第二类吸收式热泵系统的制作方法

文档序号:4787937阅读:199来源:国知局
第二类吸收式热泵系统的制作方法
【专利摘要】本实用新型公开了一种第二类吸收式热泵系统,第二类吸收式热泵系统,包括蒸发器、吸收器、发生器以及冷凝器,冷凝器的液态冷剂出口通过第一管路与蒸发器的液态冷剂进口连通,蒸发器的液态冷剂出口通过第二管路与冷凝器的液态冷剂进口连通,还包括冷剂热交换器,冷剂热交换器包括能够相互热交换的第一换热管和第二换热管,且所述第一换热管串接于所述第一管路上,所述第二换热管串接于所述第二管路上。该第二类吸收式热泵系统的结构设计可以有效地解决第二类吸收式热泵系统的能源利用率较低以及高温热
【专利说明】第二类吸收式热泵系统

【技术领域】
[0001]本实用新型涉及吸收式热泵【技术领域】,更具体地说,涉及一种第二类吸收式热泵系统。

【背景技术】
[0002]第二类吸收式热泵系统是指利用大量的中温热源产生少量的高温有用热能。它以中温热源和低温冷源为输入,高温热源为输出。
[0003]如图1所示,现有技术中的第二类吸收式热泵系统包括蒸发器01、吸收器02、节流装置、发生器04以及冷凝器03,其中发生器04的冷剂蒸汽出口与冷凝器03的冷剂蒸汽进口连通,冷凝器03的液态冷剂出口与蒸发器01的液态冷剂进口连通,蒸发器01的冷剂蒸汽出口与吸收器02的冷剂蒸汽进口连通,吸收器02的稀溶液出口与发生器的稀溶液进口连通。另外,发生器04的浓溶液出口与吸收器02的浓溶液进口连通,蒸发器01的液态冷剂出口与冷凝器03的液态冷剂进口连通。机组运行时,蒸发器01中产生的冷剂蒸汽进入吸收器,吸收器02中的溶液吸收蒸汽后变成稀溶液,然后吸收器02中的稀溶液进入发生器,稀溶液在发生器中加热产生蒸汽后变成浓溶液,发生器04中产生的浓溶液回流至吸收器中再次吸收蒸汽变成稀溶液,如此完成溶液的循环;发生器04中产生的蒸汽进入冷凝器03中冷凝放热,蒸发器01中未蒸发的残存的液态冷剂会回流至冷凝器03中,冷凝器03中冷凝放热产生的液态冷剂和从蒸发器01回流至冷凝器中的液态冷剂混合后再次流入蒸发器中进行蒸发吸热,如此实现了液态冷剂的循环,其中液态冷剂可以为水。
[0004]然而上述制热过程中,从蒸发器01回流至冷凝器03中的液态冷剂温度较高,温度较高的液态冷剂直接流回冷凝器03中,使得从蒸发器回流出的液态冷剂的热量损失较严重,进而导致整个第二类吸收式热泵系统的能源浪费较严重,能源利用率较低。而且,当中温热源温度不够高,或低温冷源温度不够低时,现有技术中的溴化锂吸收式热泵制取高温热源的温度上限不高。例如,当中温热源温度为80°C,低温冷源温度为25°C时,制取高温热源的温度不高于105°C。为了提高高温热源的温度,现有技术仍然采用了单纯吸收式热泵循环,要么对蒸发-吸收过程进行分级,要么采用多个吸收式热泵循环串联。分级将导致机组的结构和运行控制十分复杂,且能效比低(C0P仅有0.2?0.3)。
[0005]综上所述,如何有效地提高能源利用率以及提高高温热源的温度,是目前本领域技术人员急需解决的问题。
实用新型内容
[0006]有鉴于此,本实用新型的目的在于提供一种第二类吸收式热泵系统,该第二类吸收式热泵系统的结构设计可以有效地提高能源利用率以及提高高温热源的温度。
[0007]为了达到上述目的,本实用新型提供如下技术方案:
[0008]一种第二类吸收式热泵系统,包括蒸发器、吸收器、发生器以及冷凝器,所述冷凝器的液态冷剂出口通过第一管路与蒸发器的液态冷剂进口连通,所述蒸发器的液态冷剂出口通过第二管路与冷凝器的液态冷剂进口连通,所述吸收器的稀溶液出口通过第三管路与发生器的稀溶液进口连通,所述发生器的浓溶液出口通过第四管路与吸收器的浓溶液进口连通,还包括冷剂热交换器,所述冷剂热交换器包括能够相互热交换的第一换热管和第二换热管,且所述第一换热管串接于所述第一管路上,所述第二换热管串接于所述第二管路上。
[0009]优选地,上述第二类吸收式热泵系统中,所述发生器的冷剂蒸汽出口通过第五管路与冷凝器的冷剂蒸汽进口连通,且所述第五管路上串接有第一压缩机。
[0010]优选地,上述第二类吸收式热泵系统中,所述蒸发器的冷剂蒸汽出口通过第六管路与吸收器的冷剂蒸汽进口连通,且所述第六管路上串接有第二压缩机。
[0011 ] 优选地,上述第二类吸收式热泵系统中,包括溶液热交换器,所述溶液热交换器包括能够相互热交换的第三换热管和第四换热管,且所述第三换热管串接于所述第三管路上,所述第四换热管串接于所述第四管路上。
[0012]优选地,上述第二类吸收式热泵系统中,所述第三管路上和第二管路上均串接有节流装置,且所述第一管路上还串接有冷剂泵,所述第四管路上还串接有溶液泵。
[0013]优选地,上述第二类吸收式热泵系统中,所述蒸发器、吸收器和发生器内部均设置有喷淋装置,所述蒸发器中的液态冷剂经喷淋装置喷淋,所述吸收器中的浓溶液经喷淋装置喷淋,所述发生器中的稀溶液经喷淋装置喷淋。
[0014]优选地,上述第二类吸收式热泵系统中,所述第一换热管和第二换热管相互接触。
[0015]本实用新型提供的第二类吸收式热泵系统,包括蒸发器、吸收器、发生器以及冷凝器。其中,发生器的冷剂蒸汽出口与冷凝器的冷剂蒸汽进口连通,冷凝器的液态冷剂出口通过第一管路与蒸发器的液态冷剂进口连通,蒸发器的冷剂蒸汽出口与吸收器的冷剂蒸汽进口连通,吸收器的稀溶液出口通过第三管路与发生器的稀溶液进口连通。另外,蒸发器的液态冷剂出口通过第二管路与冷凝器的液态冷剂进口连通,发生器的浓溶液出口通过第四管路与吸收器的浓溶液进口连通。重点在于,还包括冷剂热交换器,并且冷剂热交换器包括能够相互热交换的第一换热管和第二换热管,即第一换热管中的流体与第二换热管中的流体能够相互热交换。第一换热管串接于第一管路上,第二换热管串接于第二管路上,即从冷凝器流出的液态冷剂流经第一换热管后流至蒸发器,从蒸发器流出的液态冷剂流经第二换热管后流至冷凝器。
[0016]应用本实用新型提供的第二类吸收式热泵系统时,由于蒸发器的冷剂蒸汽出口与吸收器的冷剂蒸汽进口连通,蒸发器中产生的冷剂蒸汽进入吸收器,吸收器中的溶液吸收蒸汽后变成稀溶液,然后吸收器中的稀溶液流经第三管路进入发生器,稀溶液在发生器中加热产生蒸汽后变成浓溶液,此时发生器中产生蒸汽和浓溶液,发生器中产生的浓溶液流经第四管路回流至吸收器中再次吸收蒸汽变成稀溶液,如此完成溶液的循环;发生器中产生的蒸汽进入冷凝器中冷凝放热,蒸发器中未蒸发的残存的液态冷剂会经第二管路回流至冷凝器中,冷凝器中冷凝放热产生的液态冷剂和从蒸发器回流至冷凝器中的液态冷剂混合后经第一管路再次流入蒸发器中进行蒸发吸热,如此实现了液态冷剂的循环,其中液态冷剂可以为水。上述制热过程中由冷凝器流出的液态冷剂需流经冷剂热交换器的第一换热管后流至蒸发器,从蒸发器流出的液态冷剂需流经冷剂热交换器的第二换热管后流至冷凝器,第一换热管与第二换热管能够相互进行热交换,故第一管路内的液态冷剂与第二管路内的液态冷剂在冷剂热交换器中进行热交换,如此利用第二管路中的从蒸发器回流出的液态冷剂的热量对第一管路中的冷凝器流出的液态冷剂进行升温,充分利用了从蒸发器回流出的液态冷剂的热量,提高了能源利用率。另外,从冷凝器流出的液态冷剂在冷剂热交换器中升温相应的增加了中温热源的温度,从蒸发器回流出的液态冷剂在冷剂热交换器中降温相应的降低了低温热源的温度,进而提高了高温热源的温度。

【专利附图】

【附图说明】
[0017]为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0018]图1为现有技术中第二类吸收式热泵系统的结构示意图;
[0019]图2为本实用新型第一种实施例提供的第二类吸收式热泵系统的结构示意图;
[0020]图3为本实用新型第二种实施例提供的第二类吸收式热泵系统的结构示意图;
[0021]图4为本实用新型第三种实施例提供的第二类吸收式热泵系统的结构示意图。
[0022]附图中标记如下:
[0023]01-蒸发器、02-吸收器、03-冷凝器、04-发生器;
[0024]1-第一管路、2-蒸发器、3-喷淋装置、4a_第一压缩机、4b_第二压缩机、5_吸收器、6-第四管路、7-第三管路、8-溶液热交换器、9-节流装置、10-溶液泵、11-发生器、12-冷凝器、13-冷剂泵、14-冷剂热交换器、15-第二管路。

【具体实施方式】
[0025]本实用新型的目的在于提供一种第二类吸收式热泵系统,该第二类吸收式热泵系统的结构设计可以有效地提高能源利用率以及提高高温热源的温度。
[0026]下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
[0027]请参阅图2-图4,本实用新型提供的第二类吸收式热泵系统,包括蒸发器2、吸收器5、发生器11以及冷凝器12。其中,发生器11的冷剂蒸汽出口与冷凝器12的冷剂蒸汽进口连通,冷凝器12的液态冷剂出口通过第一管路I与蒸发器2的液态冷剂进口连通,蒸发器2的冷剂蒸汽出口与吸收器5的冷剂蒸汽进口连通,吸收器5的稀溶液出口通过第三管路7与发生器11的稀溶液进口连通。另外,蒸发器2的液态冷剂出口通过第二管路15与冷凝器12的液态冷剂进口连通,发生器11的浓溶液出口通过第四管路6与吸收器5的浓溶液进口连通。重点在于,还包括冷剂热交换器14,并且冷剂热交换器14包括能够相互热交换的第一换热管和第二换热管,即第一换热管中的流体与第二换热管中的流体能够相互热交换。第一换热管串接于第一管路I上,第二换热管串接于第二管路15上,即从冷凝器12流出的液态冷剂流经第一换热管后流至蒸发器2,从蒸发器2流出的液态冷剂流经第二换热管后流至冷凝器12。
[0028]应用本实用新型提供的第二类吸收式热泵系统时,由于蒸发器2的冷剂蒸汽出口与吸收器5的冷剂蒸汽进口连通,蒸发器2中产生的冷剂蒸汽进入吸收器5,吸收器5中的溶液吸收蒸汽后变成稀溶液,然后吸收器5中的稀溶液流经第三管路7进入发生器11,稀溶液在发生器11中加热产生蒸汽后变成浓溶液,此时发生器11中产生蒸汽和浓溶液,发生器11中产生的浓溶液流经第四管路6回流至吸收器5中再次吸收蒸汽变成稀溶液,如此完成溶液的循环;发生器11中产生的蒸汽进入冷凝器12中冷凝放热,蒸发器2中未蒸发的残存的液态冷剂会经第二管路15回流至冷凝器12中,冷凝器12中冷凝放热产生的液态冷剂和从蒸发器2回流至冷凝器12中的液态冷剂混合后经第一管路I再次流入蒸发器2中进行蒸发吸热,如此实现了液态冷剂的循环,其中液态冷剂可以为水。上述制热过程中由冷凝器12流出的液态冷剂需流经冷剂热交换器14的第一换热管后流至蒸发器2,从蒸发器2流出的液态冷剂需流经冷剂热交换器14的第二换热管后流至冷凝器12,第一换热管与第二换热管能够相互进行热交换,故第一管路I内的液态冷剂与第二管路15内的液态冷剂在冷剂热交换器14中进行热交换,如此利用第二管路15中的从蒸发器2回流出的液态冷剂的热量对第一管路I中的冷凝器12流出的液态冷剂进行升温,充分利用了从蒸发器2回流出的液态冷剂的热量,提高了能源利用率。另外,从冷凝器12流出的液态冷剂在冷剂热交换器14中升温相应的增加了中温热源的温度,从蒸发器2回流出的液态冷剂在冷剂热交换器14中降温相应的降低了低温热源的温度,进而提高了高温热源的温度。
[0029]其中,进入冷凝器12的热源为低温热源,进入发生器11的热源为中温热源,进入吸收器5的热源为高温热源。
[0030]其中,为了增加该第二类吸收式热泵系统的制热效果,发生器11的冷剂蒸汽出口通过第五管路与冷凝器12的冷剂蒸汽进口连通,且第五管路上还可以串接有第一压缩机4a。即从发生器11流出的蒸汽经第一压缩机4a压缩后进入冷凝器12,如此设置使得进入冷凝器12中的蒸汽量大大增加,大大提高冷凝器12中的蒸汽压力,提高了冷凝器12中产生的液体冷剂的量,进而可以大大提高该第二类吸收式热泵系统的制热效果。
[0031]进一步地,蒸发器2的冷剂蒸汽出口通过第六管路与吸收器5的冷剂蒸汽进口连通,且第六管路上还可以串接有第二压缩机4b,即从蒸发器2流出的蒸汽经第二压缩机4b压缩后进入吸收器5中,如此设置使得进入吸收器5中的蒸汽量大大增加,大大提高吸收器5中的蒸汽压力,提高了吸收器5中吸收水蒸气的量,进一步大大提高该第二类吸收式热泵系统产生高温热源温度,并提高机组C0P。优选地,第二压缩机4b为大容积流量、高压缩比的压缩机,例如离心式压缩机。在相同中温热源,低温冷却水温度,以及不分级、不增加吸收式循环数量的前提下,在第二类吸收式热泵系统的蒸发-吸收过程中设置压缩机,能够大幅提高吸收式热泵产生热源的温度,并实现较高的能源利用效率。例如,当中温热源温度为80°C,低温冷却水温度为25°C时,制取高温热源的温度130?145°C,COP为0.4以上。
[0032]综合效率和成本,优选地,压缩机仅设置于蒸发-吸收过程,不考虑成本的情况,在蒸发-吸收过程和冷凝-发生过程都设置压缩机。
[0033]另外,该第二类吸收式热泵系统还可以包括溶液热交换器8,溶液热交换器8包括能够相互热交换的第三换热管和第四换热管,且第三换热管串接于第三管路7上,第四换热管串接于第四管路6上。即第三换热管中的流体与第四换热管中的流体能够相互热交换。从吸收器5流出的稀溶液流经第三换热管后流至发生器11,从发生器11流出的浓溶液流经第四换热管后流至吸收器5。第三管路7内的稀溶液与第四管路6内的浓溶液在溶液热交换器8中进行热交换,如此利用第四管路6中的从发生器11流出的浓溶液的热量对第三管路7中的吸收器5流出的稀溶液进行升温,充分利用了从发生器11流出的浓溶液的热量,提高了能源利用率。
[0034]优选地,第二管路15上设置有节流装置9,即从蒸发器2的液态冷剂出口流出的液态冷剂经节流装置9节流后流至冷凝器12。第三管路7上设置有节流装置9,即吸收器5的稀溶液出口流出的稀溶液经节流装置9节流后流至发生器11。如此通过节流装置9可以加快从蒸发器2流出的液态冷剂和从吸收器5流出的稀溶液的流速。节流装置9可以为毛细管、膨胀阀等。
[0035]进一步地,第一管路I上还可以串接有冷剂泵13,如此增加了由冷凝器12流至蒸发器2件的液体冷剂的流量和流速。第四管路6上也可以串接有溶液泵10,以此增加由吸收器5流至发生器11件的稀溶液的流量和流速。
[0036]为了增加换热面积,蒸发器2中可以设置有喷淋装置3,进入蒸发器2中的液态冷剂经喷淋装置3喷淋至其内部,如此喷淋的液态冷剂的换热面积增加,更有利于吸热。同样的,吸收器5中也可以设置有喷淋装置3,吸收器5中的浓溶液经喷淋装置3喷淋,如此喷淋的溶液的换热面积增加,更有利于吸收蒸汽。发生器11中也可以设置有喷淋装置3,发生器11中的稀溶液经喷淋装置3喷淋,如此喷淋的溶液的换热面积增加,更有利于吸热。
[0037]具体的,第一换热管和第二换热管应该相互接触以实现热交换。为了增加第一换热管和第二换热管之间的接触面积,第一换热管和第二换热管可以为相互盘绕的螺旋管,或者第一换热管和第二换热管均为相互接触的方管等。第一换热管可以与第一管路I为一体式结构也可以通过焊接等与第一管路I连接。第二换热管可以与第二管路15为一体式结构也可以通过焊接等与第二管路15连接。
[0038]相应的,第三换热管和第四换热管应该相互接触以实现热交换。为了增加第三换热管和第四换热管之间的接触面积,第三换热管和第四换热管可以为相互盘绕的螺旋管,或者第三换热管和第四换热管均为相互接触的方管等。第三换热管可以与第三管路7为一体式结构也可以通过焊接等与第三管路7连接。第四换热管可以与第四管路6为一体式结构也可以通过焊接等与第四管路6连接。
[0039]本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
[0040]对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本实用新型。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本实用新型的精神或范围的情况下,在其它实施例中实现。因此,本实用新型将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
【权利要求】
1.一种第二类吸收式热泵系统,包括蒸发器(2)、吸收器(5)、发生器(11)以及冷凝器(12),所述冷凝器(12)的液态冷剂出口通过第一管路(I)与蒸发器(2)的液态冷剂进口连通,所述蒸发器(2)的液态冷剂出口通过第二管路(15)与冷凝器(12)的液态冷剂进口连通,所述吸收器(5)的稀溶液出口通过第三管路(7)与发生器(11)的稀溶液进口连通,所述发生器(11)的浓溶液出口通过第四管路(6)与吸收器(5)的浓溶液进口连通,其特征在于,还包括冷剂热交换器(14),所述冷剂热交换器(14)包括能够相互热交换的第一换热管和第二换热管,且所述第一换热管串接于所述第一管路(I)上,所述第二换热管串接于所述第二管路(15)上。
2.根据权利要求1所述的第二类吸收式热泵系统,其特征在于,所述发生器(11)的冷剂蒸汽出口通过第五管路与冷凝器(12)的冷剂蒸汽进口连通,且所述第五管路上串接有第一压缩机(4a)。
3.根据权利要求1或2所述的第二类吸收式热泵系统,其特征在于,所述蒸发器(2)的冷剂蒸汽出口通过第六管路与吸收器(5)的冷剂蒸汽进口连通,且所述第六管路上串接有第二压缩机(4b)。
4.根据权利要求1所述的第二类吸收式热泵系统,其特征在于,包括溶液热交换器(8),所述溶液热交换器(8)包括能够相互热交换的第三换热管和第四换热管,且所述第三换热管串接于所述第三管路(7)上,所述第四换热管串接于所述第四管路(6)上。
5.根据权利要求1所述的第二类吸收式热泵系统,其特征在于,所述第三管路(7)上和第二管路(15)上均串接有节流装置(9),且所述第一管路(I)上还串接有冷剂泵(13),所述第四管路(6)上还串接有溶液泵(10)。
6.根据权利要求1所述的第二类吸收式热泵系统,其特征在于,所述蒸发器(2)、吸收器(5)和发生器(11)内部均设置有喷淋装置(3),所述蒸发器(2)中的液态冷剂经喷淋装置(3)喷淋,所述吸收器(5)中的浓溶液经喷淋装置(3)喷淋,所述发生器(11)中的稀溶液经喷淋装置(3)喷淋。
7.根据权利要求1所述的第二类吸收式热泵系统,其特征在于,所述第一换热管和第二换热管相互接触。
【文档编号】F25B15/02GK204027065SQ201420475822
【公开日】2014年12月17日 申请日期:2014年8月21日 优先权日:2014年8月21日
【发明者】王升, 刘华, 张治平 申请人:珠海格力电器股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1