混合用于增材制造的粉末构建材料的制作方法

文档序号:15731358发布日期:2018-10-23 20:43阅读:176来源:国知局
混合用于增材制造的粉末构建材料的制作方法

有时称为3D打印机的增材制造机器通过累积材料层而产生物体。数字数据可被处理为切片,每个切片均限定将要形成到物体中的构建材料层的一部分。在一些增材制造机器中,物体切片由在工作区域上以层散布的粉末构建材料形成。热可用于将每个连续粉末层中的颗粒熔合在一起以形成固态物体。用于熔合每层中的构建材料的热可例如通过基于物体的单个切片将液体熔剂施加到形成图案的粉末然后将形成图案的区域暴露于光或其它能量源而产生。熔剂吸收能量以帮助烧结、熔化或以其它方式熔合形成图案的粉末。制造可逐层地、逐切片地进行,直到完成物体。

附图说明

图1和图2是例示实施粉末构建材料供应系统的一个示例的增材制造机器的方框图。

图3是更详细地例示示例粉末构建材料供应系统的方框图。

图4-6例示诸如可在用于增材制造的粉末构建材料供应系统中实施的混合器的一个示例。

图7是例示另一示例粉末构建材料供应系统的方框图。

图8-12例示诸如可在用于增材制造的粉末构建材料供应系统中实施的混合器的一个示例。

具体实施方式

随着制造商寻求提高质量并将产品扩展为包括更多种类的“打印”部件,用于增材制造的多成分粉末的使用在增加。然而,这种粉末中的合成颗粒可能会在运输和储存过程中分离。此外,一些粉末构建材料中的成批供应中的颗粒当没有被积极混合时趋于聚结。因而,对于许多使用粉末构建材料的增材制造机器而言,通常期望在层叠和熔合之前完全混合粉末。发明人已经发现,在供应容器内的粉末中诱发混沌对流能在粉末被分配以层叠和熔合之前“根据要求”快速和完全混合。因此,混沌对流混合器可使用例如可互换的供应模块在制造机器本身中实施,从而帮助增加生产量并提高粉末处理效率。

下面描述和图中示出的示例例示但不限制本专利的范围,该范围在该说明书所附的权利要求书中限定。

如在本文中所使用的,“摇动”表示以多于一个的运动自由度同时移动;“和/或”表示所连接的事物中的至少一个;“非圆形”表示在正交于旋转轴线的任何截面中为非圆形;“不规则形状”表示具有正交于旋转轴线且具有至少一条直线和至少一条曲线的截面的形状;“处理器可读介质”是可体现、容纳、存储或保持供处理器使用的指令的任意非暂态有形介质;并且“工作区域”表示用于支撑或容纳构建材料以熔合的任意合适的结构区域,包括构建材料的底层和处理中的切片以及其它物体结构。

图1和图2是例示实施粉末构建材料供应系统12的一个示例的增材制造机器10的方框图。图3是更详细地例示示例供应系统12的方框图。图4-6是图1和图2中所示的系统12中的示例混合器的详图。图1和图2中的机器10仅是用于实施供应系统12的增材制造机器的一个示例。供应系统12的示例可以其它类型或配置的增材制造机器实施。

首先参考图1和图2,增材制造机器10包括用于将粉末构建材料14供应到工作区域26的供应系统12。在所示的示例中,构建材料供应系统12包括混合器16、混合器16中的粉末供应模块18以及可操作地连接到混合器16的分配器20。如下面参考图3-6所详细描述的,混合器16和供应模块18一起被配置为诱发模块18内的构建材料粉末14的混沌对流。虽然可使用单个粉末供应模块18,但希望供应系统12通常会包括一组22可互换供应模块18,可互换供应模块18可均被装载到混合器16中以将粉末供应到分配器20,并且在用尽时从混合器16卸载以用充满的模块代替。组中的每个供应模块18本身可为一次性模块或可再填充、可再利用模块。

如图2所示,每个分配器20可实施为例如供应托盘、供给盒、料斗或其它分配设备,其将构建材料14提供给散布辊24或其它合适的层叠设备,以将构建材料14层叠到工作区域26上。在其它示例中,分配器20可将构建材料14层直接分配到工作区域26上。在所示的示例中,散布辊24被安装到可移动托架28,其例如沿着轨道30来回运送辊24通过工作区域26。在所示的示例中,分配器20定位在工作区域26的每一侧上,使得当辊24来回交替地通过工作区域时,构建材料14可提供给散布辊24,并且因而层叠到工作区域26上。在其它示例中,单个分配器20可被定位在工作区域26的一侧上,使得构建材料可提供给散布辊24,层叠到工作区域26上,并且多余的构建材料14返回到分配器20。如上所述,图中的工作区域26表示用于支撑或容纳构建材料以熔合的任意合适的结构,包括构建材料的底层和处理中的切片以及其它物体结构。对于第一层构建材料,例如,工作区域26可形成在平台的表面上,平台上下移动以调节每层的厚度。对于后续层的构建材料,例如,工作区域26可形成在构建材料(其可包括熔合和未熔合的构建材料)的底层上。

增材制造机器10还包括熔剂分配器32和光或其它熔合能量的源34。在该示例中,熔剂分配器32被安装到可移动托架36,其将分配器32在轨道30上来回运送通过工作区域26。此外,在该示例中,能量源34实施为安装到辊托架28的一对能量棒34。可编程控制器38包括处理资源、存储器和指令,以及根据控制数据和其它指令控制机器10的操作元件以制造物体所需的电子电路和部件。

在操作中,构建材料14在供应模块18中混合并直接或通过混合器16从模块18传送到分配器20。可使用任意合适的传送装置。每个分配器20将构建材料交替地提供给散布辊24以在工作区域26上层叠。当托架36上的熔剂分配器32移动通过工作区域26时,熔剂以与物体切片对应的图案选择性地施加到层叠的构建材料。当运送能量棒34的托架28移动通过工作区域26时,一个或两个能量棒34被提供能量以将形成图案的区域暴露于光或其它电磁辐射,从而熔合已经施加熔剂的构建材料。熔剂吸收能量,以帮助烧结、熔化或以其它方式熔合形成图案的构建材料。制造逐层、逐切片地进行,直到完成物体。

现在另外参考图3-6,每个模块18包括用于容纳粉末构建材料14的内部混合室40。每个模块18还可包括填充端口39,在图4中示出为加盖(具有盖41)。可编程控制器38包括具有混合指令44的处理器可读介质42和用于执行指令44的处理器46。混合器16包括用于根据控制器38上的混合指令44移动模块18的驱动机构48。可例如通过围绕旋转轴线49(图5)非周期性地旋转非圆形的混合室而通过混合室几何结构和运动的组合在模块18中的粉末14中诱发混沌对流。因而,在图4-6中所示的示例中,驱动机构48被实施为一对驱动辊50,以在执行图3中的混合指令44的控制器38的指引下非周期性地旋转具有方形的混合室40中的粉末14的圆柱形供应模块18。任意合适的电机、电机控制器和传动系可用于一起或独立地转动辊50以实现期望的旋转。虽然描述了十个运动循环,但可使用更多或更少的运动循环以实现期望的混合。

非周期性旋转可通过间歇地改变混合室40的角速度、角位移和/或旋转方向数个循环或对应期望的混合的时间段而实现。在一个示例中,这可适于混合方形的混合室40中的聚合物基粉末14,混合室40以下面的顺序旋转,其中角速度、角位移和旋转方向非周期性地改变贯穿一系列的十个循环(负位移表示逆时针旋转):

1、以7弧度/秒的速度顺时针旋转5弧度(时间=0.7s);

2、以6弧度/秒的速度逆时针旋转7弧度(时间=1.2s);

3、以10弧度/秒的速度顺时针旋转1弧度(时间=0.1s);

4、以5弧度/秒的速度顺时针旋转21弧度(时间=4.2s);

5、以4弧度/秒的速度逆时针旋转15弧度(时间=3.8s);

6、以10弧度/秒的速度顺时针旋转22弧度(时间=2.2s);

7、以9弧度/秒的速度逆时针旋转5弧度(时间=0.6s);

8、以2弧度/秒的速度顺时针旋转21弧度(时间=10.5s);

9、以9弧度/秒的速度逆时针旋转18弧度(时间=2.0s);以及

10、以7弧度/秒的速度逆时针旋转13弧度(时间=1.9s)。

角位移可直接确定或每个时间持续时间的期间可用于确定角位移。也就是说,电机控制器可被编程,从而以期望的角速度旋转混合室通过某一角位移,或者电机控制器可被编程,从而期望的角速度旋转混合室某一时间,以便实现期望的角位移。

非周期性的角位移θi可例如根据等式1来确定。

等式1:θi=θi-1+[sgn(fA([-1,1]))*(θmax-θmin)*fB([0,1])]

其中θmax和θmin限定角位移的可允许范围,fB([0,1]是用于产生0和1之间的随机实数(包括0和1)的概率分布函数,sgn(fA([-1,1]))根据概率分布函数fA([-1,1])来确定旋转方向。诸如由等式1描述的非周期性算法可例如以图3中的控制器38上的混合指令44实施。

虽然图1和图2中的组22中的每个供应模块18在混合器16中可与组中的其它模块互换,但模块18不需要相同。如图1和图2所示,例如,内部混合室40的几何结构可不同。为了达到组22中的模块18中的不同成形程度的混合室利用不同的混合算法来实现期望的非周期性的程度,控制器38可利用相应的混合指令44编程。室40内的粉末14的混合流由图6中的旋转较暗点画的区域表示。非圆形混合室40内的例如根据图7中的算法100非周期性旋转的任意特定粉末14的实际流动图案,在没有综合测试的情况下难以确定。因而,图6中的混合流的表示旨在通常显示混沌对流型混合流,并没有描绘实际的流动图案。

如图6所示,其中,混合粉末将被收集在混合器16中以传送到分配器20,供应模块18可包括阀52,用于将混合粉末通过出口54倾倒或通过其它方式排放到混合器16中的储存器56中。在该示例中,出口54定位在拐角处,在此侧壁在使粉末14流到出口54的料斗特征部58中会聚。图4中所示的填充端口39也可用于将混合粉末从混合室40直接排放到分配器20。如上所述,任意合适的传送装置可用于直接或通过混合器16间接将混合粉末从混合室40移动到分配器20。合适的传送装置可例如包括螺旋传送装置、气动传送装置和重力传送装置。

虽然在图中单个混合器16被示出为服务多个分配器20,但可使用更多或更少的混合器和分配器。例如,增材制造机器10可包括用于多个分配器20中的每个的混合器16。此外,混合器16可被配置为同时装载多个粉末供应模块18,例如用于增加混合器的容量而不同时增加单个供应模块的尺寸。

测试显示具有恒定甚至周期性旋转的圆形混合室中的平滑、匀称流可诱发有效阻止混合一些粉末构建材料的明显的剪切层。更加有效的混合可甚至当混合室被基本上充满粉末时使用非周期性旋转的非圆形或不规则形状的混合室来实现,从而确保每个供应模块18的较大的容量。向混合室增加拐角并进行非周期性旋转使得粉末中的剪切层不可预见地交叉,因而诱发混沌对流以帮助提高混合。

在图7-12所示的另一示例中,供应模块18包括由弧60和两条直线62限定的不规则成形的混合室40。直线62在出口54处会聚以形成使粉末14流到出口54的料斗特征部58。在该示例中,混合器16被实施为圆柱形套筒,供应模块18被实施为混合器套筒16的插入件。如图8中的分解视图中最佳可见,供应模块插入件18包括邻接混合器套筒16的端部的凸缘64。围绕凸缘64的销或螺钉66可用于将插入件18连接到套筒16。图9中所示的可移除的盖68打开和关闭混合室40。

连接到套筒16的驱动机构48被配置为在执行混合指令44的控制器38的指引下摇动供应模块插入件18。如上所述,“摇动”表示以多于一个的运动自由度同时移动。在该示例中,驱动机构48被配置为以三个运动自由度(通过套筒16)移动供应模块插入件18——在轴线49上旋转模块18,如图9中箭头70所指示;围绕轴线72枢转模块18,如图11中箭头74所指示;以及来回平移模块,如图12中箭头76所指示。模块18的交替位置由图11和图12中的用于枢转和平移的虚线所描绘。

诸如图8-13中所例示的摇动混合器与单个运动混合器相比,能更灵活地向模块18传送非周期性运动,并因而能更灵活地在粉末14中诱发混沌混合,即使图7-12中的混合器16的非周期性运动在一些实施例中可能限于仅旋转。非周期性可例如使用上述非周期性算法通过至少一个运动自由度的非周期性运动以及多于一个运动自由度的恒定或周期性运动的非周期性组合来实现。诸如由等式1和2所描述的那些非周期性算法可例如在图7中控制器38上的混合指令44中实施。

图中所示的以及以上描述的示例例示但不限制本专利,其在所附权利要求中限定。

权利要求中所使用的“一”、“一个”和“所述”表示至少一个。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1