一种加装脉动热管的节能型除湿机的制作方法

文档序号:11983689阅读:436来源:国知局
一种加装脉动热管的节能型除湿机的制作方法与工艺

本实用新型涉及一种除湿机,特别是涉及一种加装脉动热管的节能型除湿机。



背景技术:

空气的相对湿度对生产和生活有着很大影响,所以除湿机应用在许多场所。空气除湿的方法很多,其中冷却除湿是使用最早且应用最广泛的一种除湿方式。请参见图1,现有普通冷却型除湿机由制冷系统和送风系统组成,制冷系统中由压缩机1压缩出来的高温高压制冷剂气体进入冷凝器2,将热量传递给空气后,冷凝成常温高压液体,经过膨胀阀3节流后进入蒸发器4,吸收空气中的热量后,变成低温低压气体,再次进入压缩机进行压缩,如此循环往复。送风系统中,湿空气从入口被吸入,经过蒸发器4被冷却到露点温度以下,凝结出水滴,积聚流入排水管道,这时相对湿度升高,温度降低,含湿量降低;接下来空气进入冷凝器2,吸收热量后,温度升高,相对湿度降低,最后空气由送风机5送入房间。

为节约能耗,在冷却型除湿机发展过程中,出现了一种热管型冷却除湿机,在现有普通冷却型除湿机中加装重力热管换热器回收蒸发器出口的冷量,预冷入口空气,使空气相对湿度增大,提高除湿效率。但是,重力热管只能竖直安装,蒸发段必须放置于冷凝段的下方才能正常工作,使除湿机的结构受到限制。



技术实现要素:

本实用新型为解决公知技术中存在的技术问题而提供一种加装脉动热管的节能型除湿机,该除湿机采用的脉动热管不会限制除湿机的结构,并且该除湿机的除湿效率高、能耗低,尺寸小、占用空间小,有利于机器的密集化和小型化。

本实用新型为解决公知技术中存在的技术问题所采取的技术方案是:一种加装脉动热管的节能型除湿机,包括蒸发器和冷凝器,该除湿机还包括脉动热管,所述脉动热管设有布置在所述蒸发器的空气入口之前的蒸发段和布置在所述蒸发器的空气出口之后的冷凝段。

所述脉动热管是脉动热管换热器的一个构件,所述脉动热管换热器包括壳体,在所述壳体内设有隔板,在所述隔板上固定有所述脉动热管,所述隔板将所述壳体内的空间隔成两个密闭腔室,一个所述密闭腔室为蒸发腔室,另一个所述密闭腔室为冷凝腔室, 所述脉动热管的蒸发段位于所述蒸发腔室内,所述脉动热管的冷凝段位于所述冷凝腔室内,所述蒸发腔室设有空气入口和空气出口,所述蒸发腔室的空气出口与所述蒸发器的空气入口连接,所述冷凝腔室设有空气入口和空气出口,所述冷凝腔室的空气入口与所述蒸发器的空气出口连接,所述冷凝腔室的空气出口与所述冷凝器的空气入口连接。

所述脉动热管缠绕在所述蒸发器上。

本实用新型具有的优点和积极效果是:采用脉动热管预冷蒸发器进口空气,回收蒸发器出口的冷量,减少了蒸发器的吸热量和冷凝器的放热量,提高除湿效率,减少了能耗。由于脉动热管的工作状态不受安装状态的影响,并且脉动热管的管径较重力热管更小,可使除湿机的结构简单、体积小,占用空间小,更利于机器的密集化和小型化。同时脉动热管的传热性能好,可以通过相变和气液震荡传递热量;适应性好,脉动热管形状可以任意弯折,可以在任意倾角下工作。

附图说明

图1为现有普通冷却型除湿机的结构框图;

图2为第一种加装脉动热管的节能型除湿机结构框图;

图3为第一种加装脉动热管的节能型除湿机的换热器主视图;

图4为第一种加装脉动热管的节能型除湿机的隔板结构示意图;

图5为第二种加装脉动热管的节能型除湿机结构框图;

图6为现有普通除湿机的焓湿图;

图7为本实用新型的加装脉动热管的节能型除湿机的焓湿图。

图中:1、压缩机,2、冷凝器,3、膨胀阀,4、蒸发器,5、风机,6、脉动热管换热器,7、脉动热管,8、壳体,9、隔板,10、蒸发腔室,11、冷凝腔室。

具体实施方式

为能进一步了解本实用新型的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下:

请参阅图1~图5,一种加装脉动热管换热器的节能型除湿机,该除湿机在现有普通冷却型除湿机的基础上,加装了脉动热管7。该除湿机包括蒸发器4和冷凝器2,还包括脉动热管7,所述脉动热管7设有布置在所述蒸发器4的空气入口之前的蒸发段和布置在所述蒸发器4的空气出口之后的冷凝段。

本实用新型采用脉动热管预冷蒸发器进口空气,回收蒸发器出口的空气冷量。湿空 气经过脉动热管蒸发段放热后进入蒸发器,冷空气经过脉动热管冷凝段吸热后进入冷凝器,提高除湿效率,降低能耗。

本实用新型根据预冷量的不同,设计了两种加装脉动热管换热器的节能型除湿机。

请参阅图2~图4,第一种加装脉动热管换热器的节能型除湿机,在现有普通除湿机的基础上,加装了脉动热管换热器6,也就是说,所述脉动热管7是脉动热管换热器6的一个构件,所述脉动热管换热器6包括壳体8,在所述壳体8内设有隔板9,在所述隔板9上固定有所述脉动热管7,所述隔板9将所述壳体8内的空间隔成两个密闭腔室,一个所述密闭腔室为蒸发腔室10,另一个所述密闭腔室为冷凝腔室11,所述脉动热管7的蒸发段位于所述蒸发腔室10内,所述脉动热管7的冷凝段位于所述冷凝腔室11内,所述蒸发腔室10设有空气入口和空气出口,所述蒸发腔室10的空气出口与所述蒸发器4的空气入口连接,所述冷凝腔室11设有空气入口和空气出口,所述冷凝腔室11的空气入口与所述蒸发器4的空气出口连接,所述冷凝腔室11的空气出口与所述冷凝器2的空气入口连接。

上述除湿机的除湿量较大,在工作过程中,需要的预冷量也较大,所以要求脉动热管换热器有足够的换热量,因此设计了如图2和图3所示的脉动热管换热器,在隔板9的每一行孔上固定一个脉动热管7,相邻的两个脉动热管间距相同,并且管道交错排布。

上述除湿机的除湿过程为:湿空气从除湿机入口被吸入,经过脉动热管换热器6的蒸发段后,再经过蒸发器4被冷凝至露点温度以下,凝结出水滴,水滴因重力滴下,流入排水管道;从蒸发器4出来的空气流经脉动热管换热器6的冷凝段后,流入冷凝器2内,换热升温后由风机5送入房间。

请参阅图5,第二种加装脉动热管换热器的节能型除湿机,在现有普通除湿机的基础上,将脉动热管7缠绕在所述蒸发器4上。这种除湿机的除湿量较小,为节约空间,使节能型除湿机结构更加紧凑,不另设脉动热管换热器,而是把脉动热管7安装在蒸发器4上,工作原理和第一种除湿器相同。根据除湿量来确定脉动热管的数量。

本实用新型的工作原理:

在现有普通冷却型除湿器中增加脉动热管7,湿空气先通过脉动热管7的蒸发段释放出一定热量,之后进入蒸发器4,在蒸发器4内被冷却至露点温度以下,析出水滴;然后,冷湿空气通过脉动热管7的冷凝段,吸收热量,使温度在进入风机5之前得到了一定提升。减少了蒸发器4的吸热量和冷凝器2的放热量,进而降低了节能型除湿器的能耗。

请参阅图6和图7,其中点1代表除湿机入口,点2代表蒸发器出口,点3代表冷凝器出口,点4代表脉动热管蒸发段出口,点5代表脉动热管冷凝段出口,各点的温度t、含湿量d、焓值h分别为t1,d1,h1,t2,d2,h2,t3,d3,h3,t4,d4,h4,t5,d5,h5

现有普通除湿机直接将质量为m0的湿空气送入蒸发器内,冷却后的空气直接送入冷凝器。其中:

干空气质量ma=m0/(1+0.001d1)

蒸发器吸热量Q0=(h1-h2)ma

除湿量m=(d1-d2)ma×10-3

除湿效率η=m/Wc

增加脉动热管换热器后,质量为m′0的湿空气通过脉动热管蒸发段后进入蒸发器,再通过脉动热管冷凝段后进入冷凝器。其中:

干空气质量m′a=m′0/(1+0.001d1)

蒸发器吸热量Q′o=(h4-h2)m′a

除湿量m′=(d1-d2)m′a×10-3

除湿效率η′=m′/W′c

与现有普通除湿机相比,制冷循环里压缩机耗功和蒸发器吸热量相同时,增加脉动热管换热器后,提高了除湿机处理湿空气的质量,所以除湿量增加,即m′>m。增加脉动热管换热器与普通除湿机除湿效率之比为除湿效率提高。

由于现有普通热管式换热器对结构的限制,本实用新型采用脉动热管换热器,脉动热管内充注纯水、乙醇等纯工质或纯水和乙醇等混合工质,管材采用铜管。根据房间面积和湿度需求,可单独设置通道使空气流过脉动热管换热器,或在蒸发器上安装脉动热管。

尽管上面结合附图对本实用新型的优选实施例进行了描述,但是本实用新型并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本实用新型的启示下,在不脱离本实用新型宗旨和权利要求所保护的范围的情况下,还可以作出很多形式,这些均属于本实用新型的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1