠性的观点考虑,研究使用电特性优异的含氟树脂。

专利文献1中记载了以下方法:在导体层层叠于非热塑性芳香族聚酰亚胺树脂层而成的两片层叠膜之间,以使含氟树脂膜与聚酰亚胺树脂层相接的方式夹住含氟树脂膜,在加热气氛下进行压接,制造印刷基板用的层叠体。

通过该方法,得到具有在含氟树脂层的两面层叠有聚酰亚胺树脂层的结构的层叠体。

现有技术文献

专利文献

专利文献1:日本专利特许第4694142号公报



技术实现要素:

发明所要解决的技术问题

以往,作为连续制造多片膜的层叠体的方法,已知热层叠。热层叠中,例如通过将各膜分别卷绕成辊,在一边将膜从各辊连续送出一边将它们重叠的状态下,在一对金属辊之间使其通过等的方法进行加热和加压,以进行贴合。

但是,专利文献1中没有记载连续制造所述层叠体的方法。

根据本发明人等的发现,当将含氟树脂膜用耐热性树脂膜(聚酰亚胺膜等)夹住,通过热层叠进行贴合时,在长边方向上带有张力的状态的含氟树脂膜会在被加热和加压的瞬间在宽度方向上收缩,根据情况会造成切断。

本发明提供可通过热层叠稳定地制造具有在含氟树脂层的两面层叠有耐热性树脂层的结构的层叠体的层叠体的制造方法、以及使用该制造方法的印刷基板的制造方法。

解决技术问题所采用的技术方案

本发明具有以下技术内容。

[1]一种层叠体的制造方法,其为具有由氟树脂膜构成的氟树脂层和由耐热性树脂膜构成的耐热性树脂层的层叠体的制造方法,其特征在于,包括预加热工序和热层叠工序,

所述预加热工序是将在包含氟树脂的含氟树脂膜的两面上重叠包含耐热性树脂的耐热性树脂膜而得的临时层叠体一边搬运一边在不实施厚度方向上的加压的条件下进行加热的工序,其中,所述氟树脂具有选自含羰基基团、羟基、环氧基和异氰酸酯基的至少1种官能团,且能熔融成形;

所述热层叠工序是在所述预加热工序后,对所述临时层叠体一边以所述氟树脂的熔点以上且420℃以下的热层叠温度进行加热,一边在厚度方向上加压而使其贴合的工序。

[2]如[1]所述的层叠体的制造方法,其中,在所述热层叠工序中,即将被加压之前的所述临时层叠体的温度在比所述氟树脂的熔点低20℃的温度以上且在所述热层叠温度以下。

[3]如[1]或[2]所述的层叠体的制造方法,其中,所述氟树脂膜是单层膜或层叠膜,总厚度为1~1000μm。

[4]如[1]~[3]中任一项所述的层叠体的制造方法,其中,所述氟树脂的熔点为260~320℃。

[5]如[1]~[4]中任一项所述的层叠体的制造方法,其中,所述氟树脂在372℃、荷重49N的条件下具有0.5~15g/10分钟的熔体流动速率。

[6]如[1]~[5]中任一项所述的层叠体的制造方法,其中,所述氟树脂是具有来源于四氟乙烯的单元(u1)、来源于具有酸酐基的环烃单体的单元(u2)、和来源于除TFE以外的含氟单体的单元(u3)的含氟聚合物。

[7]如[1]~[6]中任一项所述的层叠体的制造方法,其中,所述耐热性树脂膜是单层膜或层叠膜,总厚度为3~500μm。

[8]如[1]~[7]中任一项所述的层叠体的制造方法,其中,所述耐热性树脂膜是热固性树脂膜。

[9]如[8]所述的层叠体的制造方法,其中,所述热固性树脂是热固性聚酰亚胺、环氧树脂或丙烯酸树脂。

[10]如[8]或[9]所述的层叠体的制造方法,其中,所述热固性树脂是将由多元羧酸二酐和二胺的缩聚所得的聚酰胺酸进行酰亚胺化而得的聚酰亚胺。

[11]如[8]~[10]中任一项所述的层叠体的制造方法,其中,所述热层叠温度为350~420℃。

[12]如[8]~[11]中任一项所述的层叠体的制造方法,其中,所述热层叠压力以施加在辊的每1cm宽度上的荷重所表示的辊线压计,为49~1764N/cm。

[13]如[1]~[12]中任一项所述的层叠体的制造方法,其中,所述临时层叠体在所述耐热性树脂膜的至少一方的、与所述氟树脂膜接触的面的相反侧的面上,还具有金属箔层。

[14]如[13]所述的层叠体的制造方法,其中,所述金属箔层是由铜或铜合金、不锈钢、镍或镍合金、或者铝或铝合金构成的箔。

[15]一种印刷基板的制造方法,其具有以下工序:通过[14]所述的制造方法制造层叠体,对所得的层叠体的金属箔层进行蚀刻来形成图案电路。

发明效果

根据本发明的层叠体的制造方法,能够通过热层叠连续稳定地制造具有在氟树脂层的两面层叠有耐热性树脂层的结构的层叠体。

根据本发明的印刷基板的制造方法,能稳定地制造在氟树脂层的两面上层叠有耐热性树脂层、且在该耐热性树脂层上形成有由金属箔构成的图案电路的印刷基板。

附图说明

图1是显示本发明的热层叠装置的一实施方式的示意结构图。

图2是显示比较例的热层叠装置的示意结构图。

具体实施方式

以下术语的定义适用于本说明书和权利要求书。

“熔点”是指用差示扫描量热测定(DSC)法测定的熔解峰的最大值所对应的温度。

“热层叠”是指通过一边加热一边压接来贴合两个以上的构件。

“能够熔融成形”是指呈现熔融流动性。

“呈现熔融流动性”是指在荷重49N的条件下、比树脂的熔点高20℃以上的高温中存在使熔体流动速率为0.1~1000g/10分钟的温度。

“熔体流动速率”是指JIS K 7210:1999(ISO 1133:1997)中规定的熔体质量流动速率(MFR)。

“含羰基基团”是指结构中具有羰基(-C(=O)-)的基团。

“酸酐基”是指-C(=O)-O-C(=O)-所表示的基团。

“单元”是指通过单体聚合而形成的来源于该单体的单元。单元既可以是通过聚合反应直接形成的单元,也可以是通过对聚合物进行处理而将该单元的一部分转化成了其它结构的单元。

<层叠体>

通过本发明的方法制造的层叠体至少具有氟树脂层、以及在该氟树脂层的两面上分别层叠的耐热性树脂层。在耐热性树脂层的、与氟树脂层接触的面的相反侧的面上,可具有1层以上的其他层。其他层优选包括金属箔层。

本发明的层叠体优选是作为印刷基板的材料使用的层叠体。印刷基板用的层叠体中,作为其他层,至少具有金属箔层。具体而言,优选作为柔性印刷基板的材料使用的、所谓的柔性覆金属层叠板。

本发明的层叠体的厚度没有特别限定,优选10~2500μm,更优选12~300μm,进一步优选18~150μm,特别优选20~100μm。

作为柔性覆金属层叠板的层叠体的厚度优选为12~300μm,更优选18~150μm,进一步优选20~100μm。

层叠体中的耐热性树脂层与氟树脂层的界面的粘接强度优选在5N/cm以上,更优选在6N/cm以上,进一步优选在7N/cm以上。

(耐热性树脂层)

耐热性树脂层是由后述的耐热性树脂膜构成的层,含有耐热性树脂(其中,后述的氟树脂(A)除外)(以下,也记作耐热性树脂(B))。耐热性树脂层可以包含添加剂等。

耐热性树脂层可以是单层结构,也可以是两层以上的层叠结构。

耐热性树脂层的厚度优选为3~500μm,更优选5~200μm,进一步优选6~50μm。该厚度如果在所述下限值以上,则电绝缘性优良。该厚度如果在所述上限值以下,则可使层叠体的整体厚度变薄。

耐热性树脂层中所含的耐热性树脂(B)可以是1种,也可以是2种以上。

从耐热性树脂层的耐热性的角度考虑,耐热性树脂层中的耐热性树脂(B)的含量在耐热性树脂层100质量%中优选在50质量%以上,更优选80质量%以上。该含量的上限无特别限定,也可以是100质量%。

耐热性树脂(B):

作为耐热性树脂(B),可例举聚酰亚胺(芳香族聚酰亚胺等)、聚芳酯、聚砜、聚芳砜(聚醚砜等)、芳香族聚酰胺、芳香族聚醚酰胺、聚苯硫醚、聚芳醚酮、聚酰胺酰亚胺、液晶聚酯等。

在易获得更高耐热性的方面,耐热性树脂(B)优选为热固性树脂。

作为热固性的耐热性树脂(B),可例举热固性聚酰亚胺、环氧树脂、丙烯酸树脂等。在电气特性的方面,优选热固性聚酰亚胺。

作为热固性聚酰亚胺,优选芳香族聚酰亚胺。作为芳香族聚酰亚胺,优选多元羧酸二酐与芳香族二胺经缩聚而制造的全芳香族聚酰亚胺。

热固性聚酰亚胺通常通过多元羧酸二酐(或其衍生物)与二胺的反应(缩聚)经聚酰胺酸(聚酰亚胺前体)而得。

特别是芳香族聚酰亚胺,通过其刚性的主链结构而不溶于溶剂等,且具有不熔的性质。因此,首先通过多元羧酸二酐与二胺的反应来合成可溶于有机溶剂的聚酰亚胺前体(聚酰胺酸或聚酰胺基酸),在聚酰胺酸的阶段用多种方法进行成形加工。之后通过加热或化学的方法使聚酰胺酸脱水反应而环化(酰亚胺化),形成聚酰亚胺。

作为芳香族多元羧酸二酐的具体例,可例举例如日本专利特开2012-145676号公报的第[0055]段中记载的芳香族多元羧酸二酐等。

另外,作为非芳香族的多元羧酸二酐的乙烯四羧酸二酐、环戊烷四羧酸二酐也可不逊色于芳香族类的酸酐来进行使用。多元羧酸二酐可单独使用1种,也可以2种以上组合使用。

作为芳香族二胺的具体例,可例举例如日本专利特开2012-145676号公报的第[0057]段中记载的芳香族二胺等。芳香族二胺可单独使用1种,也可以2种以上组合使用。

添加剂:

作为耐热性树脂层中所含的添加剂,优选介电常数和介电损耗角正切低的无机填料。作为无机填料,可例举二氧化硅、粘土、滑石、碳酸钙、云母、硅藻土、氧化铝、氧化锌、氧化钛、氧化钙、氧化镁、氧化铁、氧化锡、氧化锑、氢氧化钙、氢氧化镁、氢氧化铝、碱式碳酸镁、碳酸镁、碳酸锌、碳酸钡、碳钠铝石(日文:ドーソナイト)、水滑石、硫酸钙、硫酸钡、硅酸钙、蒙脱石、膨润土、活性白土、海泡石、伊毛缟石、绢云母、玻璃纤维、玻璃珠、二氧化硅类空心球(日文:シリカ系バルーン)、炭黑、碳纳米管、碳纳米角、石墨、碳纤维、中空玻璃球、碳气球(日文:炭素バルーン)、木粉、硼酸锌等。无机填料可单独使用1种,也可以2种以上组合使用。

无机填料可为多孔质,也可为非多孔质,从介电常数和介电损耗角正切更低的角度考虑,优选为多孔质。

从提高在树脂中的分散性的角度考虑,无机填料也可用硅烷偶联剂、钛酸盐偶联剂等表面处理剂实施表面处理。

包含无机填料的情况下,无机填料的含量相对于耐热性树脂(B)的100质量份,优选为0.1~100质量份,更优选0.1~60质量份。

(氟树脂层)

氟树脂层是由后述的氟树脂膜构成的层,包含特定的氟树脂(以下也记为氟树脂(A))。氟树脂层也可包含其他树脂、添加剂等。氟树脂层可以是单层结构,也可以是两层以上的层叠结构。

氟树脂层的厚度优选为1~1000μm,从烙铁耐热性的角度考虑,更优选1~20μm,进一步优选3~20μm,特别优选3~15μm。该厚度如果在所述上限值以下,则可使层叠体的整体厚度变薄。该厚度如果在所述下限值以上,则当暴露在相当于高温下的焊接回流的气氛中时,不容易发生由热引起的氟树脂层的膨胀(发泡)。而且电气绝缘性优良。

氟树脂层中含有的氟树脂(A)可以是1种,也可以是2种以上。

从氟树脂层与其相邻的层的界面处的粘接强度的角度考虑,氟树脂层中的氟树脂(A)的含量在氟树脂层的100质量%中优选在50质量%以上,更优选在80质量%以上。该含量的上限无特别限定,也可以是100质量%。

氟树脂(A):

氟树脂(A)是具有选自含羰基基团、羟基、环氧基和异氰酸酯基的至少1种官能团(以下记为官能团(I))的氟树脂。通过具有官能团(I),含有氟树脂(A)的含氟树脂层与其相邻的层的界面处的粘接强度变高。

从氟树脂层与其相邻的层的界面处的粘接强度的角度考虑,官能团(I)优选作为氟树脂(A)的主链的末端基团和主链的侧基中任一者或两者存在。官能团(I)可以是1种,也可以是2种以上。

从氟树脂层与其相邻的层的界面处的粘接强度的角度考虑,氟树脂(A)优选至少具有含羰基基团作为官能团(I)。

作为含羰基基团,可例举例如在烃基的碳原子间具有羰基的基团、碳酸酯基、羧基、卤代甲酰基、烷氧基羰基、酸酐基等。

作为在烃基的碳原子间具有羰基的基团中的烃基,可例举例如碳数2~8的亚烷基等。另外,该亚烷基的碳数是不含羰基的状态下的碳数。亚烷基可以是直链状,也可以是分支状。

卤代甲酰基以-C(=O)-X(其中,X是卤素原子)表示。作为卤代甲酰基中的卤素原子,可例举氟原子、氯原子等,优选氟原子。即,作为卤代甲酰基,优选氟代甲酰基(也称作碳酰氟基(日文:カルボニルフルオリド基))。

烷氧基羰基中的烷氧基可以是直链状,也可以是分支状。优选碳数1~8的烷氧基,特别优选甲氧基或乙氧基。

氟树脂(A)中的官能团(I)的含量相对于氟树脂(A)的主链碳数1×106个优选为10~60000个、更优选为100~50000个、进一步优选为100~10000个、特别优选为300~5000个。该含量如果在所述下限值以上,则氟树脂层与其相邻的层的界面处的粘接强度进一步提高。该含量如果在所述上限值以下,则即使降低热层叠的温度,也能提高氟树脂层与其相邻的层的界面处的粘接强度。

官能团(I)的含量可通过核磁共振(NMR)分析、红外吸收光谱分析等方法进行测定。例如,可按照日本专利特开2007-314720号公报中记载的使用红外吸收光谱分析等方法,求出构成含氟树脂(A)的所有结构单元中具有官能团(I)的结构单元的比例(摩尔%),从该比例算出官能团(I)的含量。

氟树脂(A)的熔点优选为260~320℃,更优选295~315℃,进一步优选295~310℃。该熔点如果在所述下限值以上,则氟树脂层的耐热性优良。该熔点如果在所述上限值以下,则氟树脂(A)的成形性优良。

氟树脂(A)的熔点可通过构成氟树脂(A)的结构单元的种类和比例、氟树脂(A)的分子量等进行调整。例如,具有后述单元(u1)的比例越高、则熔点越高的倾向。

作为氟树脂(A),从容易制造后述的氟树脂膜的角度考虑,采用能够熔融成形的树脂。

作为能够熔融成形的氟树脂(A),可例举在能够熔融成形的公知的氟树脂(四氟乙烯/氟代烷基乙烯基醚共聚物、四氟乙烯/六氟丙烯共聚物、乙烯/四氟乙烯共聚物、聚偏氟乙烯、聚三氟氯乙烯、乙烯/三氟氯乙烯共聚物等)中导入官能团(I)而得的氟树脂,例如,后述的含氟聚合物(α1)等。

作为氟树脂(A),优选在荷重49N的条件下、在比氟树脂(A)的熔点高20℃以上的高温中存在使熔体流动速率为0.1~1000g/10分钟(优选0.5~100g/10分钟、更优选1~30g/10分钟、进一步优选5~20g/10分钟)的温度。熔体流动速率如果在所述下限值以上,则氟树脂(A)的成形性优良,氟树脂层的表面平滑性、外观优良。熔体流动速率如果在所述上限值以下,则氟树脂层的机械强度优良。

氟树脂(A)在372℃、荷重49N的条件下的熔体流动速率优选为0.5~15g/10分钟,更优选为1~15g/10分钟,进一步优选为1~12g/10分钟。熔体流动速率如果在所述上限值以下,则存在对烙铁的耐热性得到提高的倾向。熔体流动速率如果在所述下限值以上,则氟树脂(A)的成形性优良。

熔体流动速率是氟树脂(A)的分子量的指标,熔体流动速率大则表示分子量小,熔体流动速率小则表示分子量大。可通过氟树脂(A)的制造条件调整氟树脂(A)的分子量,进而调整熔体流动速率。例如,如果缩短单体聚合时的聚合时间,则存在熔体流动速率变大的倾向。为了降低熔体流动速率,可例举:对氟树脂(A)进行热处理来形成交联结构、从而提高分子量的方法;减少制造氟树脂(A)时的自由基聚合引发剂的使用量的方法;等。

作为氟树脂(A),根据制造方法的不同可例举例如下述的氟树脂。

(α)具有来源于选自聚合物制造时所用的单体、链转移剂和聚合引发剂中的至少一种的官能团(I)的含氟聚合物。

(β)通过电晕放电处理、等离子体处理等表面处理向不具有官能团(I)的含氟树脂中导入官能团(I)而得的氟树脂。

(γ)在不具有官能团(I)的氟树脂上接枝聚合具有官能团(I)的单体而得的氟树脂。

作为氟树脂(A),出于以下原因,优选含氟聚合物(α)。

·含氟聚合物(α)中,含氟聚合物(α)的主链的末端基团和主链的侧基的任一者或两者中存在官能团(I),因此氟树脂层与其相邻的层的界面处的粘接强度进一步提高。

·氟树脂(β)中的官能团(I)经表面处理而形成,因此不稳定,容易随时间的流逝而消失。

含氟聚合物(α)中的官能团(I)来源于含氟聚合物(α)的制造中所用的单体时,含氟聚合物(α)可通过以下方法(1)来制造。此时,官能团(I)存在于通过制造时的单体聚合而形成的来源于该单体的单元中。

方法(1):通过单体聚合来制造含氟聚合物(α)时,使用具有官能团(I)的单体。

含氟聚合物(α)中的官能团(I)来源于含氟聚合物(α)的制造中所用的链转移剂时,含氟聚合物(α)可通过以下方法(2)来制造。此时,官能团(I)作为含氟聚合物(α)的主链的末端基团而存在。

方法(2):在具有官能团(I)的链转移剂的存在下,通过单体的聚合来制造含氟聚合物(α)。

作为具有官能团(I)的链转移剂,可例举乙酸、乙酸酐、乙酸甲酯、乙二醇、丙二醇等。

含氟聚合物(α)中的官能团(I)来源于含氟聚合物(α)的制造中所用的聚合引发剂时,含氟聚合物(α)可通过以下方法(3)来制造。此时,官能团(I)作为含氟聚合物(α)的主链的末端基团而存在。

方法(3):在具有官能团(I)的自由基聚合引发剂等聚合引发剂的存在下,通过单体的聚合来制造含氟聚合物(α)。

作为具有官能团(I)的自由基聚合引发剂,可例举过氧化二碳酸二正丙酯、过氧化二碳酸二异丙酯、过氧化异丙基碳酸叔丁酯、过氧化二碳酸双(4-叔丁基环己基)酯、过氧化二碳酸二-2-乙基己基酯等。

含氟聚合物(α)中的官能团(I)来源于含氟聚合物(α)的制造中所用的单体、链转移剂、聚合引发剂中的两种以上的情况下,含氟聚合物(α)可通过组合使用所述方法(1)~(3)中的两种以上来制造。

作为含氟聚合物(α),从容易控制官能团(I)的含量、从而容易调整与相邻的层的粘接强度的角度考虑,优选由方法(1)制造的具有来源于单体的官能团(I)的含氟聚合物(α)。

含氟聚合物(α1)

作为具有来源于单体的官能团(I)的含氟聚合物(α),从含氟树脂层与其相邻的层的界面处的粘接强度进一步得到提高的角度考虑,特别优选下述含氟聚合物(α1)。

具有来源于四氟乙烯(以下也记为“TFE”)的单元(u1)、来源于具有酸酐基的环烃单体(以下也记为“含酸酐基的环烃单体”)的单元(u2)、来源于含氟单体(其中,TFE除外)的单元(u3)的含氟聚合物(α1)。

此处,单元(u2)具有的酸酐基相当于官能团(I)。

作为构成单元(u2)的含酸酐基的环烃单体,可例举衣康酸酐(以下也记为“IAH”)、柠康酸酐(以下也记为“CAH”)、5-降冰片烯-2,3-二羧酸酐(以下也记为“NAH”)、马来酸酐等。含酸酐基的环烃单体可单独使用1种,也可以2种以上组合使用。

含酸酐基的环烃单体优选使用选自IAH、CAH和NAH的1种以上。通过这样做,可在省去使用马来酸酐时必要的特殊聚合方法(参照日本专利特开平11-193312号公报)的情况下容易地制造具有酸酐基的含氟聚合物(α1)。

作为含酸酐基的环烃单体,从进一步提高氟树脂层与其相邻的层的界面处的粘接强度的角度考虑,优选NAH。

作为构成单元(u3)的含氟单体,优选具有1个聚合性碳-碳双键的含氟化合物,例如可例举氟代烯烃(氟乙烯、偏氟乙烯(以下也记为“VdF”)、三氟乙烯、三氟氯乙烯(以下也记为“CTFE”)、六氟丙烯(以下也记为“HFP”)等,其中TFE除外)、CF2=CFORf1(其中,Rf1是碳数1~10且可在碳原子间含有氧原子的全氟烷基)、CF2=CFORf2SO2X1(其中,Rf2是碳数1~10且可在碳原子间含有氧原子的全氟亚烷基,X1是卤素原子或羟基)、CF2=CFORf3CO2X2(其中,Rf3是碳数1~10且可在碳原子间含有氧原子的全氟亚烷基,X2是氢原子或碳数1~3的烷基)、CF2=CF(CF2)pOCF=CF2(其中,p为1或2)、CH2=CX3(CF2)qX4(其中,X3是氢原子或氟原子,q是2~10的整数,X4是氢原子或氟原子)、全氟(2-亚甲基-4-甲基-1,3-二氧戊环)等。

作为含氟单体,优选为选自VdF、CTFE、HFP、CF2=CFORf1和CH2=CX3(CF2)qX4中的至少一种,更优选CF2=CFORf1或HFP。

作为CF2=CFORf1,可例举CF2=CFOCF2CF3、CF2=CFOCF2CF2CF3(以下也记为“PPVE”)、CF2=CFOCF2CF2CF2CF3、CF2=CFO(CF2)8F等,其中,优选PPVE。

作为CH2=CX3(CF2)qX4,可例举CH2=CH(CF2)2F、CH2=CH(CF2)3F、CH2=CH(CF2)4F、CH2=CF(CF2)3H、CH2=CF(CF2)4H等,优选CH2=CH(CF2)4F或CH2=CH(CF2)2F。

单元(u1)的比例在单元(u1)、单元(u2)和单元(u3)合计100摩尔%中,优选为50~99.89摩尔%,更优选50~99.4摩尔%,进一步优选50~98.9摩尔%。

单元(u2)的比例在单元(u1)、单元(u2)和单元(u3)合计100摩尔%中,优选为0.01~5摩尔%,更优选0.1~3摩尔%,进一步优选0.1~2摩尔%。

单元(u3)的比例在单元(u1)、单元(u2)和单元(u3)合计100摩尔%中,优选为0.1~49.99摩尔%,更优选0.5~49.9摩尔%,进一步优选1~49.9摩尔%。

各单元的比例如果在所述范围内,则含氟树脂层的耐热性、耐试剂性、高温下的弹性模量优良。

单元(u2)的比例如果在所述范围内,则含氟聚合物(α1)中的酸酐基的量最为适当,含氟树脂层与其相邻的层的界面处的粘接强度进一步变高。

单元(u3)的比例如果在所述范围内,则含氟聚合物(α1)的成形性优良,含氟树脂层的耐弯曲性等优良。

各单元的比例可通过含氟聚合物(α1)的熔融NMR分析、含氟量分析、红外吸收光谱分析等算出。

含氟聚合物(α1)由单元(u1)、单元(u2)和单元(u3)构成的情况下,单元(u2)的比例为0.01摩尔%相当于,含氟聚合物(α1)中的酸酐基的含量相对于含氟聚合物(α1)的主链碳数1×106个为100个。单元(u2)的比例为5摩尔%相当于,含氟聚合物(α1)中的酸酐基的含量相对于含氟聚合物(α1)的主链碳数1×106个为50000个。

含氟聚合物(α1)中,单元(u2)中的酸酐基的一部分水解,结果导致有时含有来源于与含酸酐基环烃单体对应的二羧酸(衣康酸、柠康酸、5-降冰片烯-2,3-二羧酸、马来酸等)的单元。含有来源于该二羧酸的单元的情况下,该单元的比例计入单元(u2)的比例中。

含氟聚合物(α1)除了单元(u1)~(u3),还可具有来源于非含氟单体(其中,含酸酐基环烃单体除外)的单元(u4)。

作为非含氟单体,优选具有一个聚合性碳-碳双键的非含氟化合物,可例举例如碳数3以下的烯烃(乙烯、丙烯等)、乙烯酯(乙酸乙烯酯等)等。非含氟单体可以单独使用1种,也可以2种以上组合使用。

作为非含氟单体,优选乙烯、丙烯或乙酸乙烯酯,特别优选乙烯。

含氟聚合物(α1)具有单元(u4)的情况下,单元(u4)的比例相对于单元(u1)、单元(u2)和单元(u3)合计100摩尔%,优选为5~90摩尔%,更优选5~80摩尔%,进一步优选10~65摩尔%。

含氟聚合物(α1)的全部单元合计为100摩尔%时,单元(u1)、单元(u2)和单元(u3)合计优选在60摩尔%以上,更优选在65摩尔%以上,进一步优选68摩尔%以上。优选的上限值为100摩尔%。

作为含氟共聚物(α1)的优选具体例,可例举TFE/PPVE/NAH共聚物、TFE/PPVE/IAH共聚物、TFE/PPVE/CAH共聚物、TFE/HFP/IAH共聚物、TFE/HFP/CAH共聚物、TFE/VdF/IAH共聚物、TFE/VdF/CAH共聚物、TFE/CH2=CH(CF2)4F/IAH/乙烯共聚物、TFE/CH2=CH(CF2)4F/CAH/乙烯共聚物、TFE/CH2=CH(CF2)2F/IAH/乙烯共聚物、TFE/CH2=CH(CF2)2F/CAH/乙烯共聚物等。

氟树脂(A)可通过常规方法制造。

其他树脂:

只要不损害电可靠性的特性,就对氟树脂层中含有的其他树脂无特别限定。作为其他树脂,可例举例如氟树脂(A)以外的氟树脂、芳香族聚酯、聚酰胺酰亚胺、热塑性聚酰亚胺等。

作为其他树脂,从电可靠性的角度考虑,优选氟树脂(A)以外的含氟共聚物。

作为氟树脂(A)以外的含氟树脂,可例举例如四氟乙烯/氟代烷基乙烯基醚共聚物、四氟乙烯/六氟丙烯共聚物、乙烯/四氟乙烯共聚物等。

氟树脂(A)以外的含氟树脂的熔点优选为280~320℃。熔点如果在所述范围内,则暴露在相当于焊接回流的气氛中时,氟树脂层不易由热导致膨胀(发泡)。

添加剂:

作为氟树脂层中含有的添加剂,可例举与耐热性树脂层中含有的添加剂相同的添加剂,优选方式也相同。

(金属箔层)

金属箔层是由金属箔构成的层。

金属箔无特别限定,根据层叠体的用途进行适当选择即可。例如,在电子设备和电气设备中使用层叠体的情况下,作为金属箔,可例举由铜或铜合金构成的箔、由不锈钢构成的箔、由镍或镍合金(包括42合金)构成的箔、由铝或铝合金构成的箔。电子设备、电气设备中所用的通常的层叠体中,多使用压延铜箔、电解铜箔等铜箔,本发明中也较好是使用铜箔。

也可在金属箔的表面形成防锈层(铬酸盐等氧化物皮膜)和耐热层。另外,为了提高金属箔与粘接层的粘接强度,也可在金属箔的表面实施偶联剂处理等。

金属箔的厚度只要是根据层叠体的用途能发挥充分功能的厚度即可,没有特别限定,优选为6~70μm,更优选9~35μm。

(粘接层)

本发明的层叠体在耐热性树脂层的外侧具有金属箔层的情况下,优选金属箔层和耐热性树脂层隔着粘接层贴合。

作为粘接层,例如可使用包含上述氟树脂(A)的氟树脂层。或者,也可以是由柔性覆金属层叠板领域中公知的粘接材料(环氧树脂、丙烯酸树脂等)构成的层。

从电气特性优良且粘接强度优良的角度考虑,粘接层优选是由包含氟树脂(A)的后述氟树脂膜构成的层。该情况下,在1个层叠体中,在耐热性树脂层相互之间贴合中所用的含氟树脂膜与在耐热性树脂层和金属箔层的贴合中所用的含氟树脂膜可以相同,也可以不同。

<层叠体的制造方法>

本发明的层叠体的制造方法至少具有下述的预加热工序和热层叠工序。

预加热工序:在包含氟树脂(A)的氟树脂膜的两面上重叠包含耐热性树脂(B)的耐热性树脂膜而得到临时层叠体,对于该临时层叠体一边搬运一边在不实施厚度方向(层叠方向)上的加压的条件下进行加热的工序。

临时层叠体是氟树脂膜和耐热性树脂膜在长边方向上带有张力的状态下以彼此紧贴的方式重叠,尚未压接的状态。

热层叠工序:在预加热工序之后,对所述临时层叠体一边以所述含氟树脂(A)的熔点以上且420℃以下的热层叠温度进行加热一边在厚度方向(层叠方向)上加压而使其贴合(压接)的工序。

(氟树脂膜)

氟树脂膜只要是包含氟树脂(A)的膜即可。氟树脂膜可以是单层膜,也可以是层叠膜。氟树脂膜的厚度优选为1~1000μm,更优选1~20μm,进一步优选3~20μm,特别优选3~15μm。

氟树脂膜可通过例如下述的方法获得。

·通过公知的成形方法(挤出成形法、吹胀成形法等)将氟树脂(A)其自身、或含有氟树脂(A)的树脂组合物成形为膜状的方法。

·对含有不具有官能团(I)的氟树脂的氟树脂膜实施电晕放电处理、等离子体处理等公知的表面处理,从而导入官能团(I)的方法。

对于氟树脂膜,在形成临时层叠体之前,可以在100℃以上且低于250℃(优选在150℃以上且低于250℃、更优选在180℃以上且低于250℃)的温度下预先实施加热处理。通过预先实施加热处理,能够减少预加热工序和热层叠工序中的氟树脂膜的收缩,其结果是,能够减少层叠体的翘曲。

(耐热性树脂膜)

耐热性树脂膜只要是含有耐热性树脂(B)的树脂膜即可,可以是单层膜,也可以是层叠膜。耐热性树脂膜的厚度优选为3~500μm,更优选5~200μm,进一步优选6~50μm。

例如可通过公知的成形方法(挤出成形法、吹胀成形法等)将耐热性树脂(B)其自身或含有耐热性树脂(B)的树脂组合物成形为膜状来得到耐热性树脂膜。

(热层叠工序)

热层叠工序优选使用具备一对以上的热层叠单元的热层叠装置等连续地进行。热层叠单元是指通过一边加热一边加压将上述临时层叠体压接的单元。优选使用作为热层叠单元具备一对以上的金属辊的热辊层叠装置。

在热辊层叠装置中,临时层叠体在通过加热到规定温度的一对金属辊之间时,通过与金属辊的接触而被加热,并且受到膜厚度方向的加压力而被压接。临时层叠体可以采用依次通过多对金属辊的结构。用于热层叠的一对金属辊的结构可适当采用公知的结构。

对临时层叠体进行加压的金属辊的表面温度(热层叠温度)在含氟树脂(A)的熔点以上,优选在350℃以上,更优选在380℃以上,进一步优选在400℃以上。热层叠温度如果在所述下限值以上,则可获得良好的粘接强度,且不容易发生剥离。

在耐热性树脂膜是热塑性树脂膜的情况下,热层叠温度低于该热塑性树脂的分解温度。在耐热性树脂膜是热固性树脂膜的情况下,对热层叠温度没有特别要求上限,但从通常的层叠装置的规格的上限的方面考虑,优选在420℃以下。

对临时层叠体进行加压的一对金属辊间的压力(热层叠压力)以施加在辊的每1cm宽度上的荷重所表示的辊线压(日文:ロール線圧)计,优选为49~1764N/cm,更优选98~1470N/cm。热层叠压力如果在所述上限值以下,则在热层叠时膜不易切断,如果在所述下限值以上,则可获得良好的粘接强度,且不易发生剥离。

临时层叠体通过一对金属辊间时的运转速度(热层叠速度)优选在0.5m/分钟以上,更优选在1.0m/分钟以上。热层叠速度如果在0.5m/分钟以上,则能够充分进行热层叠。热层叠速度如果在1.0m/分钟以上,则能够进一步提高生产性。

热层叠速度只要在能够实现热层叠的范围内即可。通过将热层叠温度热层叠速度适度地调慢,可提高粘接强度。例如,优选在10m/分钟以下,更优选在8m/分钟以下。

(预加热工序)

预加热工序通过对朝向热层叠单元被搬运的临时层叠体,在被压接之前,在不进行其层叠方向(厚度方向)上的加压的情况下利用预加热单元进行加热方法来实施。

预加热单元可以是使热源与临时层叠体接触的接触方式,也可以是非接触地加热临时层叠体的非接触方式。从能使构成临时层叠体的膜易彼此紧贴的角度考虑,优选接触方式。例如,优选在使临时层叠体与被加热的金属辊接触的状态下进行搬运的方法。

在热层叠工序中将要被加压前的临时层叠体的温度(预加热温度)优选为比氟树脂(A)的熔点低20℃的温度(熔点-20℃)以上,更优选比氟树脂(A)的熔点低10℃的温度(熔点-10℃)以上,特别优选在氟树脂(A)的熔点以上。预加热温度优选在热层叠温度以下。预加热温度如果在上述范围内,则可良好地防止氟树脂膜的收缩及切断。

在预加热工序中,可以连续加热临时层叠体,也可以间歇加热临时层叠体。对于搬运中的临时层叠体,从预加热开始的位置到临时层叠体在热层叠工序中即将被加压前为止的搬运时间(预加热时间)优选为3~60秒,更优选5~40秒,进一步优选10~30秒。预加热时间在所述下限以上时,粘接力优良,在上限以下时可良好地防止氟树脂膜的收缩及切断。

在以接触方式的预加热单元进行预加热工序的情况下,预加热时间如果在上述范围内,则临时层叠体的温度是与接触该临时层叠体的热源的表面温度相同的温度。

(第1实施方式)

图1是显示在本发明的层叠体的制造方法中适合使用的热辊层叠装置的第1实施方式的示意结构图。

在图1中,1是含氟树脂膜,2是耐热性树脂膜。热辊层叠装置10具备用于进行热层叠的一对热层叠用金属辊31、32,并且在该金属辊31、32的前段设置有用于进行预加热的加热用金属辊33。图中,11~13是送出辊,21~25是搬运辊,26是用于将热层叠后的层叠体卷绕的卷绕辊。

在本实施方式的热辊层叠装置10中,从送出辊11被连续送出的长条形的含氟树脂膜1在从送出辊12、13被分别连续送出的长条形的耐热性树脂膜2、2之间运行,它们在第1个搬运辊21处被叠合而形成临时层叠体。临时层叠体依次经过第2个~第5个搬运辊22、23、24、25,被送向加热用金属辊33。于是,在一边与加热用金属辊33的周面的一部分接触一边被搬运,再一边与一方的热层叠用金属辊32的周面的一部分接触一边被搬运后,能在通过一对热层叠用金属辊31、32之间时施加厚度方向上的压力。

加热用金属辊33的表面温度被控制在规定的加热温度,热层叠用金属辊31、32的表面温度被控制在规定的热层叠温度。

被送向加热用金属辊33的临时层叠体通过与加热用金属辊33的周面接触而被加热,接着也可通过与热层叠用金属辊32的周面接触而被加热。该临时层叠体在通过加热用金属辊33和热层叠用金属辊32之间时不会被施加厚度方向上的压力,在此处不会被压接。由此,被预加热的临时层叠体在通过一对热层叠用金属辊31、32之间时被压接,形成经热层叠的层叠体。得到的层叠体被连续地卷绕在卷绕辊26上。

在本实施方式中,从临时层叠体与加热用金属辊33的周面接触开始,到即将通过一对热层叠用金属辊31、32之间为止是预加热工序。

在本实施方式中,加热用金属辊33的表面温度优选与热层叠用金属辊31、32的表面温度相同或比该表面温度低。两者的温度差的绝对值优选为0~100℃,更优选为0~50℃。

临时层叠体在通过加热用金属辊33和热层叠用金属辊32之间时,可存在与任一金属辊都不接触的非加热时间。即,可以间歇地加热临时层叠体。非加热时间优选是被加热用金属辊33加热的临时层叠体的温度不降低的程度的时间。例如,1次的非加热时间优选在10秒以下,更优选在3秒以下,进一步优选在1秒以下。

(后工序)

在热层叠工序中层叠体发生翘曲的情况下,可以设置矫正层叠体的翘曲的工序。

层叠体的翘曲的矫正可通过对层叠体在100~250℃(优选150~250℃、更优选180~250℃)的温度下实施加热处理来进行。

此外,为了提高层叠体对烙铁的耐热性,可以通过对层叠体实施加热处理使氟树脂(A)的熔体流动速率降低。加热处理的温度优选在370℃以上,更优选在380℃以上。

另外,通过在氮气、氩气等惰性气体气氛等的低氧浓度环境下、或在减压甚至真空下以氟树脂(A)的熔点以上的温度对层叠体实施热处理,可提高后述的柔性印刷基板通过焊接回流工序和其他热处理工序(覆层安装等)时的尺寸稳定性。作为热处理条件,优选在(含氟树脂(A)的熔点+10℃以上且120℃以下)的温度下进行5秒~48小时,更优选在(氟树脂(A)的熔点+30℃以上且100℃以下)的温度下进行30秒~36小时,进一步优选在(含氟树脂(A)的熔点+40℃以上且80℃以下)的温度下进行1分钟~24小时。此外,通过本热处理,氟树脂层和耐热性树脂膜的界面处的粘接强度提高。在实施本热处理的情况下,即使降低热层叠工序中的热层叠压力,也能获得该界面的粘接强度足够高的层叠体。另外,如果热层叠压力过于高,则存在层叠体、以及后述的柔性印刷基板的尺寸稳定性变差的倾向,但在实施本热处理的情况下,可降低热层叠压力并提高尺寸稳定性。

(第2实施方式)

在第1实施方式中,在一对热层叠用金属辊31、32的前段设置加热用金属辊33,并将从临时层叠体与加热用金属辊33的周面接触开始到即将通过一对热层叠用金属辊31、32间之前为止定为预加热工序,但是也可以是不设置加热用金属辊33的结构。

例如,也可将加热用金属辊33改变为不加热的搬运辊,并将从临时层叠体与一方的热层叠用金属辊32的周面接触开始到即将通过一对热层叠用金属辊31、32间之前为止定为预加热工序。

在任一实施方式中,通过在压接临时层叠体之前进行预加热,可获得抑制压接时的含氟树脂膜的收缩及切断的效果。

与第2实施方式相比,第1实施方式通过设置加热用金属辊33可延长预加热工序的时间,在这一点上是优选的。

(第3实施方式:具有金属箔层的层叠体的制造)

在第1实施方式或第2实施方式中,制造了由在氟树脂层的两面上分别层叠了耐热性树脂层的3层构成的层叠体,但是,也可以制造由在耐热性树脂层的、与氟树脂层接触的面的相反面上分别隔着粘接层而层叠了金属箔层的7层构成的层叠体。

例如,在图1中,可以追加将长条形的金属箔送出的2根辊、和将长条形的粘接材料膜(例如与氟树脂膜1相同的膜)送出的2根辊,在第1根搬运辊21上,形成由自上而下以金属箔、粘接材料膜、耐热性树脂膜2、氟树脂膜1、耐热性树脂膜2、粘接材料膜、金属箔的顺序重叠的7层构成的临时层叠体。在此之后的工序与第1实施方式或第2实施方式同样地进行,可得到该7层被压接而得的层叠体。

或者,在第1实施方式或第2实施方式中,通过使用预先将耐热性树脂层和金属箔隔着粘接层进行层叠而得的层叠膜来代替耐热性树脂膜2、2的方法,也可制造自上而下以金属箔层、粘接层、耐热性树脂层、氟树脂层、耐热性树脂层、粘接层、金属箔层的顺序层叠一体化而成的层叠体。

以上说明的本发明的层叠体的制造方法中,通过将在氟树脂膜的两面重叠耐热性树脂膜而得的临时层叠体在进行热层叠之前进行预加热,软化的氟树脂膜的两面在与耐热性树脂膜紧贴的状态下被热层叠,所以即使在氟树脂(A)的熔点以上的温度下进行热层叠,含氟树脂膜也不易在宽度方向上热收缩,且不易切断。

因此,能够通过热层叠稳定地制造具有在氟树脂层的两面层叠有耐热性树脂层的结构的层叠体。

<印刷基板的制造方法>

使用本发明的层叠体的制造方法,制造具备金属箔层的层叠体,经过将该层叠体的金属箔层的不需要部分通过蚀刻除去而形成图案电路的工序,可制造印刷基板。具备金属箔层的层叠体例如可通过上述第3实施方式的方法制造。本发明的印刷基板也可安装各种小型化、高密度化的部件。

实施例

以下,通过实施例具体说明本发明,但本发明不限定于此。

(共聚组成)

氟树脂(A)的共聚组成通过熔融NMR分析、含氟量分析、红外吸收光谱分析求出。

(官能团(I)的含量)

通过下述红外吸收光谱分析,求出了氟树脂(A)中的来源于具有官能团(I)的NAH的单元的比例。

对氟树脂(A)进行加压成形,得到了厚度200μm的膜。红外吸收光谱中,氟树脂(A)中的来源于NAH的单元的吸收峰出现在1778cm-1。测定该吸收峰的吸光度,使用NAH的摩尔吸光系数20810摩尔-1·l·cm-1求出了来源于NAH的单元的比例(摩尔%)。

若将所述比例记为a(摩尔%),则可算出相对于主链碳数1×106个的官能团(I)(酸酐基)的个数为[a×106/100]个。

(熔点)

使用差示扫描量热计(DSC装置、精工设备株式会社(セイコーインスツル)制),记录以10℃/分钟的速度将氟树脂(A)升温时的熔化峰,将与极大值对应的温度(℃)作为熔点。

(熔体流动速率)

使用熔融指数仪(techno7株式会社(テクノセブン社)制),在比熔点高20℃以上的温度372℃、荷重49N的条件下,测定了10分钟内从直径2mm、长度8mm的喷嘴流出的氟树脂(A)的质量(g)。

(粘接强度)

耐热性树脂层与氟树脂层的界面:

将层叠体切割为长150mm、宽10mm的尺寸,制作了评价试样。从评价试样的长边方向的一端起、到50mm的位置为止,将耐热性树脂层与氟树脂层之间剥离。然后,使用拉伸试验机,以50mm/分钟的拉伸速度剥离成90度,将最大荷重作为粘接强度(N/cm)。

(氟树脂(A-1))

准备了作为形成单元(u2)的单体的NAH(降冰片烯二酸酐,日立化成株式会社(日立化成社)制)、作为形成单元(u3)的单体的PPVE(CF2=CFO(CF2)3F,全氟丙基乙烯基醚,旭硝子株式会社制)。

将(全氟丁酰基)过氧化物以0.36质量%的浓度溶解于1,3-二氯-1,1,2,2,3-五氟丙烷(AK225cb,旭硝子株式会社制)(以下也记为AK225cb),配制了聚合引发剂溶液。

将NAH以0.3质量%的浓度溶解于AK225cb,配制了NAH溶液。

将369kg的AK225cb和30kg的PPVE加入经预先脱气的内容积430L的具有搅拌机的聚合槽中。将聚合槽内加热升温至50℃,进一步加入50kg的TFE后,将聚合槽内的压力升至0.89MPa[表压]。

向聚合槽中以6.25mL/分钟的速度连续添加3L(升)的聚合引发剂溶液的同时进行了聚合。另外,连续加入TFE,使得聚合反应中聚合槽内的压力保持为0.89MPa[表压]。另外,以相当于聚合中加入的TFE的摩尔数的0.1摩尔%的量逐次连续加入NAH溶液。

聚合开始超过8小时后,在添加了32kg的TFE的时间点,将聚合槽内温度降至室温的同时将聚合槽的压力排气至常压。对所得的浆料进行与AK225cb的固液分离后,通过以150℃干燥15小时,得到了33kg的含氟树脂(A-1)。

氟树脂(A-1)具有下述的特性。

比重:2.15、熔点:305℃、熔体流动速率:11.0g/10分钟

共聚组成:来源于TFE的单元/来源于NAH的单元/来源于PPVE的单元=97.9/0.1/2.0(摩尔%)、

官能团(I)(酸酐基)的含量:相对于氟树脂(A-1)的主链碳数1×106个,为1000个。

(氟树脂膜(1))

使用具有750mm宽度的衣架型模头(日文:コートハンガーダイ)的的单轴挤出机,以模头温度340℃将氟树脂(A-1)挤出成形,得到了厚度25μm的含氟树脂膜(1)。

(耐热性树脂膜(1))

准备了厚度25μm的聚酰亚胺膜(Kapton(注册商标)100EN,热固性聚酰亚胺:东丽·杜邦株式会社(日文:東レ·デュポン社)商品名)。

(实施例1)

使用具有图1所示结构的热辊层叠装置,制造了由在氟树脂膜(1)构成的氟树脂层的两面上分别层叠有耐热性树脂膜(2)构成的耐热性树脂层而成的3层构成的层叠体。

将加热用金属辊33的表面温度和一对热层叠用金属辊31、32的表面温度(热层叠温度)均设为380℃。热层叠压力设为784N/cm,临时层叠体的搬运速度(热层叠速度)设为3m/分钟。

将从临时层叠体与加热用金属辊33的周面接触开始,到即将通过热层叠用金属辊31、32间之前为止的搬运时间(预加热时间)设为24秒。通过加热用金属辊33和热层叠用金属辊32之间时的非加热时间非常短,可以忽略。即将用热层叠用金属辊31、32进行加压之前的临时层叠体的温度(预加热温度)为380℃。

在上述的条件下制造了层叠体,结果是可以毫无问题稳定地制造。在所得的层叠体中,含氟树脂层和耐热性树脂层的界面的粘接强度是8N/cm。

(实施例2)

在实施例1中,将加热用金属辊33的表面温度和热层叠温度均改变为400℃。将热层叠速度改为6m/分钟,将预加热时间改为12秒。热层叠压力与实施例1相同,设为784N/cm。预加热温度为400℃。

在上述的条件下制造了层叠体,结果是可以毫无问题稳定地制造。在所得的层叠体中,氟树脂层和耐热性树脂层的界面的粘接强度是5N/cm。

(比较例1)

本例中没有进行预加热工序,制造了与实施例1相同结构的层叠体。

图2是本例中使用的热辊层叠装置的示意结构图。对于与图1相同的结构要素,标以相同的符号,并省略其说明。

一对热层叠用金属辊31、32的表面温度(热层叠温度)设为340℃,热层叠压力设为784N/cm,热层叠速度设为2m/分钟。

即将用热层叠用金属辊31、32进行加压之前的临时层叠体的温度与气氛温度(25℃)几乎相同。

本例中,虽然将热层叠温度和热层叠速度设为比实施例1缓和的条件,但在用热层叠用金属辊31、32对临时层叠体进行加压的瞬间,氟树脂层切断,未能得到层叠体。

产业上利用的可能性

利用本发明的层叠体的制造方法得到的层叠体可用于制造要求具有高度电可靠性的柔性印刷基板。

另外,在这里引用2016年3月8日提出申请的日本专利申请2016-44175号的说明书、权利要求书、附图和摘要的所有内容作为本发明说明书的揭示。

符号说明

1:含氟树脂膜、2:耐热性树脂膜、10:热辊层叠装置、11、12、13:送出辊、21、22、23、24、25:搬运辊、26:卷绕辊、31、32:热层叠用金属辊、33:加热用金属辊。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1