热压用缓冲件及其制造方法与流程

文档序号:19904426发布日期:2020-02-11 14:17阅读:278来源:国知局
热压用缓冲件及其制造方法与流程

本发明涉及热压用缓冲件及其制造方法。更详细而言,本发明涉及在制造柔性印制电路板或刚柔性基板等印制电路板、ic卡、液晶显示板、电池等作为精密机械部件的层压板的工序中,将对象制品进行加压成形或热压接时使用的热压用缓冲件及其制造方法。



背景技术:

在印制电路板等层压板的制造中,使用如下方法:在加压成形或热压接的工序中,将作为加压对象物的层压板材料夹入作为加热/加压装置的热盘之间,施加一定的压力和热量。为了得到精度良好的成形品,在热压时,需要将对层压板材料施加的热量和压力在整个面上均匀化。出于这样的目的,在热盘与层压板材料之间夹入平板状的缓冲件的状态下进行热压。

在使缓冲件与表面上具有凹凸的层压板材料(例如柔性印制电路板)直接接触而进行热压的情况下、或者使脱模薄膜等介于它们之间进行热压的情况下,为了得到精度良好的成形品,缓冲件追随层压板材料的凹凸与整个面接触,需要向包括凹凸部分的整个面均匀地传导压力和热量。

日本专利第4316937号公报(专利文献1)中公开的热压用缓冲件为了使对加压对象物的凹凸的追随性提高,具备由多元醇硫化系的硫化含氟橡胶构成的层,使硫化含氟橡胶具有如下特性。即,如下制作硫化含氟橡胶:相对于由数均分子量为3.5×104~2.0×105的偏氟乙烯-六氟丙烯二元共聚物构成的原料含氟橡胶、与多元醇硫化剂的合计100质量份,将由酸受体1~10质量份以及根据需要配合的其他配合剂0~5质量份构成的组合物硫化而成,硫化度以凝胶百分率计为90.0%~98.8%,硫化含氟橡胶的计示硬度达到a40~a55。

日本专利第4843396号公报(专利文献2)中公开的热压用缓冲件可以在多次热压中反复使用,而且,为了实现在缓冲性、面内均匀性、热传导性中具有优良特性的目的,具有如下特征。即,热压用缓冲件是由纤维材料构成的纸、与该纸中浸渗的橡胶的复合体,纤维材料与橡胶的体积比率为1/1.5~1/7.5,并且复合体的空隙率为60~90%。

现有技术文献

专利文献

专利文献1:日本专利第4316937号公报

专利文献2:日本专利第4843396号公报



技术实现要素:

发明要解决的课题

根据专利文献1以及专利文献2中公开的热压用缓冲件,能够在一定程度上提高凹凸追随性,但是根据本发明,能够得到即使对于更大的凹凸而言也能够发挥良好的凹凸追随性的缓冲件。

专利文献1的热压用缓冲件的情况下,对于例如50μm以上的凹凸而言不能显示出良好的追随性。

专利文献2的热压用缓冲件在内部具有空隙,但该空隙为连续气孔。另外,成为连续气孔的空隙的空隙率为较大到大约60~90%,因此在凹凸追随性或加压后的复原性上略微存在难点。

本发明的目的在于,提供凹凸追随性优良、并且能够反复使用的复原性也优良的热压用缓冲件及其制造方法。

用于解决问题的技术方案

根据本发明的热压用缓冲件具备:纤维材料,其由随机取向的多根纤维构成;橡胶,其进入到纤维材料的纤维之间的空隙;以及独立气孔,其分散地存在于橡胶中。

优选纤维材料相对于橡胶的体积比率为1/15以上且小于1/7.5,热压用缓冲件的气孔率(空隙率)以体积基准计为15~70%。

所述独立气孔是例如在橡胶中分散配置的热膨胀性微囊膨胀而形成的气孔。

所述纤维材料优选包含选自由玻璃、岩棉、碳、聚苯并唑、聚酰亚胺、芳香族聚酰胺以及聚酰胺构成的组中的1种或2种以上的材料。

橡胶优选包含选自由含氟橡胶、epm、epdm、氢化丁腈橡胶、有机硅橡胶、丙烯酸橡胶以及丁基橡胶构成的组中的1种或2种以上的材料。

在一个实施方式中,橡胶包含位于纤维材料的层的上方以及下方中的任意一侧的一侧橡胶层,这一侧橡胶层也具备在内部分散存在的独立气孔。优选橡胶在纤维材料的层的上方以及下方的另一侧也包含另一侧橡胶层,该另一侧橡胶层也具备在内部分散存在的独立气孔。

在上述优选的实施方式的情况下,优选纤维材料相对于使独立气孔在内部分散的橡胶的体积比率为1/75以上且小于1/15,热压用缓冲件的气孔率(空隙率)以体积基准计为15~70%。进一步优选将橡胶进入到纤维之间的空隙的纤维材料的层的厚度相对于上部橡胶层以及下部橡胶层的合计厚度设为1/7以上且1/1.5以下。

本发明的热压用缓冲件的制造方法,包括:使由随机取向的多根纤维构成的纤维材料片、和在内部分散配置了热膨胀性微囊的未硫化橡胶片叠加的工序;对叠加后的纤维材料片和未硫化橡胶片加压、使未硫化橡胶片中的橡胶以及微囊进入纤维材料片的纤维之间的空隙而进行一体化的工序;对一体化后的复合体进行加热,使微囊膨胀而形成独立气孔的工序;以及对一体化后的复合体进行加热,将复合体中的未硫化橡胶硫化的工序。需要说明的是,各工序可以分别进行,也可以将多个工序同时或连续地进行。

在一个实施方式中,叠加的工序包括利用2片纤维材料片夹入未硫化橡胶片。

优选在第一温度下进行通过加压将纤维材料片与未硫化橡胶片一体化的工序,在比上述第一温度高的第二温度下进行形成独立气孔的工序,在比上述第二温度高的第三温度下进行硫化的工序。需要说明的是,通过连续从第二温度向第三温度升温,可以同时或连续地进行形成独立气孔的工序和硫化的工序。

在一个实施方式中,叠加的工序包括利用2片未硫化橡胶片夹入纤维材料片。该情况下,优选一体化的工序包括:使包含微囊的未硫化橡胶片的一部分进入纤维材料片的纤维之间的空隙,并使残余的部分位于纤维材料片之外。

发明效果

根据上述构成的本发明,可以得到凹凸追随性优良、并且能够反复使用的复原性也优良的热压用缓冲件。

附图说明

图1是本发明的一个实施方式中的热压用缓冲件的图解性剖视图。

图2是用于说明本发明的一个实施方式中的热压用缓冲件的制造方法的图解图。

图3是图2所示的加压工序后得到的复合体的图解性剖视图。

图4是使热膨胀性微囊配合含氟橡胶片与2片玻璃纸一体化之前的图解性剖视图。

图5是表示实施例样品1的层叠结构的图解性剖视图。

图6是表示比较例样品1的层叠结构的图解性剖视图。

图7是表示比较例样品2的层叠结构的图解性剖视图。

图8是表示比较例样品4的层叠结构的图解性剖视图。

图9是比较例样品5的图解性剖视图。

图10是表示用于评价样品的凹凸追随性的加压构成的图解性剖视图。

图11是对评价对象样品加压1次后的聚酰亚胺薄膜的阶差部的照片。

图12是对评价对象样品加压50次后的聚酰亚胺薄膜的阶差部的照片。

图13是图5所示的结构的实施例样品1的截面照片。

图14是图13所示的纤维-橡胶复合体片的厚度方向的放大截面照片。

图15是图13所示的纤维-橡胶复合体片的平面方向的放大截面照片。

图16是比较例样品3的纤维-橡胶复合体片的平面方向的放大照片。

图17是作为优选的纤维片的一例的玻璃纸的表面照片。

图18是图17的放大照片。

图19是本发明的其他实施方式中的热压用缓冲件的图解性剖视图。

图20是用于说明图19所示的热压用缓冲件的制造方法的图解图。

图21是图19所示的结构的实施例样品的截面照片。

图22是对评价对象样品加压后的聚酰亚胺薄膜的阶差部的照片,对图5所示的结构的实施例样品1与图19所示的结构的实施例样品5进行比较示出。

具体实施方式

图1所示的热压用缓冲件具备:由随机取向的多根纤维1构成的纤维材料;进入到纤维材料的纤维1之间的空隙中的橡胶2;以及分散存在于橡胶2中的多个独立气孔3。

由多个纤维1构成的纤维材料,优选包含选自由玻璃、岩棉、碳、聚苯并唑(polybenzazole)、聚酰亚胺、芳香族聚酰胺以及聚酰胺构成的组中的1种或2种以上的材料。橡胶2优选包含选自由含氟橡胶、epm、epdm、氢化丁腈橡胶、有机硅橡胶、丙烯酸橡胶以及丁基橡胶构成的组中的1种或2种以上的材料。

独立气孔3优选为热膨胀性微囊膨胀而形成。膨胀前的微囊的平均粒径为约5~50μm,是能够容易通过纤维材料的纤维1之间的空隙的大小。微囊的平均粒径更优选为5~40μm,进一步优选为10~40μm。

图1所示的结构的实施方式的情况下,为了即使反复使用热压用缓冲件也要维持良好的凹凸追随性,优选纤维材料相对于橡胶2的体积比率为1/15以上且小于1/7.5。纤维材料相对于橡胶2的体积比率小于1/15的情况下,热压用缓冲件的形状维持性降低,在反复使用的情况下,有可能热压用缓冲件上发生伸长或破碎。纤维材料相对于橡胶2的体积比率为1/7.5以上的情况下,凹凸追随性变得不充分。纤维材料相对于橡胶的体积比率更优选为1/10以上且小于1/7.5。

另外,作为纤维材料与橡胶的复合体的热压用缓冲件的气孔率(空隙率)以体积基准计,优选为15~70%。气孔率不足15%的情况下,凹凸追随性变得不充分。气孔率超过70%的情况下,凹凸追随性充分,但在反复使用的情况下,缓冲性的降低增大,因此不优选。热压用缓冲件的气孔率的下限值更优选为20%,气孔率的上限值更优选为60%。

图1所示的热压用缓冲件经过以下的工序来制造。

如图2所示,首先,准备由随机取向的多个纤维1构成的纤维片10、以及在内部分散配置了热膨胀性微囊30的未硫化橡胶片20。一个实施方式中,准备2片纤维片10,通过叠加该2片纤维片10来夹持未硫化橡胶片20。纤维片10可以使用无纺布或纸的形态,特别优选使用通过湿式抄纸法制作的纸的形态。在纸的情况下,纤维在面方向上随机取向,因此可以得到面内的均匀性。需要说明的是,为了使未硫化橡胶21以及微囊30进入纤维1之间的空隙,纤维片10优选使用空隙率为84~99%的纤维片。

图17是作为优选的纤维片10的一例的玻璃纸的表面照片。该玻璃纸的空隙率为95%。由图可知,该玻璃纸的玻璃纤维在面方向上随机取向。

图18是图17的放大照片。由图18可知,该玻璃纸的空隙率高,因此通过与未硫化橡胶片20叠加并进行加压,能够使未硫化橡胶21以及微囊30进入纤维1之间的空隙中。

如图2所示,对叠加的纤维片10和未硫化橡胶片20进行加压而使两者一体化。该加压处理升温至第一温度来进行。第一温度为微囊30不会膨胀的温度、例如约100~115℃。加压力例如为约4mpa,加压时间在例如热环境(约110℃)下约60分钟,然后在冷环境下约40分钟。

通过上述加压处理,如图3所示,未硫化橡胶片20的未硫化橡胶21进入纤维片10的多个纤维1至间的空隙中。同样地在未硫化橡胶21中分散的微囊30也进入纤维片10的多个纤维1之间的空隙中。该状态下,微囊30还没有膨胀。

将图3所示的纤维-橡胶复合体片升温至比上述第一温度高的第二温度,使热膨胀性微囊30膨胀,形成独立气孔3。独立气孔3是周围完全被封锁的独立气泡,其区别于具有连通至外部的空隙的连续气孔(连续气泡)。第二温度是热膨胀性微囊30发生膨胀的温度,例如约120~140℃。

然后,进一步将纤维-橡胶复合体片升温至比上述第二温度高的第三温度,使未硫化橡胶21硫化。这样,得到图1所示的热压用缓冲件。第三温度例如为150℃以上的温度。需要说明的是,也可以设置为在升温至第三温度的过程中通过第二温度时使热膨胀性微囊发生膨胀。图1的状态下,橡胶2成为硫化橡胶。

本申请发明者制作多种实施例样品以及多种比较例样品,对它们的结构以及凹凸追随性等特性进行比较评价。需要说明的是,市售的热膨胀性微囊(膨胀前)的平均粒径为约5~50μm。具体而言有日本fillite株式会社制的“expancel”(平均粒径10~40μm)、松本油脂制药株式会社制的“matumotomicrosphere”(平均粒径5~50μm)、株式会社kureha制的“kurehamicrosphere”(平均粒径10~50μm)等。实施例样品中使用的热膨胀性微囊为日本fillite株式会社制的“expancel920-du40”,其平均粒径为10~16μm。

[实施例样品1]

a.材料的准备

准备由随机取向的多个玻璃纤维构成的纤维材料片(玻璃纸)2片。使用的玻璃纸为oribest株式会社制的“grabestsys-80”。使用的玻璃纸的厚度为0.57mm,单位面积重量为80g/m2,空隙率为95%。

准备热膨胀性微囊。使用的热膨胀性微囊为日本fillite株式会社制的“expancel920-du40”。以质量基准计相对于含氟橡胶100份配合热膨胀性微囊5份,进行混炼,准备厚度0.6mm的未硫化含氟橡胶片。在未硫化含氟橡胶片中分散配置热膨胀性微囊。

b.一次加压

如图4所示,利用2片玻璃纸41夹住厚度0.6mm的配合有热膨胀性微囊的未硫化含氟橡胶片40,通过热压对它们进行加压而一体化。

加压条件如下。

温度:110℃

压力:4mpa

加压时间:热环境下60分钟+冷环境下40分钟

c.微囊的膨胀以及橡胶的硫化

将一体化后的纤维-橡胶复合体片50(图5)在加热烘箱内升温,保持规定时间,使热膨胀性微囊膨胀,再进行含氟橡胶的硫化、烘烤。加热烘箱的温度以及保持时间设为230℃×5h。热膨胀性微囊在升温过程中膨胀,在纤维-橡胶复合体片50中形成多个独立气孔。纤维-橡胶复合体片50的纤维材料相对于橡胶的体积比率为1/9.5。

d.二次加压

如图5所示,在纤维-橡胶复合体片50的双面上隔着含氟橡胶片51(厚度50μm)通过加热加压使含氟薄膜(厚度12μm)52贴合,得到实施例样品1。

[实施例样品2]

相对于含氟橡胶100份配合5份实施例样品1中使用的热膨胀性微囊,准备厚度0.5mm的未硫化含氟橡胶片。

其他条件(玻璃纸、一次加压、胶囊的热膨胀、硫化、二次加压)与实施例样品1相同。纤维-橡胶复合体片50的纤维材料相对于橡胶的体积比率为1/7.9。

[实施例样品3]

相对于含氟橡胶100份配合3份实施例样品1中使用的热膨胀性微囊,准备厚度0.6mm的未硫化含氟橡胶片。

其他条件(玻璃纸、一次加压、胶囊的热膨胀、硫化、二次加压)与实施例样品1相同。纤维-橡胶复合体片50的纤维材料相对于橡胶的体积比率为1/9.5。

[实施例样品4]

相对于含氟橡胶100份配合7份实施例样品1中使用的热膨胀性微囊,准备厚度0.6mm的未硫化含氟橡胶片。

其他条件(玻璃纸、一次加压、胶囊的热膨胀、硫化、二次加压)与实施例样品1相同。纤维-橡胶复合体片50的纤维材料相对于橡胶的体积比率为1/9.5。

[实施例样品1~4的配合比以及厚度的比较]

关于实施例样品1~4,将热膨胀性微囊的配合量、未硫化含氟橡胶片的厚度、一次加压后的厚度、膨胀/硫化处理后的厚度、二次加压后的厚度示于以下的表1。

[表1]

[比较例样品1]

除了没有向含氟橡胶中配合热膨胀性微囊之外,在与实施例样品1相同的条件下,得到图6所示的比较例样品1。在纤维-橡胶复合体片60中,没有形成独立气孔。纤维-橡胶复合体片60的纤维材料相对于橡胶的体积比率为1/9.5。

[比较例样品2]

如图7所示,在纤维-橡胶复合体片70的双面上贴合含氟薄膜73(厚度25μm),所述纤维-橡胶复合体片70是在作为加强材料发挥作用的由芳香族聚酰胺纤维构成的芳纶布71的双面上使含氟橡胶(厚度0.5mm、硬度计a硬度60°)72一体化而成的。纤维-橡胶复合体片70中,没有形成独立气孔。

[比较例样品3]

在oribest株式会社制的玻璃纸“grabestsys-80”中浸渗含氟橡胶而得到纤维-橡胶复合体片,在内部具有空隙(连续气孔)。该纤维-橡胶复合体片在日本专利第4843396号公报中记载。纤维-橡胶复合体片的空隙率为85%,纤维材料相对于橡胶的体积比率为1/2.2,厚度为0.64mm。

[比较例样品4]

如图8所示,是在重叠了单位面积重量190g/m2的牛皮纸3张而成的层叠体80的单面上贴合热塑性薄膜81而成。

[比较例样品5]

是在内部具有多个独立气孔91的含氟橡胶片90。在含氟橡胶片90中不包含纤维。含氟橡胶片的厚度为1mm,其硬度(硬度计a硬度)为22°。

[凹凸追随性的评价]

通过加压试验,对样品的凹凸追随性进行评价。图10是将加压的结构利用图解来示出的图。

在加压机的基座100以及加压部101内置有加热器。在基座100与加压部101之间自下依次配置缓冲件102、不锈钢板103、厚度0.1mm的间隔件104、由含氟树脂构成的厚度12μm的脱模薄膜105、带胶粘剂的聚酰亚胺薄膜106、评价对象的样品107、不锈钢板108以及缓冲件109。缓冲件102以及缓冲件109使用将单位面积重量190g/m2的牛皮纸重叠5张而成的材料。

厚度0.1mm的间隔件具有宽度0.5mm的狭缝。因此,通过下方的不锈钢板103和其上的间隔件104,形成0.1mm的阶差(凹凸)。通过加压部101将评价对象样品107向下方按压并施加热量,由此使聚酰亚胺薄膜106上附着的胶粘剂固化。此时,由阶差部分中的聚酰亚胺薄膜106上附着的胶粘剂产生孔隙(void)状况来评价凹凸追随性。

用于评价的加压条件如下。

温度:200℃

压力:2mpa

加压时间:热环境下60分钟+冷环境下15分钟

图11是加压1次后的聚酰亚胺薄膜106的阶差部的照片。

如果参考图11所示的照片,则在实施例样品1~4中,样品107也进入阶差部(凹部)中,可以认为对位于间隔件104的狭缝之下的不锈钢板103施加适当的压力。换言之,观察到良好的凹凸追随性。

另一方面,观察比较例样品1~5时,比较例样品1~3中在阶差部(凹部)产生孔隙,可以认为对阶差部没有施加适当的压力。换言之,认为凹凸追随性较差。在比较例样品4以及5中,如果是加压1次后的状态,则不会产生孔隙,观察到良好的凹凸追随性。

图12是加压50次后的聚酰亚胺薄膜106的阶差部的照片。在实施例样品1~4中,可以认为即使在50次加压后也对位于间隔件104的狭缝之下的不锈钢板103施加适当的压力。换言之,即使在50次加压后也观察到良好的凹凸追随性。

关于通过第一次加压显示出良好的凹凸追随性的比较例样品4以及比较例样品5,无法进行50次的加压。具体而言,关于比较例样品4,通过第一次加压发生塑性变形,成为不可使用的状态。关于比较例样品5,通过第二次加压观察到良好的凹凸追随性,但是橡胶破碎,成为不可使用的状态。

[评价对象样品的结构以及凹凸追随性]

将评价对象样品的结构以及凹凸追随性的评价结果示于以下的表2。

[表2]

[实施例样品1以及比较例样品3的截面照片]

图13是图5所示的结构的实施例样品1的截面照片。在纤维-橡胶复合体片的双面上隔着50μm厚的含氟橡胶层贴合12μm的含氟薄膜。

图14是实施例样品1的作为芯层的纤维-橡胶复合体片的厚度方向的放大截面照片,图15是平面方向的放大截面照片。由这些截面照片可知,含氟橡胶进入随机取向的多根玻璃纤维之间的空隙中,进而在含氟橡胶中形成有多个独立气孔。独立气孔的尺寸(最大径)为约15~115μm。

图16是比较例样品3的纤维-橡胶复合体片的平面方向的放大照片。可知含氟橡胶浸渗到多个玻璃纤维之间,形成有连续气孔。该复合体片的空隙率为85%,纤维材料相对于橡胶的体积比率为1/2.2。

[热压用缓冲件的各种形态]

作为本发明中的热压用缓冲件的形态,可以考虑各种形态。如图1所示,一个形态是具备由多个纤维1构成的纤维材料、进入到纤维1之间的空隙中的橡胶2、以及在橡胶2中分散存在的独立气孔3的纤维-橡胶复合体片。

作为其他形态,可以考虑:在图1所示的结构的纤维-橡胶复合体片的双面上隔着极薄含氟橡胶而贴合含氟薄膜的形态、在图1所示的结构的纤维-橡胶复合体片的单面或双面上贴合表层件的形态、包含多个图1所示的结构的纤维-橡胶复合体片而使它们之间夹杂存在无纺布层、织布层、橡胶层等形态。

图19是本发明的其他实施方式中的热压用缓冲件的图解性剖视图。图示的热压缓冲件120具备:与图1所示的结构相同的纤维橡胶复合层121、位于纤维橡胶复合层121的上方的上部橡胶层122;位于纤维橡胶复合层121的下方的下部橡胶层123;在上部橡胶层121的表面上配置的上部含氟薄膜124;以及在下部橡胶层123的背面配置的下部含氟薄膜125。

纤维橡胶复合层121包括:由随机取向的多根纤维1构成的纤维材料;进入到该纤维材料的纤维1之间的空隙中的橡胶2;以及在该橡胶2中分散存在的独立气孔3。上部橡胶层122包括位于纤维材料的层的上方、且在内部分散存在的独立气孔3。下部橡胶层123包括位于纤维材料的层的下方、且在内部分散存在的独立气孔3。

上部含氟薄膜124以及下部含氟薄膜125形成热压用缓冲件的表面层以及背面层,具有耐热性。在图示的实施方式中,作为耐热性薄膜使用了含氟薄膜,但也可以使用由其他材质构成的耐热性薄膜。

在图19所示的结构的实施方式的情况下,为了即使反复使用热压用缓冲件也能维持良好的凹凸追随性,优选将纤维材料相对于使独立气孔3分散在内部的整体橡胶2的体积比率设为1/75以上且小于1/15。在纤维材料相对于橡胶2的体积比率小于1/75的情况下,热压用缓冲件120的加强性变得不充分,在反复使用的情况下,有可能在热压用缓冲件中发生伸长或破碎等。在纤维材料相对于橡胶2的体积比率为1/15以上的情况下,凹凸追随性变得不充分。在图19所示的结构的情况下,纤维材料相对于橡胶的体积比率更优选为1/60以上且小于1/20。

另外,在图19所示的结构的热压用缓冲件120的情况下,热压用缓冲件的气孔率(空隙率)以体积基准计优选为15~70%。在气孔率不足15%的情况下,凹凸追随性变得不充分。在气孔率超过70%的情况下,凹凸追随性充分,但复原性变差,在反复使用的情况下,随时间的变化增大,产生显著的凹凸的残留痕迹。另外,通过上下的橡胶层(橡胶-独立气孔)122、123的强度降低,有可能发生表面裂纹或破碎等。在图19所示的结构的情况下,热压用缓冲件的气孔率的下限值更优选为20%,气孔率的上限值更优选为60%。

如果着眼于纤维橡胶复合层(纤维-橡胶-独立气孔)121的构成比率,则优选将纤维材料相对于橡胶的体积比率设为1/15以上且小于1/2,更优选为1/13以上且小于1/3。在体积比率小于1/15的情况下,加强性变得不充分,有可能在热压用缓冲件中发生伸长或破碎等。在体积比率为1/2以上的情况下,热压用缓冲件的凹凸追随性变差。

如果着眼于纤维橡胶复合层121与上下的橡胶层122、123的厚度的比率,则优选将纤维橡胶复合层121的厚度相对于上下的橡胶层的合计厚度的比率设为1/7~1/1.5的范围,更优选为1/6~1/2。在该厚度的比率小于1/7的情况下,热压用缓冲件的加强性变得不充分,有可能在热压用缓冲件中发生伸长或破碎等。在厚度的比率超过1/1.5的情况下,热压用缓冲件的凹凸追随性变得不充分。

图19所示的结构的热压用缓冲件120经过以下的工序来制造。

如图20所示,首先,准备由随机取向的多个纤维1构成的纤维片10、在内部分散配置了热膨胀性微囊30的未硫化橡胶片20、和2片含氟薄膜124、125。在一个实施方式中,准备2片未硫化橡胶片20,通过叠加该2片未硫化橡胶片20来夹持纤维片10。纤维片10可以使用无纺布或纸的形态的纤维片,优选使用特别是通过湿式抄纸法制作的纸的形态的纤维片。在纸的情况下,纤维在面方向上随机取向,因此可以得到面内的均匀性。需要说明的是,为了使未硫化橡胶21以及微囊30进入纤维1之间的空隙,纤维片10优选使用空隙率为84~99%的纤维片。

在上方的未硫化橡胶片20的表面上配置一张含氟薄膜124,在下方的未硫化橡胶片20的背面配置另一张含氟薄膜125。

如图20所示,对叠加的上下的含氟薄膜124、125、上下的未硫化橡胶片20以及纤维片10从上下进行加压,使整体一体化。该加压处理将整体升温至适当的温度来进行。在一个实施方式中,将层叠结构整体在110℃的温度下施加0.7mpa的压力来维持30分钟,然后升温至190℃,在该190℃的温度下施加0.7mpa的压力来维持50分钟,然后,在保持压力的状态下冷却10分钟。

通过上述加热加压处理,如图19所示,上下的未硫化橡胶片20的一部分分别进入纤维片10的多个纤维1之间的空隙。同样地在上下的未硫化橡胶20中分散的微囊30的一部分也进入纤维片10的多个纤维1之间的空隙中。在温度低的状态下,微囊30还没有膨胀。

如下进行加压处理:使上下的未硫化橡胶片20的残留部分不进入纤维片10内,而是位于纤维片10的上下。

如果不断提高温度,则热膨胀性微囊30发生膨胀而形成独立气孔3。独立气孔3存在于纤维橡胶复合层121的内部、上部橡胶层122的内部以及下部橡胶层123的内部。

如果进一步提高温度,则未硫化橡胶21发生硫化,成为硫化橡胶2。

[实施例样品5]

a.材料的准备

准备由随机取向的多个玻璃纤维构成的纤维材料片(玻璃纸)。使用的玻璃纸为oribest株式会社制的“grabestsys-80”,其厚度为0.57mm,单位面积重量为80g/m2,空隙率为95%。

准备热膨胀性微囊。使用的热膨胀性微囊为日本fillite株式会社制的“expancel920-du120”。在实施例样品1中使用的热膨胀性微囊为“expancel920-du40”。对这些热膨胀性微囊进行比较时,观察到以下的不同。

(a)expancel920-du40

粒径(膨胀前):10~16μm

热膨胀开始温度:123~133℃

热膨胀最大温度:168~178℃

(b)expancel920-du120

粒径(膨胀前):28~38μm

热膨胀开始温度:123~133℃

热膨胀最高温度:194~206℃

以质量基准计,相对于含氟橡胶100份配合热膨胀性微囊(expancel920-du120)5份,进行混炼,准备厚度0.75mm的未硫化含氟橡胶片2片。在各未硫化含氟橡胶片20中,分散配置热膨胀性微囊30。

准备厚度12μm的含氟薄膜2片。

如图20所示,用2片热膨胀性微囊配合的未硫化橡胶片20夹入由玻璃纸构成的纤维材料片10,在一个未硫化橡胶片20的表面上配置一个含氟薄膜124,在另一个未硫化橡胶片20的背面上配置另一个含氟薄膜125。将该层叠结构体通过热压进行加压而一体化。

加压条件如下。即,首先,将层叠结构体升温至110℃的温度,在该温度下以0.7mpa的压力加压的状态下保持30分钟。然后,在保持压力的状态下,利用20分钟将层叠结构体升温至190℃的温度,在该温度下保持50分钟。然后,在保持压力的状态下,利用10分钟冷却至常温。

在上述110℃下的加压处理的过程中,首先,包含热膨胀性微囊30的未硫化橡胶片20中的未硫化橡胶21的一部分以及热膨胀性微囊30的一部分进入到纤维片10的多个纤维1之间的空隙中。如下进行加压处理:使上下的未硫化橡胶片20的残留部分不进入纤维片10内,而是位于纤维片10的上下。

热膨胀性微囊在从110℃升温至190℃的过程中发生膨胀,在纤维橡胶复合层121中以及上下的橡胶层124、125中形成了独立气孔。

在将层叠结构体保持在190℃的温度的期间,未硫化的含氟橡胶进行硫化。然后,为了使含氟橡胶的特性提高,对于层叠结构体在230℃下进行保持5小时的烘烤。

如上所述制作的实施例样品5的热压用缓冲件具有图19所示的结构。实施例样品5的厚度为2.34mm。另外,纤维材料相对于使独立气孔3分散在内部的整体橡胶2的体积比率为1/48,缓冲件整体的气孔率以体积基准计为35%。

[实施例样品5的照片]

图21是图19所示的结构的实施例样品5的截面照片。由照片可知,在位于厚度方向的中央的纤维橡胶复合层(橡胶+纤维+独立气孔)中存在独立气孔,在上下的橡胶层(橡胶+独立气孔)中也存在独立气孔。

[实施例样品5与实施例样品1的对比]

实施例样品5与实施例样品1不同点在以下方面。

(a)在实施例样品1中,在位于纤维橡胶复合层(纤维-橡胶复合体片)50的上下的含氟橡胶层51中不存在独立气孔。相对于此,在实施例样品5中,在位于纤维橡胶复合层121的上下的橡胶层122、123中存在独立气孔。

(b)在制造过程中,在实施例样品1中,在纤维橡胶复合层(纤维-橡胶复合体片)50的表面以及背面上贴合厚度50μm的含氟橡胶片51,但是在实施例样品5中,位于上下的含氟橡胶片20的一部分进入纤维材料片(玻璃纸)10的纤维之间的空隙而形成纤维橡胶复合层121,残余部分形成上下的橡胶层122、123。

(c)在实施例样品1中,使用的热膨胀性微囊“expancel920-du40”的膨胀前的粒径为10~16μm,相对于此,在实施例样品5中,使用的热膨胀性微囊“expancel920-du120”的膨胀前的粒径为28~38μm。因此实施例样品5的独立气孔的尺寸大于实施例样品1的独立气孔。

实施例样品5与实施例样品1相比,针对反复使用的厚度减少率小,另外,对于更大的阶差的凹凸追随性优良。

[实施例样品1以及实施例样品5的厚度减少率、空隙率的减少程度、凹凸追随性的对比]

针对实施例样品1以及实施例样品5而言,通过加压试验,测定针对反复加压的厚度的变化以及空隙率的变化,同时评价了它们的凹凸追随性。试验中使用的加压的构成实质上与图10所示的构成相同,但是改变了间隔件104的厚度。即,本次试验中使用的间隔件104的厚度为0.2mm,具有0.5mm的狭缝。

用于评价的加压条件如下。

温度:200℃

压力:2mpa

加压时间:热环境下60分钟+冷环境下15分钟

将针对实施例样品1以及实施例样品5的测定结果以及评价结果示于以下的表3。

[表3]

在实施例样品1中,初期(加压次数为0)的厚度为1.32mm,加压50次后的厚度为0.98mm。在实施例样品5中,初期的厚度为2.34mm,加压50次后的厚度为2.18mm。

将厚度减少率([初期厚度-加压50次后的厚度]/初期厚度)进行比较时,实施例样品1为约26%,实施例样品5为约7%。

如果观察空隙率,则在实施例样品1中,初期的值为50%,加压50次后的值为32%,观察到18%的减少。在实施例样品5中,初期的值为35%,加压50次后的值为30%,观察到5%的减少。

图22是图10所示的聚酰亚胺薄膜106的阶差部的照片。间隔件104的厚度为0.2mm,因此阶差的大小为0.2mm。如果观察加压1次后的照片,则在实施例样品1中,观察到孔隙的产生。相对于此,在实施例样品5中,即使在50次的加压后,也没有观察到孔隙的产生。由该结果可以确认,实施例样品5与实施例样品1相比,对于大的阶差(例如0.2mm)的凹凸追随性优良。

以上,参考附图对该本发明的实施方式进行了说明,但是本发明不限于图示的实施方式。针对图示的实施方式,在与本发明相同的范围内、或者等同的范围内,可以加入各种修改或变形。

工业上的可利用性

本发明作为经过长期的使用而发挥良好的凹凸追随性的热压用缓冲件而能够有利地被利用。

附图标记说明

1纤维、2橡胶、3独立气孔、10纤维材料片、20未硫化橡胶片、21未硫化橡胶、30热膨胀性微囊、40配合有热膨胀性微囊的未硫化含氟橡胶片、41玻璃纸、50纤维-橡胶复合体片、51含氟橡胶片、52含氟薄膜、60纤维-橡胶复合体片、61含氟橡胶片、62含氟薄膜、70纤维-橡胶复合体片、71芳纶布、72含氟橡胶、73含氟薄膜、80将牛皮纸重叠而成的层叠体、81热塑性薄膜、90含氟橡胶片、91独立气孔、100基座、101加压部、102缓冲件、103不锈钢板、104间隔件、105脱模薄膜、106带胶粘剂的聚酰亚胺薄膜、107评价对象样品、108不锈钢板、109缓冲件、120热压用缓冲件、121纤维橡胶复合层、122上部橡胶层、123下部橡胶层、124上部含氟薄膜、125下部含氟薄膜。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1