流体连接机构的制作方法

文档序号:4485733阅读:200来源:国知局
专利名称:流体连接机构的制作方法
技术领域
本发明涉及流体连接机构 ,尤其是涉及在一输入毛细管或其它小孔管与一显微(微观)工程流体结构之间的一流体连接机构。此后术语“小孔管”将包括毛细管和非毛细管。
目前已越来越重视用于输送微小量流体的显微工程结构,其中对流体进行化学和/或生物化学处理和分析。尤其是在我们的在审申请WO96/12541中描述和要求了在第一和第二非互溶的流体之间进行一扩散输送过程的方法和装置,其中第一和第二流体通道在某一区域相互连接,以允许流体形成一稳定的开放分界面,并且其中在分界面区域的流体通道具有垂直于该分界面的在10~500微米范围内的一宽度。如上所述,该装置通常是这样构成的通过在一硅层的表面内蚀刻槽来形成流体流动通道,并且在硅层上粘结一玻璃覆盖层。但是,该申请未详细描述给显微工程装置形成一外部连接的问题。在该申请和许多其它显微流体装置的应用中,尤其是进行分析和监测或控制装置内流体的应用中,需要形成外部连接,这种连接是形成为与外部管相连,以不至于形成过大的堵死空间或停滞区域。这需要将显微流体装置通道连接到类似横截面尺寸的毛细管上。
关于形成对毛细管连接的方法有大量的文献记录,并且这些方法是多种多样的,这取决于具体的应用。例如,玻璃毛细管的一端可由一塑料护套环绕,以牢靠地固定在一装置的输入小孔内,例如可参见EP-A-0698789,其描述了毛细管到高压流体套色板(chromatography)装置的一连接机构。但是,形成与一柔性护套或其它插入件的一强制配合将不适于我们上述在审申请中所述的这样一精细显微工程结构。此外通过传统的步骤连接到圆形横截面毛细管的连接接线结构需要带有一圆形横截面凹口、有时是锥形的结构,这对于显微工程装置通常是不能获得的,并且通常其尺寸大于传统用于构成显微工程结构的基层的厚度。为说明,显微工程结构将是指形成有一个或一个以上叠置基层的结构,每一基层通常是平面形式的并且其厚度最好为2mm或更小,而且具有形成在其内的流体流动通道,至少部分这种通道的横截面直径小于1000微米。应当理解,对于非圆形横截面通道直径将是指厚度或宽度。还应当理解这种通道可以在特定区域延伸,以在直径大于1000微米的结构内形成腔室等。基层一般由硅、玻璃、陶瓷、塑料或金属形成。
毛细管(一般具有50到1000之间、最好在100到300微米之间外径的尺寸)到显微工程结构的连接,尤其是通过粘结平面蚀刻的或形成的基层而形成的那些,通常需要低应力的连接技术。例如焊接金属、陶瓷或玻璃所需的高温处理可能产生例如基层破裂或分层的损坏。在相对薄(通常<2mm)的基层内、尤其是在陶瓷或玻璃内,不好形成螺纹连接或压配连接,并且对其进行维护保养也不易。因此对连接进行密封通常需要使用密封材料。
在由Reston & Kolesar于1994年12月发表的《IEEE/ASME显微机械系统学报》的文章“硅-显微加工气体套色板系统-第一部分”的第139页,描述了将一气体输入管连接到一气体套色板的方法,该套色板包括一螺旋形流体通道,该通道300微米宽、10微米深,并且蚀刻在一硅胶片基层的表面内。一玻璃板在螺旋形流体通道上被粘结到基层的上表面,并且在硅胶片的下表面内形成经一小孔的一锥形气体输入通道,该输入通道与螺旋形流体通道相连。直径为254微米的一气体输入管的一端被插入锥形小孔内,并且绕输入管的端部和小孔的开口部分施加一粘结剂(环氧树脂),以将管密封在小孔内。
毛细管垂直于基层平面进入装置内并且流体结构形成在这些基层内的这种布置具有许多问题和缺陷。一个问题是具有垂直于平面基层的一毛细管连接和与叠层这种基层干涉的装置、以及要生产小巧系统的装置。另一问题是经基层形成通道以将毛细管垂直于基层连接会使得装置的制造过于复杂,并且降低可获得的装置密度和产量。经基层形成几乎平行的通道或与毛细管尺寸相配的略为锥形的孔是困难的。对于在玻璃或硅内蚀刻的结构,深层蚀刻以形成这种通道所需的遮蔽与蚀刻时间比在基层表面内蚀刻流体通道所需的时间更加严格。
这种布置的再一问题是封闭在基层内的毛细管的长度被限定于基层的厚度,并且由毛细管外壁紧密支承的的粘结剂的长度和经基层的孔同样被限定于基层的厚度。这会导致相对弱和脆的密封。绕毛细管和在基层外表面应用进一步的粘合剂可能改善密封质量,但这种改善通常受到平面基层表面上薄弱粘结的限制。绕毛细管和在基层外表面上应用进一步的粘合剂也可能是不希望的,因为这会导致单位容积的增大和与封装到一系统内的单元干涉。类似地,将传统的毛细管连接接头经一通道粘结到基层表面上可能产生较差的密封质量,增大各装置所需的面积,并且与装置的封装及叠置干涉。
这种布置的又一问题是难于向毛细管外壁与通道孔侧边之间的区域输送粘合剂材料、以足以形成一密封而粘合剂本身又不至于进入和阻断或损害(污染)流体通道及毛细管本身。通常需使用具有足够高粘性的粘合剂配方,以防止粘合剂由于毛细管作用而快速流入流体通道内。但是,通常难以观察或监测和控制粘合剂已输送到所希望的通道区域内的情况。
这种布置的还一问题是,尤其是对于气体,流体必须沿垂直于结构内流体通道方向的一方向流入显微工程结构中,并且流体经一直角的运动可能产生紊流或其它循环或混合过程和产生难以预测的流动状态。
发明概述本发明的一第一方面提供将一毛细管或小孔管连接到一显微工程结构上、用作流体流动通口的方法,包括(1)提供一显微工程结构,其具有至少一第一基层,该基层内形成有流体流动通道,该基层或每一基层由第一和第二相对的侧面以及从侧面的边缘延伸的端面限定,并且其中该至少一个基层的一端面具有位于其内的一小孔,该小孔与所述的流体流动通道相连;
(2)提供一毛细管或其它小孔管,并且将其端部插入所述端面的所述小孔内;以及(3)在环绕管的小孔内流动一密封剂材料,然后固化所述材料以将该管密封在所述小孔内。
本发明另一方面提供一种装置,包括具有一流体连接器的一显微工程结构,该结构包括至少一第一基层,该基层内形成有一个或多个流体流动通道,该基层或每一基层由第一和第二相对的侧面以及从侧面的边缘延伸的端面限定,并且包括流体输入装置,该输入装置包括插入一小孔内的毛细管或其它小孔管,所述小孔形成在该至少一个基层的一端面内,所述小孔与一所述的流体流动通道相连,并且其中在小孔内设有一密封剂材料,在将管插入小孔内后,紧接着使密封剂材料在绕管的小孔内固化。
在再一方面,本发明提供用于上述流体连接器的一显微工程结构,其中该结构包括至少一第一基层,该基层内形成有一个或多个流体流动通道,该基层或每一基层由第一和第二相对的侧面以及从侧面的边缘延伸的端面限定;形成在该至少一基层的一端面内的一小孔,并且该小孔与一流体流动通道相连并且其尺寸适于容纳一毛细管或其它小孔管。
所述小孔的直径足以允许插入管(其直径可能为1000微米)和绕该管的密封剂材料,并且可能不同于流体流动通道的直径。所述小孔是如此的,以至于管被设置在同一平面内并且最好是与结构的流体流动路径相同的方向,此处该小孔是由一笔直的或稍微弯曲的导引通道形成,该导引通道从一流体流动通道延伸到一基层端面。
正如在显微工程结构中是普遍的,流体流动通道可以形成在一第一基层的表面内,并且一第二基层叠置在该第一基层上,以密封流体流动通道。或者第二基层可具有形成在其下表面内的流体流动通道,该流体流动通道可以与第一基层的上表面内的流体通道相连或相配。作为一种可替换的配置,流体流动通道可以形成在第一基层的本体内,并且无需一第二基层来限定或密封该流体流动通道。在另一配置中,流体流动通道与所述的小孔可以通过在一第一基层的顶上设置连续的层来形成,其中最好由一第二基层来密封流体流动通道的顶部。
当显微工程结构上的流体通道和用于管连接的导引通道是形成在平面基层上和平面基层之间时,将通常不是圆形的横截面来匹配连接管道。蚀刻的、研磨的或锯制的通道可通常具有大致半圆形、三角形、梯形或矩形的横截面。将第一和第二基层内的半圆形通道叠置起来可以产生大致圆形横截面,但可以预想的是其至少会产几微米的未对准和中心偏离。因此要求用于连接到基层平面的导引通道内的管道的密封剂必须充满绕管的很大的空间。
根据本发明,提供了设立通向一显微工程结构的一流体流动连接的装置,其中流体可以沿平行于结构内流体流动通道的一方向直接流到结构内。因此不会产生紊流或其它不可预测的流动状态。此外,由于是在紧接着插入管后、通过在毛细管的外壁与包含该毛细管的一通道段的内壁之间附加或形成密封材料来产生密封,因此不会产生过多的可能会使显微工程结构破裂或引起密封失效的压力、热量或应力。
本发明的一优点是连接在显微工程装置平面内的毛细管允许装置进行叠置。另一优点是在装置内绕毛细管的密封长度可以在设计阶段进行选择而不会受到基层厚度的约束,并且可以足够地设置来确保一良好的密封。再一优点是当一个或多个基层是透明的时候,可以观察密封的范围和可采用照射固化的低粘性毛细管填充密封剂。某些实施例的还一优点是不需在基层内形成通道。当如下所述为输送密封剂而设置通道时,这些通道可以远离显微工程流体结构并且不必象垂直于基层的接头所需要的那样精确地形成。
除了提供通向显微工程流体装置的外部流体连接机构外,还提供了在独立的显微流体装置内的用于连接流体流动通道的装置,其可位于独立的基层上或占用一个基层,或可位于一系列粘结在一起的叠置基层上。
密封剂材料可包括一物质或物质的混合物,这在下面将明了。将从诸如粘合剂或粘结材料的物质中选择密封剂材料。这些大多通常是诸如环氧树脂之类的有机材料,但可包括其它聚合物或可聚合的材料,包括无机材料或成分。
在一优选实施例中,密封是由我们的欧洲专利EP-B-319175(我们的参考号是PA1314)所描述和要求保护的一方法形成的,该专利描述和要求保护由可通过照射来固化的一流体形成一预定形状的固体物质的方法,该方法包括以下的步骤提供在其上要形成物质的一表面;用一照射光束来照射该表面的一预定区域,向该表面的未被照射的区域供应流体,从而在该流体与光束的交界处形成限定固体物质表面的一固体凸起,并且使已供应但还尚未固化的流体固化,以形成所述的固体物质。
因此将此方法应用于本发明,制造可在基层平面内带有流体通道的一显微工程结构,其中流体通道根据所需与笔直的或略弯的导引通道相连,所述导引通道也在基层平面内,其延伸到一基层边缘。导引通道的横截面足够大,以允许管插入形成在一基层边缘的小孔内,并且毛细管被送入结构内,以与流体通道相连。经邻近于一毛细管端部的一透明的基层材料施加例如一紫外线照射光束,其中该毛细管设置在一显微工程结构的一端部小孔内,位于密封物质所需位置的末端。然后向导引通道的开口端输送一照射固化密封物质,从而液体密封剂绕管流动并流入小孔内。液体密封剂的流动可以由流体静力学或其它作用的压力或通过毛细管作用力或者这些力的组合来促进。当流体密封剂到达照射光束时,其硬化和固化。当在端部形成一固体堵塞时,然后将光束移动通过未固化的物质,以形成一完全固化的堵塞。或者,可通过大量暴露于紫外线或日(灯)光下、或者采用加热来固化剩余的物质。
图面的简单说明下面结合附图描述本发明的优选实施例。


图1是根据本发明的一显微工程结构的一示意平面图,其中第一和第二流体连接头上设有输入和输出口;
图2是表示形成图1的第一流体连接头的方法的一示意侧视剖面图;图3是表示形成图1的第二流体连接头的方法的一示意侧视剖面图;图4和5是图1的第二流体连接头和其改进的一示意侧视剖面图;图6a~6h是流体流动通道各剖面的沿图1的6-6线的剖面图;图7和8分别是本发明第二和第三实施例的方法的示意侧视剖面图;图8~12分别是本发明第四至第七实施例的方法的示意侧视剖面图;图13a~13c是表示根据本发明第八实施例的一方法的视图。
优选实施例的说明现参照图1~6,示出了包括第一硅基层2和与其面对的第二玻璃基层4(图6)的一显微工程结构。基层2由上下相对侧面和从侧面的边缘延伸的端面限定。第一基层2具有形成在其上表面内的一蜿蜒的流体流动通道6,其从一输入口8延伸到一输出口10,其中输入口和输出口两者都形成在基层的一端面11内。应当理解流体流动通道根据应用可以采用各种形式,例如大面积腔等。流体流动通道6具有小于1000微米、通常是100微米的一直径、宽度或厚度,并且可以是任何适当的形状,例如三角形截面。
流体输入口8和流体输出口10两者形成有小孔12,该小孔12形成在端面11内并且具有孔的形式,其宽度如图所示大于通道6的两倍。小孔12容纳可具有各种尺寸的毛细管14,例如300微米外径、200微米内径;或200微米外径、150微米内径;或100微米外径、50微米内径。孔12的横截面形状可以采用多种形式,例如图6a所示的三角形、图6b所示的截去尖顶的三角形、图6c所示的半圆形、图6d所示的矩形和图6e所示的圆形。可注意到除了图6e的圆形孔部分形成在基层2内和部分形成在基层4的下表面内,在图6中所有的孔12都形成在基层2的上表面内,但总体上说孔可形成在任一基层内。一种可替换的结构表示在图6f和图6g中,其中通过蚀刻技术完全在基层2内形成一圆形孔,包括在基层2的上表面内切割一垂直槽19和然后通过蚀刻技术形成一圆形孔。在完成流体连接后,用密封材料18密封槽,如图6g所示。
在图6h中表示了一可替换的结构,其中通过任何合适的显微工程技术(由印刷、照相制版、叠层和需要时采用蚀刻修改来形成)设立层20,使孔12和流体流动通道6形成在基层2的上表面上,其中层20形成了孔和流体流动通道的侧壁。孔的下表面由基层2的上表面形成,而孔的上表面则由此后粘结到层20上的基层4的下表面形成。在这种布置中,层20的上表面部分形成了所述第一基层的上表面。
为了说明本发明,连接到输入口8的流体与连接到输出口10的流体以不同方式形成。参见图2,表示了形成带输入口8的流体连接头的方法,首先毛细管14插入孔12内靠近孔12与流动通道6在轴肩16汇合的位置。毛细管14可以由硅形成,但也可由玻璃、聚合物或甚至金属形成。一照射(辐射)固化材料18流入孔12的开口端并由此而沿孔12吸向管14的端部。一束紫外线22从一光源24穿过透明的玻璃基层4照射到管14的端部,从而当流体到达光束时,该流体就被硬化。一旦在管14的端部形成一固体柱塞,可沿管的长度移动光源,从而固化和硬化流体18的其余部分。或者设置一第二光源(未示出)来主要照射流体18。
在图3所示的用于输出口10的一变型方法中,设有一通孔或通道30,其中照射固化材料流入该通孔或通道内。该方法的其它方面与图2的相似。给照射固化材料设置一单独的输入通道30的优点在于在材料没有充分流动的地方可允许其从流体输入口8的端部流入。
参照图4和5,当向流体输入口8内流入材料时,必须避免注入过多的材料,因为过多的材料可能流入流体流动通道6并阻塞该通道。通常是通过对注入的材料量的物理观察来进行控制。在图4中,一通道30位于孔的开口端与流体流动通道6之间的中间附近。当密封材料开始从孔的开口端流入时,如隆起部40所示,一观察者将知道材料已经到达管14的内端,并且应当停止进一步注入材料。
在图5中示出了注入少量材料的一可替换的布置,其中设有一第二通道50,其与孔相连并且位于通道30的附近。在经通道30流入密封材料的过程中,一观察者观察密封材料进入通道50内,如隆起部52所示,并且此时将意识到已经注入足够量的密封材料并且已到达管14的内端。
照射固化材料可通常是一UV(紫外线)或日光固化的聚合材料。在商业上可获得多种具有一定范围的粘性的UV固化的炳烯酸材料(例如由位于美国的New Brunswick,N.J.08902的Norland产品有限公司生产的Norland UV密封剂),并且可以选择其中的一些(例如高粘性Norland 91,低粘性Norland 81)或类似材料用于下面所述的方法中,其中一种或多种基层材料对于照射是透明的。
向位于一基层边缘的小孔内输入密封剂对于低粘性的密封剂来说是特别便利的,其中该密封剂由于毛细作用而输入导引通道内。对于这种低粘性的密封剂,必须提供在导引通道的所需位置固化该密封剂的装置,例如通过UV照射,从而防止密封剂流到管端部以外并进入管与流体结构内。对于足够粘稠的密封剂,其中仅当施加压力时其流动才是显著的,也可通过照射来固化,但也可采用非照射固化的密封剂。当采用一足够粘稠的密封剂,尤其是一粘弹性组份,从而在毛细作用下导引通道内的流动不明显时,可通过向一基层边缘处的小孔内的密封剂施加压力或者通过在显微结构内施加真空吸附来产生流动,通过消除压力差而可停止流动,并且密封剂固化或允许固化。一例子是可用于例如Ciba Geigy Araldite 2005的高粘性两部分环氧树脂。可根据在导引通道前观察到密封剂、或者通过观察到密封剂被挤出通道、或者在生产所需量的流动而确定的一已知时间后来取消压力差,其中的观察可借助于一观察系统自动进行。图4和5的布置尤为适用。
在可向结构部件施加足够热控制的地方,可以采用一熔化的密封材料,该密封材料在导引通道内的所需位置固化。
参照图7和8,示出了图4方法的一修改,其中一插入杆件70被插入管14内,以至于越过管14的端部而进入流体流动通道6内。在图7中,孔12和通道6同样地形成于基层2和4中,而在图8中,孔12和通道6均形成在基层2内。图7和8表示用于允许密封剂越过管端部并减少堵死空间的一方法。插入件70,例如杆、纤维(可能是光学的)、金属丝或更窄的管被插入管14内并进入流体通道6。在固化前允许密封剂流过连接管14的端部和绕插入件70流动。通过拔出(例如钨丝、或光学纤维,可能涂有润滑剂)、或熔化(例如聚丙烯或PMMA(聚甲基丙烯酸甲酯)纤维或杆,或铟丝)、或溶解(例如Cu或Ni管)而取出插入件。
现参照图9所示的实施例,基层2、4是一不透明材料。为允许采用照射(例如UV)固化密封剂,通过插入一透明管14内的一光学纤维92将照射光束90送入结构中。或者,纤维可插入流体通道6内。因此如参照图2所描述地形成连接,但由于光学纤维92插入并设置在管14内,因此在该管端部的区域94沐浴在照射之中。照射固化密封剂18向导引通道上流向管的端部并通过照射而固化,由此防止密封剂进入管和流体通道内。在区域94内形成一堵塞后,慢慢抽出光学纤维,以便通过管壁照射密封剂的其余部分。
现参照图10,示出了通过向系统内流入两种流体(该两种流体反应形成一固体)来进行沉淀物密封的方法。因此,例如浓缩的粘稠钠硅酸盐溶液100经通道102输入,同时一较少粘稠的溶液104,例如钙或镁盐(例如CaCl2)溶液经管14输入。在管端部的区域108形成一不能溶解的硅酸盐沉淀物。通过调整浓度和流速,可以确保沉淀物保留在绕管的孔12内并随着Ca2+离子扩散到硅酸盐内而逐渐变浓,而在流过管14中央的溶液内所形成的任何沉淀物会通过流动力而被清扫掉。
参照图11和12,其类似于图7和8,不同处只是两基层2、4是不透明的,因而需要使用一粘稠的、最好是粘弹性材料110,其可在压力下经通道30注入并且在取消压力和/或加热后而设置好。
在图7和8的另一修改(未示出)中,省略毛细管并且密封材料形成在小孔12的外侧,从而可在其上形成一外部连接。
现参照图13a~13c,其表示本发明的一第八实施例,其中一管14具有一预先形成的套筒插入件130,该插入件130绕管14的内端形成,其外径小于孔12的外径。这允许将管14自由插入孔内,如图13a所示。当完全设置在孔内时,加热使插入材料熔化并在管14与孔12的内壁之间形成一密封,如图13b所示。
在图13c中,设有一套筒插入材料132,通过采用一化学反应物来改变材料的成分,例如使铁扩散到氧化铁中,所述的套筒插入材料132在插入后可膨胀。当取消加热时,密封剂材料保留在图13c所示的位置。
可以理解在图13和10的实施例中,特别是在管的端部形成一堵塞的地方,可根据任何其它实施例、例如图2所示实施例来接着在孔的其余部分填充注入并固化的一密封剂材料。
此外,可以采用除照射固化的密封剂以外的其它密封剂。例如,可采用在绕管的孔内固化的一厌氧固化密封剂,在此情况中需要对密封剂的流速和/或固化时间进行足够的控制,并且还可能需要带有氮或其它无氧气体的一冲洗装置(flush device)。或者密封剂材料可以是一粘稠的陶瓷胶结剂,其通过如图3所述的一通道插入。这种陶瓷胶结剂的例子有波特兰胶结剂、巴黎石膏(氢氧化石膏CaSO4)、或磷酸盐胶结剂(例如基于铝正磷酸盐溶液和MgO)。
权利要求
1.在一小孔管与一显微工程结构之间形成用作一流体流动通口的一流体连接机构的方法,包括(1)提供一显微工程结构,其具有至少一第一基层,该基层内形成有流体流动通道,该基层或每一基层由第一和第二相对的侧面以及从侧面的边缘延伸的端面限定,并且其中该至少一个基层的一端面具有位于其内的一小孔,该小孔与所述的流体流动通道相连;(2)提供一毛细管或其它小孔管,并且将其端部插入所述端面的所述小孔内;以及(3)在环绕管的小孔内流动一密封剂材料,然后固化所述材料以将该管密封在所述小孔内。
2.如权利要求1所述的方法,其特征是物质包括一可由照射固化的材料,并且一照射光束被引到小孔内管的内端,从而当固化材料被引入小孔内时,该固化材料一旦到达照射光束就固化。
3.如权利要求2所述的方法,其特征是一旦在管的端部形成一固体堵塞,就沿管移动光束来固化小孔内材料的剩余部分。
4.如权利要求3所述的方法,其特征是一基层是一透明的材料,并且照射光束通过该基层导入,或者管是照射透明的材料并且通过管使照射导引到固化材料。
5.如权利要求1所述的方法,其特征是物质是粘稠的、最好是粘弹性的或拟塑性的,并且在压力下流入小孔,然后去除压力以允许该物质固化。
6.如权利要求1所述的方法,其特征是以一熔化形式将物质插入管内,然后冷却物质以允许其固化。
7.如权利要求1所述的方法,其特征是物质是以一流体形式插入小孔内的一胶结剂,并且然后固化。
8.如权利要求1所述的方法,其特征是一第一物质被引入所述小孔内,并且一第二物质经所述管被引入,该两物质在管的内端混合并反应,以在绕管的小孔内形成一密封。
9.如权利要求1所述的方法,其特征是一物质被形成为在管端部的一圆筒形插入件,其中管的外径允许管自由插入小孔内,并且当管被插入小孔内时熔化插入件,以将管密封在小孔的内表面。
10.如前述任一权利要求所述的方法,其特征是一基层具有贯穿形成的一通道,以与所述小孔相连,从而允许物质经所述通道流动到所述小孔。
11.如前述任一权利要求所述的方法,其特征是流入小孔内的材料的量是通过对小孔内材料的物理观察来确定。
12.如权利要求11所述的方法,其特征是在一基层内设有与所述小孔相连的另一通道,以允许观察沿小孔流动并流入该另一通道内的密封材料,从而确定足够的材料已流入小孔内。
13.如前述任一权利要求所述的方法,其特征是一插入件经管插入流体流动通道内,以允许物质流入所述小孔内,直到与流体流动通道相连而不阻断流体流动通道,然后从管内抽出杆以固化物质。
14.如权利要求13所述的方法,其特征是取消毛细管。
15.在一小孔管与一显微工程结构之间的一流体连接机构,该结构具有至少一第一基层,该基层内形成有一个或多个流体流动通道,该基层或每一基层由第一和第二相对的侧面以及从侧面的边缘延伸的端面限定,并且包括流体输入装置,该装置包括插入一小孔内的小孔管,所述小孔形成在该至少一个基层的一端面内,所述小孔与一所述的流体流动通道相连,并且其中在小孔内设有一密封剂材料,在将管插入小孔内后,紧接着密封剂材料在绕管的小孔内固化。
16.如权利要求15所述的一显微工程结构,其特征是该结构包括至少一第一基层,该第一基层内形成有一个或多个流体流动通道,该基层或每一基层由第一和第二相对的侧面以及从侧面的边缘延伸的端面限定;形成在该至少一基层的一端面内的一小孔,该小孔与一流体流动通道相连并且其尺寸适于容纳一毛细管或其它小孔管。
17.如前述任一权利要求所述的装置或方法,其特征是小孔是由一笔直的或略弯的导引通道或者孔形成,该通道或孔从一流体流动通道延伸到所述端面。
全文摘要
一种包括一显微工程结构和一毛细或其它小孔管的装置和一种将管连接到结构上的一方法。该显微工程结构包括至少一个基层2,其中在基层2内形成有流体流动通道6,该通道6连接到一小孔12,其中管14插入该小孔12内。一密封剂材料流入绕管的小孔内、然后固化,以将管密封在小孔内。
文档编号B29C65/54GK1244239SQ9718128
公开日2000年2月9日 申请日期1997年12月4日 优先权日1996年12月7日
发明者安东尼·罗伯特·科里斯, 约翰·罗伯特·道奇森, 约翰·爱德华·安德鲁·肖, 克里特·特纳 申请人:研究中心实验室(有限)
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1