多压力混合的制冷剂冷却方法和系统与流程

文档序号:14193358阅读:623来源:国知局
多压力混合的制冷剂冷却方法和系统与流程



背景技术:

本领域熟知多种液化系统来冷却、液化并任选地子-冷却天然气,例如单混合的制冷剂(smr)循环、丙烷-预冷却的混合的制冷剂(c3mr)循环、双混合的制冷剂(dmr)循环、c3mr-氮混合(例如ap-xtm)循环、氮气或甲烷膨胀循环和梯级循环。通常,在这样的系统中,天然气通过与一种或多种制冷剂间接热交换来冷却、液化并任选地子冷却。可以使用多种制冷剂,例如混合的制冷剂、纯组分、两相制冷剂、气相制冷剂等。混合的制冷剂(mr),其是氮气、甲烷、乙烷/乙烯、丙烷、丁烷和戊烷的混合物,已用于许多基本负荷液化天然气(lng)工厂。通常基于进料气体组成和操作条件来优化mr流的组成。

制冷剂在包括一个或多个热交换器和制冷剂压缩系统的制冷剂回路中循环。制冷剂回路可以是闭环或开环。天然气通过间接热交换器和热交换器中的制冷剂在一个或多个制冷剂回路中进行间接热交换来冷却、液化和/或子冷却。

制冷剂压缩系统包括用于压缩和冷却循环制冷剂的压缩顺序,以及驱动组件以提供驱动压缩机所需的动力。对于预冷却的液化系统,驱动程序组件中的驱动程序的数量和类型以及压缩顺序对预冷系统和液化系统所需功率的比例有影响。制冷剂压缩系统是液化系统的关键组成,因为制冷剂需要在膨胀之前被压缩成高压并冷却,以产生冷的低压制冷剂流,其提供热量责任以冷却、液化并任选地子冷却天然气。

dmr法包括两种混合的制冷剂流,第一用于预冷却供料天然气并且第二用于液化预冷却的天然气。两种混合的制冷剂流穿过两种制冷剂回路:预冷系统内的预冷却制冷剂回路和液化系统内的液化制冷剂回路。在各制冷剂回路中,制冷剂流蒸发,同时提供冷却和液化天然气进料流所需的冷却责任。当制冷剂流在单压水平下蒸发时,系统和过程被称为“单压”。当制冷剂流在两个或多个压力水平下蒸发时,系统和过程被称为“多压”。参照图1,现有技术的dmr法示于冷却和液化系统100。本文所述dmr法包括具有两个压力水平的单压力液化系统和多压力预冷系统。然而,可存在任何数量的压力水平。进料流,其优选是天然气,在预处理段(未示出)中通过已知方法清洗和干燥以除去水、酸性气体(例如co2和h2s)和其他污染物如汞,从而导致预处理的进料流102。预处理的进料流102,其基本上无水,在预冷系统134预冷却以产生第二预冷却的天然气流106,并且在主要低温热交换器(mche)164进一步冷却、液化和/或子-冷却以产生lng流108。lng流108通常通过阀门或涡轮机(未示出)将其压下,然后送往lng储存罐(未示出)。在罐内压力降低和/或煮沸期间产生的任何闪蒸可用作工厂的燃料、回收进料和/或发送至火炬。

预处理的进料流102在第一预冷热交换器160冷却以产生第一预冷却的天然气流104。第一预冷却的天然气流104在第二预冷热交换器162冷却以产生第二预冷却的天然气流106。第二预冷却的天然气流106液化和随后子冷却以产生温度在约-170摄氏度和约-120摄氏度之间的lng流108,优选在约-170摄氏度和约-140摄氏度之间。图1中所示的mche164是具有两种管束(暖束166和冷束167)的线圈卷绕的热交换器。然而,可以使用任何数量的束和任何交换器类型。尽管图1显示了预冷回路中的两个预冷热交换器和两个压力水平,但是可以使用任何数量的预冷热交换器和压力水平。预冷热交换器在图1中显示为线圈卷绕的热交换器。然而,它们可以是板和翅片热交换器、壳和管热交换器、或任何其他适合于预冷却天然气的热交换器。

术语“基本上无水”是指预处理的进料流102中的任何残留水以足够低的浓度存在,以防止与下游冷却和液化过程中的水冻结相关的操作问题。在本文所述的实施方案中,水浓度优选为1.0ppm以下,更优选为在0.1ppm和0.5ppm之间。

dmr法中使用的预冷却制冷剂是本文称为暖混合的制冷剂(wmr)或“第一制冷剂”的混合的制冷剂(mr),包含诸如氮气、甲烷、乙烷/乙烯、丙烷、丁烷和其它烃组分的组分。如图1所示,低压wmr流110从第二预冷热交换器162的壳侧的暖端取出,并在wmr压缩机112的第一压缩阶段112a中压缩。中压wmr流118从第一预冷热交换器160的壳侧的暖端取出,并作为侧流引入wmr压缩机112,其中其和来自第一压缩阶段112a的压缩流(未示出)混合。混合的流(未示出)在wmr压缩机112的第二wmr压缩阶段112b中压缩以产生压缩的wmr流114。低压wmr流110和中压wmr流118中存在的任何液体在蒸汽-液体分离装置(未示出)中除去。

压缩的wmr流114冷却并优选在wmr后冷却器115冷凝以产生第一冷却压缩的wmr流116,其引入第一预冷热交换器160以在管回路进一步冷却,从而产生第二冷却压缩的wmr流120。第二冷却压缩的wmr流120分为两个部分:第一部分122和第二部分124。第二冷却压缩的wmr流122的第一部分在第一wmr膨胀装置126膨胀以产生第一膨胀的wmr流128,其引入第一预冷热交换器160的壳侧以提供制冷责任。第二冷却压缩的wmr流124的第二部分引入第二预冷热交换器162以进一步冷却,其后其在第二wmr膨胀装置130膨胀以产生第二膨胀的wmr流132,然后引入第二预冷热交换器162的壳侧以提供制冷责任。在从预冷热交换器取出后压缩和冷却wmr的方法在本文中通常称为wmr压缩顺序。

虽然图1示出了在单压缩机主体内执行压缩阶段112a和112b,但是它们可以在两个或更多个分开的压缩机中执行。另外,中间冷却热交换器可以设置在多个阶段之间。wmr压缩机112可以是任何类型的压缩机,例如离心、轴向、正位移或任何其它压缩机类型。

在dmr法中,液化和子冷却通过针对第二混合的制冷剂流热交换预冷却的天然气来执行,第二混合的制冷剂流本文中称为冷混合的制冷剂(cmr)或“第二制冷剂”。

暖低压cmr流140从mche164的壳侧的暖端取出,通过吸鼓(未示出)传送以分离出任何液体,并且蒸汽流在cmr压缩机141中压缩以产生压缩的cmr流142。暖低压cmr流140通常在温度在或接近wmr预冷却温度、优选小于约-30摄氏度、压力小于10巴(145磅/平方英寸)下取出。压缩的cmr流142在cmr后冷却器143冷却以产生压缩冷却的cmr流144。另外的相分离器、压缩机和后冷却器可存在。在从mche164的暖端取出后压缩和冷却cmr的方法在本文中通常称为cmr压缩顺序。

压缩冷却的cmr流144然后针对蒸发wmr在预冷系统134冷却。压缩冷却的cmr流144在第一预冷热交换器160冷却以产生第一预冷却的cmr流146,然后在第二预冷热交换器162冷却以产生第二预冷却的cmr流148,其可以根据预冷却温度和cmr流的组成而完全冷凝或两相。图1示出布置,其中第二预冷却的cmr流148是两相并发送至cmr相分离器150以产生cmr液体(cmrl)流152和cmr蒸汽(cmrv)流151,它们都被送回mche164以进一步冷却。离开相分离器的液体流在工业中称为mrl,并且离开相分离器的蒸汽流在工业中称为mrv,即使它们随后液化。

在mche164的两个独立的回路中,cmrl流152和cmrv流151均被冷却。cmrl流152在mche164的暖束166中被冷却并部分液化,从而导致冷流在压力下通过cmrl膨胀装置153,以产生膨胀的cmrl流154,其被送回到mche164的壳侧,以提供暖束166所需的制冷。cmrv流151在暖束166中冷却,并且随后在mche164的冷束167中冷却,跨越cmrv膨胀装置155降低压力,以产生膨胀的cmrv流156,其被引入到mche164中以提供冷束167和暖束166所需的制冷。

mche164和预冷热交换器160可以是适用于天然气冷却和液化的任何交换器,例如线圈卷绕的热交换器、板和翅片热交换器、或壳和管热交换器。线圈卷绕的热交换器是天然气液化的现有交换器的状态,并且包括至少一个管束,其包括用于流动过程的多个螺旋缠绕管和用于流动冷制冷剂流的壳体空间。

在图1所示的布置中,第一预冷热交换器160的冷端温度低于20摄氏度,优选低于约10摄氏度,更优选低于约0摄氏度。第二预冷热交换器162的冷端温度低于10摄氏度,优选低于约0摄氏度,更优选低于约-30摄氏度。因此,第二预冷热交换器的温度低于第一预冷热交换器。

混合的制冷剂循环的关键优点是可以优化混合的制冷剂流的组成,以调节热交换器中的冷却曲线、出口温度,从而调整工艺效率。这可以通过调节冷却过程的各个阶段的制冷剂流的组成来实现。例如,具有高浓度乙烷和较重组分的混合的制冷剂非常适合作为预冷却制冷剂,而具有高浓度甲烷和氮气的制冷剂非常适合作为过冷制冷剂。

在图1所示的布置中,为第一预冷热交换器提供制冷责任的第一膨胀的wmr流128的组成相同于为第二预冷热交换器162提供制冷责任的第二膨胀的wmr流132的组成。由于第一和第二预冷热交换器冷却到不同的温度,所以对于两个交换器使用相同的制冷剂组成是低效的。另外,使用三个或更多个预冷热交换器的效率提高。

降低的效率导致生产相同量的lng所需的功率增加。降低的效率进一步导致整体预冷却温度在固定的可用预冷却驱动器功率的温度。这将制冷负荷从预冷系统转移到液化系统,使得mche更大,并且增加了液化电力负荷,这从资本成本和可操作性的角度来看可能是不期望的。

解决这个问题的一个方法是对于预冷却的每个阶段都有两个单独的闭环制冷剂回路。这意味着对于第一预冷热交换器160和第二预冷热交换器162分别具有混合的制冷剂回路。这将允许两个制冷剂流的组合独立地优化,并因此提高效率。然而,这种方法对于每个预冷热交换器将需要单独的压缩系统,这将导致增加的资本成本、占地面积和操作复杂性,这是不期望的。

本发明是高效率、低资本成本、操作简单、占地面积小、灵活的dmr法,解决了上述问题,并提供了比现有技术更大的改进。

发明概述

提供本

技术实现要素:
以简化形式介绍一些概念,这些概念在下面的详细描述中进一步描述。本发明内容不旨在标识所要求保护的主题的主要特征或基本特征,也不旨在用于限制所要求保护的主题的范围。

一些实施方案如下所述并由下面的权利要求书定义,包括对lng液化过程的预冷却部分的改进。一些实施方案通过在预冷器部分中使用多个预冷却热交换段来满足本领域的需要,并且将用于向预冷却热交换段提供制冷责任的制冷剂引入到不同压力下的压缩系统。一些实施方案通过引导在压缩系统的压缩阶段之间中间冷却和分离的制冷剂的流体的液体部分来满足本领域的需要。

下面概述了系统和方法的几个方面。

方面1:一种通过在多个热交换段的每一个中和第一制冷剂间接热交换来冷却包含烃流体的烃进料流和包含第二制冷剂的第二制冷剂进料流的方法,其中该方法包括:

(a)将所述烃进料流和所述第二制冷剂进料流引入多个热交换段的最暖热交换段;

(b)在多个热交换段的每个中冷却所述烃进料流和所述第二制冷剂进料流,以产生预冷却的烃流和预冷却的第二制冷剂流;

(c)在主热交换器针对所述第二制冷剂进一步冷却和液化所述预冷却的烃流(206,306,406,506),以产生液化的烃流;

(d)从多个热交换段的最冷热交换段中取出低压第一制冷剂流,并且在压缩系统的至少一个压缩阶段中压缩低压第一制冷剂流;

(e)从多个热交换段的第一热交换段取出中压第一制冷剂流,所述第一热交换段暖于最冷热交换段;

(f)在步骤(d)和(e)已经执行以后,联合所述低压第一制冷剂流和所述中压第一制冷剂流以产生联合的第一制冷剂流;

(g)从所述压缩系统取出高-高压第一制冷剂流;

(h)在至少一个冷却单元中冷却和至少部分冷凝所述高-高压第一制冷剂流,以产生冷却的高-高压第一制冷剂流;

(i)将冷却的高-高压第一制冷剂流引入第一蒸汽-液体分离装置,以产生第一蒸汽制冷剂流和第一液体制冷剂流;

(j)将所述第一液体制冷剂流引入所述多个热交换段的最暖热交换段;

(k)在所述多个热交换段的最暖热交换段中冷却所述第一液体制冷剂流以产生第一冷却的液体制冷剂流;

(l)膨胀至少一部分的所述第一冷却的液体制冷剂流以产生第一膨胀的制冷剂流;

(m)将所述第一膨胀的制冷剂流引入所述最暖热交换段,以提供制冷责任来提供步骤(b)的第一部分冷却;

(n)在至少一个压缩阶段压缩步骤(i)的至少一部分的第一蒸汽制冷剂流;

(o)在至少一个冷却单元冷却和冷凝压缩的第一制冷剂流以产生冷凝的第一制冷剂流,所述至少一个冷却单元为步骤(n)的至少一个压缩阶段的下游并流体流动交流;

(p)将所述冷凝的第一制冷剂流引入多个热交换段的最暖热交换段;

(q)在第一热交换段和最冷热交换段中冷却所述冷凝的第一制冷剂流,以产生第一冷却冷凝的制冷剂流;

(r)膨胀所述第一冷却冷凝的制冷剂流以产生第二膨胀的制冷剂流;和

(s)将所述第二膨胀的制冷剂流引入所述最冷热交换段,以提供制冷责任来提供步骤(b)的第二部分冷却。

方面2:方面1所述的方法,其中步骤(e)还包括从所述多个热交换段的第一热交换段取出中压第一制冷剂流,所述第一热交换段暖于所述最冷热交换段,其中所述第一热交换段也是最暖热交换段。

方面3:方面1至2中任一项所述的方法,其中步骤(n)还包括在至少一个压缩阶段压缩步骤(i)的第一蒸汽制冷剂流,以形成步骤(o)的压缩的第一制冷剂流。

方面4:方面1至3中任一项所述的方法,还包括在执行步骤(g)之前在所述压缩系统的至少一个压缩阶段压缩步骤(f)的联合的第一制冷剂流。

方面5:方面1至4中任一项所述的方法,其中步骤(e)还包括从多个热交换段的第一热交换段取出中压第一制冷剂流,并且在所述压缩系统的至少一个压缩阶段压缩中压第一制冷剂流,所述第一热交换段暖于所述最冷热交换段。

方面6:方面1至5中任一项所述的方法,还包括:

(t)在步骤(g)之前从所述压缩系统取出第一中间制冷剂流;和

(u)在步骤(g)之前在至少一个冷却单元冷却第一中间制冷剂流以产生冷却的第一中间制冷剂流,并且将冷却的第一中间制冷剂流引入所述压缩系统。

方面7:方面1至6中任一项所述的方法,还包括:

(t)从多个热交换段的最暖热交换段取出高压第一制冷剂流;和

(u)在步骤(g)之前将高压第一制冷剂流引入所述压缩系统。

方面8:方面7所述的方法,还包括:

(v)从多个热交换段的最暖热交换段取出高压第一制冷剂流;和

(w)在步骤(g)之前联合高压第一制冷剂流和冷却的第一中间制冷剂流,以形成联合的第一中间制冷剂流,并且将所述联合的第一中间制冷剂流引入所述压缩系统。

方面9:方面1至8中任一项所述的方法,其中步骤(n)还包括:

(t)从所述压缩系统取出第二中间制冷剂流;和

(u)在至少一个冷却单元冷却所述第二中间制冷剂流,以产生冷却的第二中间制冷剂流。

方面10:方面9所述的方法,还包括:

(v)将所述冷却的第二中间制冷剂流引入第二蒸汽-液体分离装置,以产生第二蒸汽制冷剂流和第二液体制冷剂流;

(w)将所述第二液体制冷剂流引入多个热交换段的最暖热交换段;和

(x)在产生流(o)的压缩的第一制冷剂流之前,在所述压缩系统的至少一个压缩阶段压缩所述第二蒸汽制冷剂流。

方面11:方面1至10中任一项所述的方法,其中步骤(q)还包括在所述第一热交换段冷却之前,在所述最暖热交换段冷却所述冷凝的第一制冷剂流。

方面12:方面1至11中任一项所述的方法,其中步骤(d)的低压第一制冷剂流、步骤(f)的联合的第一制冷剂流、和步骤(i)的第一蒸汽制冷剂流在单压缩机的多个压缩阶段被压缩。

方面13:方面1至12中任一项所述的方法,其中第一液体制冷剂流具有由少于50%的乙烷和较轻组分组成的第一组分。

方面14:方面1至13中任一项所述的方法,其中第一蒸汽制冷剂流具有第二组分,其组成由比乙烷轻40%以上的组分组成。

方面15:用于冷却烃进料流的设备,包括:

多个热交换段,所述多个热交换段包括最暖热交换段和最冷热交换段;

延伸通过多个热交换段的每个的第一烃回路,所述第一烃回路在烃流体供应下游并进行流体流动交流;

第二制冷剂回路,其延伸通过多个热交换段的每个,所述第二制冷剂回路含有第二制冷剂,

第一预冷却制冷剂回路,其延伸通过所述最暖热交换段,所述第一预冷却制冷剂回路含有第一制冷剂;

第二预冷却制冷剂回路,其延伸通过所述最暖热交换段和所述最冷热交换段,所述第二预冷却制冷剂回路含有所述第一制冷剂;

第一预冷却制冷剂回路入口,位于第一预冷却制冷剂回路的上游端;第一压力降低装置,位于第一预冷却制冷剂回路的下游端;和第一膨胀的制冷剂管道,在最暖热交换段的第一压力降低装置和第一冷回路下游并进行流体流动交流;

第二预冷却制冷剂回路入口,位于第二预冷却制冷剂回路的上游端;第二压力降低装置,位于第二预冷却制冷剂回路的下游端;和第二膨胀的制冷剂管道,在最冷热交换段的第二压力降低装置和第二冷回路下游并进行流体流动交流;

压缩系统,包括:

低压第一制冷剂管道,流体流动交流所述最冷热交换段的第一压缩阶段和暖端;

中压第一制冷剂管道,流体流动交流第一热交换段的第二压缩阶段和暖端;

在所述第二压缩阶段下游的第一后冷却器;

第一蒸汽-液体分离装置,具有:在第一后冷却器下游并进行流体流动交流的第一入口;第一蒸汽出口;位于第一蒸汽-液体分离装置的上半部分;第一液体出口,位于第一蒸汽-液体分离装置的下半部分;第一液体出口,在第一预冷却制冷剂回路入口上游并进行流体流动交流;

在所述第一蒸汽出口下游的第三压缩阶段;和

在所述第三压缩阶段下游的第二后冷却器;

其中所述最暖热交换段操作性地被构造为部分预冷却:流过所述第一烃回路的烃流体、流过所述第二制冷剂回路的第二制冷剂、流过所述第一预冷却第一制冷剂回路的第一制冷剂、和针对所述第一制冷剂流过所述最暖热交换段的第一冷回路的第二预冷却制冷剂回路;和

其中所述最冷热交换段操作性地被构造为:预冷却流过所述第一烃回路的烃流体以产生预冷却的烃流、预冷却流过所述第二制冷剂回路的第二制冷剂、和针对流过所述最冷热交换段的第一冷回路的第一制冷剂预冷却流过所述第二预冷却制冷剂回路的第一制冷剂。

方面16:方面15所述的设备,其中第一热交换段是多个热交换段的最暖热交换段。

方面17:方面15至16中任一项所述的设备,其中第一压缩阶段、第二压缩阶段和第三压缩阶段位于第一压缩机的单壳体。

方面18:方面15至17中任一项所述的设备,还包括:

主热交换器,具有在多个热交换段的第一烃回路下游并进行流体流动交流的第二烃回路,所述主热交换器操作性地被构造为通过针对所述第二制冷剂间接热交换来至少部分液化预冷却的烃流。

方面19:方面15至18中任一项所述的设备,压缩系统还包括:在所述第二压缩阶段下游的第一中冷却器、和在所述第一中冷却器下游并进行流体流动交流的冷却的第一中间制冷剂管道。

方面20:方面19所述的设备,还包括:高压第一制冷剂管道,其流体流动交流所述最暖热交换段的暖端和所述冷却的第一中间制冷剂管道。

方面21:方面20所述的设备,还包括:

在所述第一蒸汽-液体分离装置下游的第三后冷却器;和

第二蒸汽-液体分离装置,具有:在所述第三后冷却器下游并进行流体流动交流的第三入口、位于第二蒸汽-液体分离装置的上半部分的第二蒸汽出口、和位于第二蒸汽-液体分离装置的下半部分的第二液体出口。

方面22:方面15至21中任一项所述的设备,其中多个热交换段是第一热交换器的多个段。

方面23:方面15至22中任一项所述的设备,其中多个热交换段均包括线圈卷绕的热交换器。

方面24:方面15至23中任一项所述的设备,其中主热交换器是线圈卷绕的热交换器。

方面25:方面15至24中任一项所述的设备,其中第二预冷却制冷剂回路延伸通过最暖热交换段、第一热交换段和最冷热交换段。

方面26:方面15至25中任一项所述的设备,其中所述第二预冷却制冷剂回路中含有的第一制冷剂比所述第一预冷却制冷剂回路中含有的第一制冷剂具有更高浓度的乙烷和更轻的烃。

方面27:方面15至26中任一项所述的设备,其中最暖热段的第一冷回路是最暖热交换段的壳侧,并且最冷热交换段的第一冷回路是最冷热交换段的壳侧。

方面28:方面15至27,中任一项所述的设备,还包括:第三预冷却制冷剂回路,其延伸通过至少所述最暖热交换段和所述第一热交换段,所述第三预冷却制冷剂回路含有所述第一制冷剂。

附图简述

图1是依照现有技术的dmr系统的示意性流程图;

图2是依照第一示例性实施方案dmr系统的预冷系统的示意性流程图;

图3是依照第二示例性实施方案dmr系统的预冷系统的示意性流程图;

图4是依照第三示例性实施方案dmr系统的预冷系统的示意性流程图;和

图5是依照第四示例性实施方案dmr系统的预冷系统的示意性流程图。

发明详述

接下来的详细描述仅提供了优选的示例性实施例,并不旨在限制其范围,适用性或配置。相反,随后对优选示例性实施例的详细描述将为本领域技术人员提供实现优选示例性实施例的启用描述。在不脱离其精神和范围的情况下,可以对元件的功能和布置进行各种改变。

在说明书中引用的附图标记可以在一个或多个后续图中重复,而在说明书中没有附加描述,以便为其他特征提供上下文。

如说明书和权利要求中所使用的,术语“流体”是指气体和/或液体.

如说明书和权利要求中所使用的,术语“流体流动交流”是指两个或多个组件之间的连接性质,使液体、蒸汽和/或两相混合物直接或间接地以受控的方式(即不泄漏)在组分之间输送。将两个或更多个部件联接成彼此之间的流体流动交换可以涉及本领域已知的任何合适的方法,例如使用焊接、法兰管道、垫圈和螺栓。两个或更多个组件也可以通过系统的其它组件耦合在一起,这些组件可以分离它们,例如阀、门或可以选择性地限制或引导流体流的其它装置。

如说明书和权利要求中所使用的,术语“管道”是指流体可以在系统的两个或多个组件之间传输的一个或多个结构。例如,管道可以包括运输液体、蒸汽和/或气体的管道、管道、通道及其组合。

如说明书和权利要求中所用的,术语“天然气”是主要由甲烷组成的烃气体混合物。

如说明书和权利要求中所使用的,术语“烃气体”或“烃流体”是指包含至少一种烃的气体或流体,并且烃包含至少80%,更优选至少90%气体或流体的总体组成。

如说明书和权利要求中所使用的,术语“混合的制冷剂”(简称为“mr”)是指包含至少两个烃的流体,其中烃占制冷剂的总组成的至少80%。

术语“重混合的制冷剂”,如说明书和权利要求中所使用的,指烃至少与乙烷一样重的mr占mr总体组成的至少80%。优选地,至少与丁烷一样重的烃包含混合的制冷剂的总组合物的至少10%。

术语“束”和“管束”在本申请中可互换使用,旨在成为同义词。

如说明书和权利要求中所使用的,术语“环境流体”是指在环境压力和温度附近提供给系统的流体。

在权利要求中,使用字母来标识所要求的步骤(例如(a)、(b)和(c))。这些字母用于帮助参照方法步骤,并且不旨在指示执行所请求的步骤的顺序,除非且仅在权利要求中具体叙述的这种顺序的程度。

在说明书和权利要求书中可以使用定向术语(例如,上、下、左、右等)。这些方向性术语仅用于帮助描述示例性实施方案,并不意图限制其范围。如本文所用的术语“上游”旨在表示与管道中的流体从参考点的流动方向相反的方向。类似地,术语“下游”旨在表示与管道中的流体从参考点的流动方向相同的方向。

如说明书和权利要求中所使用的,术语“高-高”、“高”、“中”、“低”和“低-低”旨在表示这些元素的属性的相对值使用条款。例如,高-高压流旨在表示具有比在本申请中描述或要求保护的相应高压流或中压流或低压流更高压力的流。类似地,高压流旨在表示具有比说明书或权利要求中描述的相应的中压流或低压流更高的压力的流动,但是低于在本申请中描述或要求保护的相应的高-高压流。类似地,中压流旨在表示具有比说明书或权利要求中描述的相应的低压流更高的压力但低于在本申请中描述或要求保护的相应高压流的流。

除非另有说明,否则在本说明书、附图和权利要求中确定的任何和所有百分比应理解为重量百分比。除非另有说明,否则在说明书、附图和权利要求书中确定的任何和所有压力应被理解为表示压力表。

如本文所用的,术语“冷冻原理”或“低温流体”旨在表示温度低于-70摄氏度的液体、气体或混合相流体。冷冻剂的实例包括液体氮(lin)、液化天然气(lng)、液体氦、液体二氧化碳和加压混合相制冷剂(例如lin和气态氮的混合物)。如本文所用的,术语“低温”是指低于-70摄氏度的温度。

如说明书和权利要求中所用的,术语“热交换段”被定义为具有暖端和冷端;其中,热交换段的冷端引入了单独的冷制冷剂流(而不是环境),暖第一制冷剂流从热交换段的暖端撤出。多个热交换段可任选地包括在单或多热交换器内。在壳和管热交换器或线圈卷绕的热交换器的情况下,多个热交换段可以包含在单壳内。

如说明书和权利要求中所使用的,热交换段的“温度”由该热交换段的烃流出口温度定义。例如,关于热交换段使用的术语“最暖”、“更暖”、“最冷”和“较冷”相对于热交换段使用的烃流的出口温度表示来自该热交换段的烃流的出口温度相对于其他热交换段的烃流的出口温度。例如,最暖热交换段旨在表示在任何其他热交换段中具有烃流出口温度的热交换段。

如说明书和权利要求中所用的,术语“压缩系统”定义为一个或多个压缩阶段。例如,压缩系统可以包括单压缩机内的多个压缩阶段。在可选择的例子中,压缩系统可以包括多个压缩机。

除非在此另有说明,否则在某一位置引入流体旨在意味着在该位置基本上引入所有流体。在说明书中和附图中所示的所有流程(通常由具有箭头的线表示,表示正常操作期间流体流动的总体方向)应被理解为包含在相应的管道内。每条管道应理解为具有至少一个入口和至少一个出口。另外,每件设备应该被理解为具有至少一个入口和至少一个出口。

表1定义了在整个说明书和附图中使用的首字母缩略词的列表,以帮助理解所描述的实施方案。

图2示出第一实施方案。为了简单起见,图2和其后的图中仅示出了预冷系统234。低压wmr流210从第二预冷热交换器262的壳侧的暖端排出,并被压缩在wmr压缩机212的第一压缩阶段212a中。中压wmr流218从第一预冷热交换器260的壳侧的暖端排出,并作为侧流引入wmr压缩机212中,在其中与压缩流(未示出)从第一压缩阶段212a。混合的流(未示出)在wmr压缩机212的第二wmr压缩阶段212b中被压缩以产生高-高压wmr流270。存在于低压wmr流210和中压wmr流218中的任何液体在引入wmr压缩机212之前在蒸汽-液体分离装置(未示出)中被去除。

高-高压wmr流270可以在5巴和40巴之间的压力下,优选在15巴和30巴之间。高-高压wmr流270从wmr压缩机212中取出,并在高-高压wmr中冷却器271中冷却并部分冷凝,以产生冷却的高-高压wmr流272。高-高压wmr中冷却器271可以是任何合适类型的冷却单元,例如使用空气或水的环境冷却器,并且可以包括一个或多个热交换器。冷却的高-高压wmr流272可具有0.2至0.8之间的蒸汽分数,优选在0.3至0.7之间,更优选在0.4至0.6之间。冷却的高-高压wmr流272在第一wmr蒸汽-液体分离装置273中相分离以产生第一wmrv流274和第一wmrl流275。

第一wmrl流275含有少于50%的乙烷和轻烃,优选小于乙烷和轻烃的45%,更优选小于40%的乙烷和较轻烃。第一wmrv流274包含超过40%的乙烷和轻烃,优选超过45%的乙烷和更轻的烃,更优选超过50%的乙烷和更轻的烃。第一wmrl流275被引入到第一预冷热交换器260中以在管回路中冷却以产生膨胀的第一进一步冷却的wmr流236(也称为冷却的液体制冷剂流)在第一个wmr膨胀装置226(也称为压力降低装置)中,产生向第一预冷热交换器260提供制冷责任的第一膨胀的wmr流228。合适的膨胀装置的实例包括焦耳汤姆逊(j-t)阀和涡轮机。

在wmr压缩机212的第三wmr压缩阶段212c中将第一wmrv流274引入到wmr压缩机212中,以产生压缩的wmr流214。压缩的wmr流214被冷却并优选在wmr后冷却器215中冷凝以产生第一冷却压缩的wmr流216(也称为压缩的第一制冷剂流),其被引入第一预冷热交换器260进一步冷却的在管回路中产生第一预冷却的wmr流217。第一预冷却的wmr流217被引入第二预冷热交换器262,以进一步冷却的在管回路中产生第二进一步冷却的wmr流237。第二进一步冷却的wmr流237在第二个wmr膨胀装置230(也称为压力降低装置)中膨胀,以产生第二个膨胀的wmr流232,其被引入第二预冷的壳侧热交换器262提供制冷责任。

第一冷却压缩的wmr流216可以完全冷凝或部分冷凝。在优选实施方案中,第一冷却压缩的wmr流216完全浓缩。冷却的高-高压wmr流272可以占比小于乙烷的组分的10%以下,优选小于乙烷的5%以下的组分,更优选小于乙烷的2%以下的组分。轻组分积累在第一wmrv流274中,其可以占比小于乙烷的组分的20%以下,优选小于乙烷的组分的15%,更优选小于比乙烷轻10%的组分。因此,可以完全冷凝压缩的wmr流214以产生完全冷凝的第一冷却压缩的wmr流程216,而不需要压缩至非常高的压力。压缩的wmr流214可以处于300psia(21巴)至600psia(41巴)之间,优选在400psia(28巴)和500psia(35巴)之间的压力。如果第二预冷热交换器262是用于完全液化天然气的液化热交换器,冷却的高-高压wmr流272将具有较高的氮和甲烷浓度,因此压缩wmr流214的压力必须更高,以使第一冷却压缩的wmr流216完全冷凝。由于这可能无法实现,第一冷却压缩的wmr流216将不会完全冷凝,并且将包含可能需要单独液化的显着的蒸汽浓度。

天然气进料流202(权利要求中称为烃进料流)在第一预冷热交换器260中冷却以在低于20摄氏度的温度下产生第一预冷却的天然气流204,优选低于约10摄氏度,更优选低于约0摄氏度。如本领域已知的,天然气进料流202优选经过预处理以除去水分和其它杂质,例如酸性气体、汞和其它污染物。第一预冷却的天然气流204在第二预冷热交换器262中冷却以在低于10摄氏度的温度下产生第二预冷却器的天然气流206,优选低于约0摄氏度,更优选低于约-30摄氏度,取决于环境温度、天然气饲料组成和压力。第二预冷却的天然气流206可以部分冷凝。第二预冷却的天然气流206运送到mche(图1中的164),并液化至约-150摄氏度和约-70摄氏度之间的温度,优选在约-145摄氏度和约-100摄氏度之间,随后子冷却在约-170摄氏度和约-120摄氏度之间的温度下产生lng流(图1中的流108;在权利要求中被称为液化的烃流),优选在约-170摄氏度和约-140摄氏度之间。压缩冷却的cmr流244(也称为第二制冷剂进料流)在第一预冷热交换器260中冷却以产生第一预冷却的cmr流246。压缩冷却的cmr流244可以包含比乙烷轻40%以上的组分,优选比乙烷轻45%以上的组分,更优选比乙烷轻50%以上的组分。第一预冷却的cmr流246在第二预冷热交换器262中冷却以产生第二预冷却的cmr流248(也称为预冷却的第二制冷剂流)。

尽管图2显示了预冷回路中的两个预冷热交换器和两个压力水平,但是可以使用任何数量的预冷热交换器和压力水平。预冷热交换器在图2中显示为线圈卷绕的热交换器。然而,它们可能是板和翅片热交换器、壳和管热交换器或任何其他适合于预冷却天然气的热交换器。

图2的两个预冷热交换器(260、262)可以是单热交换器内的两个热交换段。或者,两个预冷热交换器可以是两个热交换器,每个具有一个或多个热交换段。

任意地,一部分的第一预冷却的wmr流217可以与第一进一步冷却的wmr流236混合,在第一wmr膨胀装置226中膨胀以向第一预冷热交换器260(用虚线217a表示)提供补充制冷。

尽管图2示出了三个压缩阶段,但是可以执行任何数量的压缩阶段。另外,压缩阶段212a、212b和212c可以是单压缩机主体的一部分,或者是多个单独的压缩机。此外,可以在两个阶段之间提供中间冷却热交换器。wmr压缩机212可以是任何类型的压缩机,例如离心、轴向、正位移或任何其它压缩机类型。

在图2所示的实施方案中,最暖热交换段是第一预冷热交换器260,最冷热交换段是第二预冷热交换器262。

图2所示安排的好处是,wmr制冷剂流分为两部分;第一wmrl流275与重烃和第一wmrv流274与较轻的组件。第一预冷热交换器260使用第一wmrl流275冷却,第二预冷热交换器262使用第一wmrv流274进行冷却。由于第一预冷热交换器260冷却到比第二预冷热交换器262更温暖的温度,所以在第一预冷热交换器260中需要wmr中较重的烃,而在在第二预冷热交换器262中需要wmr来提供更深的冷却。因此,图2所示的安排导致改进的工艺效率,因此对于相同量的预冷却负荷,所需的预冷却功率降低。在预冷却功率和进料流量固定时,可使预冷却温度更低。因此,这种安排也使得可以从液化系统将制冷负荷转移到预冷系统中,从而降低了液化系统中的功率需求并减小了mche的尺寸。另外,可以优化wmr压缩机212的各种压缩阶段的wmr组成和压力,以在冷却的高-高压wmr流272中得到最佳的蒸汽分数,从而进一步提高过程效率。在优选实施方案中,wmr压缩机212(212a、212b和212c)的三个压缩阶段在单压缩机主体中进行,从而最大限度地降低了资本成本。

图3示出第二实施方案。低压wmr流310在低压wmr压缩机311中压缩以产生第一高压wmr流313。中压wmr流318在中压wmr压缩机321中压缩以产生第二高压wmr流323。第一高压wmr流313和第二高压wmr流323混合以产生在5巴和25巴之间的压力下、优选在10巴和20巴之间的压力下的高-高压wmr流370。高-高压wmr流370在高-高压wmr中冷却器371中冷却,以产生冷却的高-高压wmr流372。高-高压wmr中冷却器371可以是冷却空气或水的环境冷却器,并且可以包括多个热交换器。冷却的高-高压wmr流372可具有0.3至0.9之间的蒸汽分数,优选在0.4至0.8之间,更优选在0.45至0.6之间。冷却的高-高压wmr流372在第一wmr蒸汽-液体分离装置373中相分离以产生第一wmrv流374和第一wmrl流375。

第一wmrl流375含有少于50%的乙烷和轻烃,优选小于乙烷和轻烃的45%,更优选小于40%的乙烷和较轻烃。第一wmrv流374含有超过40%的乙烷和轻烃,优选超过45%的乙烷和轻烃,更优选超过50%的乙烷和更轻的烃。第一wmrl流375被引入第一预冷热交换器进行冷却以产生第一进一步冷却的wmr流336。第一进一步冷却的wmr流336在第一wmr膨胀装置326中膨胀,以产生第一个膨胀的wmr流328,为第一预冷热交换器360提供制冷责任。

第一wmrv流374在高压wmr压缩机376中被压缩以产生压缩的wmr流314。压缩的wmr流314被冷却并且优选地在wmr后冷却器315中冷凝以产生被引入第一预冷热交换器360的第一冷却压缩的wmr流316,以在管回路中进行一步冷却产生第一预冷却的wmr流317。第一预冷却的wmr流317被引入第二预冷热交换器362进一步冷却以产生第二进一步冷却的wmr流337。第二进一步冷却的wmr流337在第二wmr膨胀装置330中膨胀以产生第二个膨胀的wmr流332,其被引入第二预冷热交换器362的壳侧以提供制冷责任。

低压wmr压缩机311、中压wmr压缩机321和高压wmr压缩机376可以包括具有可选中间冷却热交换器的多个压缩阶段。高压wmr压缩机376可以是与低压wmr压缩机311或中压wmr压缩机321相同的压缩机主体的一部分。压缩机可以是离心式、轴向式、正位式或任何其他压缩机类型。另外,除了在高-高压wmr中冷却器371中冷却高-高压wmr流370之外,第一高压wmr流313和第二高压wmr流323可以在单独的热交换器中单独冷却(未示出)。第一wmr蒸汽-液体分离装置373可以是相分离器。在交替的实施方案中,第一wmr蒸汽-液体分离装置373可以是蒸馏塔或混合塔,将合适的冷流引入柱中。

任意地,一部分的第一预冷却的wmr流317可以与第一进一步冷却的wmr流336混合,在第一wmr膨胀装置326中膨胀以向第一预冷热交换提供补充制冷器360(用虚线317a表示)。另一个实施方案是图3与三压预冷回路的变体。该实施方案除了低压wmr压缩机311和中压wmr压缩机321之外还涉及第三压缩机。

在图3所示的实施方案中,最暖热交换段是第一预冷热交换器360,最冷热交换段是第二预冷热交换器362。

与图2类似,图3所示安排的好处是wmr制冷剂流分为两部分;具有较重烃的第一wmrl流375和具有较轻烃的第一wgsv流374。由于第一预冷热交换器360比第二预冷热交换器362冷却到更暖的温度,在第一预冷热交换器260中需要wmr中较重的烃,而在wmr中的较轻的烃需要在第二预冷热交换器262中提供更深的冷却。因此,与现有技术的图1相比,图3所示的布置改进了处理效率并因此降低了所需的预冷却功率。这种安排也使得可以从液化系统将制冷负荷转移到预冷系统中,从而降低液化系统的电力需求,减少mche的规模。另外,可以优化wmr组成和压缩压力,以获得用于冷却的高-高压wmr流372的最佳蒸汽分数,从而进一步提高过程效率。

与图2相比,图3所示的布置的缺点是由于wmr的平行压缩需要至少两个压缩机体。然而,在存在多个压缩体的情况下是有益的。在图3所示的实施方案中,低压wmr流310和中压wmr流318并联进行压缩,这对于压缩机尺寸限制是有利的。低压wmr压缩机311和中压wmr压缩机321可以独立设计,可能具有不同数量的叶轮、压力比和其他设计特性。

图4显示了三压预冷回路的第三实施方案。低压wmr流410从第三预冷热交换器464的壳侧的暖端拔出,并被压缩在wmr压缩机412的第一压缩阶段412a中。中压wmr流418从第二预冷热交换器462的壳侧的暖端排出,并作为侧流引入wmr压缩机412中,与来自第一压缩阶段412a的压缩流(未示出)混合。未混合的流体(未示出)在wmr压缩机412的第二压缩阶段412b中被压缩,以产生第一中间wmr流425。

第一中间wmr流425从wmr压缩机412中取出,并在可能是环境冷却器的高压wmr中冷却器427中冷却,以产生冷却的第一中间wmr流429。高压wmr流419从第一预冷热交换器460的壳侧的暖端取出,与冷却的第一中间wmr流429混合,制成混合高压wmr流431。在低压wmr流410、中压wmr流418、高压wmr流419和冷却第一中间wmr流429中的任何液体可以在蒸汽-液体分离装置(未示出)中去除。在交替的实施方案中,高压wmr流419可以在wmr压缩序列中的任何其他合适的位置引入,例如作为wmr压缩机412的侧流或与任何其它入口流混合到wmr压缩机412。

将混合的高压wmr流431引入wmr压缩机412,并在wmr压缩机412的第三wmr压缩阶段412c中压缩,以产生高-高压wmr流470。高-高压wmr流470可处于5巴和35巴之间的压力,优选在15巴和25巴之间。高-高压wmr流470从wmr压缩机412中取出,在高-高压wmr中冷却器471中冷却和部分冷凝,以产生冷却的高-高压wmr流472。高-中压wmr中冷却器471可能是使用空气或水的环境冷却器。冷却的高-高压wmr流472可具有0.2至0.8之间的蒸汽分数,优选在0.3至0.7之间,更优选在0.4至0.6之间。冷却的高-高压wmr流472在第一wmr蒸汽-液体分离装置473中相分离以产生第一wmrv流474和第一wmrl流475。

第一wmrl流475含有少于50%的乙烷和轻烃,优选小于45%的乙烷和更轻的烃,更优选小于40%的乙烷和较轻烃。第一wmrv流474含有超过40%的乙烷和轻烃,优选超过45%的乙烷和轻烃,更优选大于50%的乙烷和较轻烃。第一wmrl流475被引入第一预冷热交换器460中冷却以产生分为两部分的第二冷却压缩的wmr流420:第一部分422和第二部分424。第一部分的第二冷却压缩的wmr流422在第一wmr膨胀装置426中膨胀,以产生向第一预冷热交换器460提供制冷责任的第一膨胀的wmr流428。第二部分的第二冷却压缩的wmr流424是进一步冷却的第二预冷热交换器462的管回路,以产生第二进一步冷却的wmr流437。第二进一步冷却的wmr流437在第二wmr膨胀装置430中膨胀,以产生第二个膨胀的wmr流432,其被引入第二个预冷热交换器462的壳侧以提供制冷责任。

将第一wmrv流474引入wmr压缩机412中,以在第四wmr压缩阶段412d中被压缩以产生压缩的wmr流414。压缩的wmr流414被冷却并且优选地在wmr后冷却器415中冷凝以产生第一冷却压缩的wmr流416,其被引入第一预冷热交换器460以在管回路中进行一步冷却产生第二预冷却的wmr流480。第二预冷却的wmr流480被引入到第二预冷热交换器462以进一步冷却并产生第三预冷却的wmr流481,第三预冷却的wmr流481被引入第三预冷热交换器464以进一步冷却并产生第三进一步冷却的wmr流438。第三进一步冷却的wmr流438在第三wmr膨胀装置482中膨胀,以产生第三个膨胀的wmr流483,其被引入第三预冷热交换器464的壳侧以提供制冷责任。

任意地,第三预冷却的wmr流481部分可以在第二个wmr膨胀装置430(用虚线481a所示)膨胀之前与第二进一步冷却的wmr流437混合,以向第二预冷热交换器462提供补充制冷。

预处理的进料流402(也称为烃进料流)在第一预冷热交换器460中冷却以产生第一预冷却器的天然气流404。第一预冷却的天然气流404在第二预冷热交换器462中被冷却以产生第三预冷却器的天然气流405,第三预冷却器的天然气流405在第三预冷热交换器464中进行一步冷却以产生第二预冷却的天然气流406。压缩冷却的cmr流444在第一预冷热交换器460中冷却以产生第一预冷却的cmr流446。第一预冷却的cmr流446在第二预冷热交换器462中被冷却以产生第三预冷却的cmr流447,第三预冷却的cmr流447在第三预冷热交换器464中进行一步冷却以产生第二预冷却的cmr流448。

尽管图4显示了四个压缩阶段,但是可能存在任何数量的压缩阶段。另外,压缩阶段可以是单压缩机主体的一部分,也可以是具有可选中间冷却的多个单独的压缩机。wmr压缩机412可以是任何类型的压缩机,例如离心、轴向、正位移或任何其它压缩机类型。

在图4所示的实施方案中,最暖热交换段是第一预冷热交换器460,最冷热交换段是第三预冷热交换器464。

图4所示的实施方案具有图2所示实施方案的所有优点。另一个实施方案是图4中仅具有两个预冷热交换器的变体,使得整个第二冷却压缩的wmr流420用于向第一热交换器提供制冷。该实施方案消除了对另外的热交换器的需求,并降低了资本成本。

图5显示了图4所示的实施方案的第四个实施方案和三个预冷热交换器的变体。低压wmr流510从第三预冷热交换器564的壳侧的暖端拔出,并被压缩在wmr压缩机512的第一压缩阶段512a中。中压wmr流518从第二预冷热交换器562的壳侧的暖端排出,作为侧流引入到wmr压缩机512中,与第一压缩阶段512a的压缩流(未示出)混合。混合的流(未示出)在wmr压缩机512的第二压缩阶段512b中被压缩,以产生第一中间wmr流525。第一中间wmr流525在高压wmr中冷却器527中冷却,这可能是环境冷却器,以产生冷却的第一中间wmr流529。

在低压wmr流510、中压wmr流518和高压wmr流519中的任何液体可在蒸汽-液体分离装置(未示出)中移除。

高温wmr流519从第一预冷热交换器560的壳侧的暖端排出,并与冷却的第一中间wmr流529混合,生成混合的中压wmr流531。

将混合的中压wmr流531引入wmr压缩机512中以在wmr压缩机512的第三wmr压缩阶段512c中压缩以产生高-高压wmr流570。高-高压wmr流570可以处于5巴和35巴之间的压力,优选在10巴和25巴之间。高-高压wmr流570从wmr压缩机512中取出,并在高-高压wmr中冷却器571中冷却并部分冷凝,以产生冷却的高-高压wmr流572。高-高压wmr中冷却器571可能是使用空气或水的环境冷却器。冷却的高-高压wmr流572可具有0.2至0.8之间的蒸汽分数,优选在0.3至0.7之间,更优选在0.4至0.6之间。冷却的高-高压wmr流572在第一wmr蒸汽-液体分离装置573中相分离以产生第一wmrv流574和第一wmrl流575。

第一wmrl流575含有少于50%的乙烷和轻烃,优选小于45%的乙烷和轻烃,更优选小于40%的乙烷和轻烃。第一wmrv流574含有超过40%的乙烷和轻烃,优选超过45%的乙烷和轻烃,更优选超过50%的乙烷和轻烃。第一wmrl流575被引入第一预冷热交换器560以在管回路中冷却以产生第一进一步冷却的wmr流536。第一进一步冷却的wmr流536在第一wmr膨胀装置526中膨胀,以产生第一膨胀的wmr流528。第一膨胀的wmr流528为第一预冷热交换器560提供制冷责任。

将wmrv流574引入wmr压缩机512中以在第四wmr压缩阶段512d中进行压缩,以在10巴和50巴之间的压力下产生第二中间wmr流590,优选在15巴和45巴之间。第二中间wmr流590从wmr压缩机512中取出,并在第一wmrv中冷却器591中冷却并部分冷凝以产生冷却的第二中间wmr流592。第一wmrv中冷却器591可以是冷却空气或水的环境冷却器。冷却的第二中间wmr流592可具有0.2至0.8之间的蒸汽分数,优选在0.3至0.7之间,更优选在0.4至0.6之间。冷却的第二中间wmr流592在第二wmr蒸汽-液体分离装置593中相分离以产生第二wmrv流594和第二wmrl流595。

第二wmrl流595在第一预冷热交换器560的回路管中冷却,产生第一预冷却的wmr流517。第一预冷却的wmr流517在第二预冷热交换器562的管回路中进一步冷却,以产生第二进一步冷却的wmr流537。第二进一步冷却的wmr流537在第二wmr膨胀装置530中膨胀,以产生向第二预冷热交换器562提供制冷责任的第二膨胀的wmr流532。在交替的实施方案中,一部分的第一预冷却的wmr流517可以在膨胀第一wmr膨胀装置526之前与第一进一步冷却的wmr流536混合,以向第一预冷热交换器560提供补充制冷。

第二wmrv流594被引入wmr压缩机512中,以在第五wmr压缩阶段512e中被压缩,以产生压缩的wmr流514。压缩的wmr流514被冷却并且优选地在wmr后冷却器515中冷凝以产生第一冷却压缩的wmr流体516,第一冷却压缩的wmr流体516被引入到第一预冷热交换器560中以在管回路中进行一步冷却并生产第二预冷却的wmr流580。第二预冷却的wmr流580被引入第二预冷热交换器562进一步冷却以产生第三预冷却的wmr流581,第三预冷却的wmr流581被引入第三预冷热交换器564进一步冷却以产生第三进一步冷却的wmr流538。第三进一步冷却的wmr流538在第三个wmr膨胀装置582中膨胀,以产生第三个膨胀的wmr流583,第三个膨胀的wmr流583被引入第三个预冷热交换器564的壳侧以提供制冷责任。

在图5所示的实施方案中,最暖热交换段是第一预冷热交换器460,最冷热交换段是第三预冷热交换器464。

图5具有图2中描述的实施方案的所有好处。它涉及第三预冷热交换器和另外的压缩阶段,因此比图2更高的资本成本。然而,图5涉及三种不同的wmr组合物,一种wmr组合物用于三种预冷热交换器中的每一种。因此,图5的实施方案导致提高资本成本的流程效率。

任选地,一部分的第二预冷却的wmr流580可以在膨胀第一wmr膨胀装置526之前与第一进一步冷却的wmr流536混合,以向第一预冷热交换提供补充制冷器560(用虚线581a表示)。或者或另外,一部分的第三预冷却器的wmr流581可以在膨胀第二wmr膨胀装置530之前与第二进一步冷却的wmr流537混合,以便向第二预冷热交换器562补充制冷责任。

预处理的进料流502在第一预冷热交换器560中冷却以产生第一预冷却的天然气流504。第一预冷却的天然气流504在第二预冷热交换器562中冷却以产生第三预冷却的天然气流505,其在第三预冷热交换器564中进一步冷却以产生第二预冷却的天然气流506。压缩冷却的cmr流544在第一预冷热交换器560中冷却以产生第一预冷却的cmr流546。第一预冷却的cmr流546在第二预冷热交换器562中冷却以产生第三预冷却的cmr流547,其在第三预冷热交换器564中进一步冷却以产生第二预冷却的cmr流548。

在所有实施方案(图2-图5及其变体)中,来自预冷热交换器的暖壳侧流体中的任何液体可以运送到蒸汽-液体相分离器,以除去任何液体压缩wmr压缩机中的蒸汽。在替代实施方案中,如果来自预冷热交换器的暖壳侧流中存在大量的液体,则可以将液体部分泵送以与任何压缩阶段的排放混合或与一种或多种液体流混合以引入预冷热交换器,或在预冷热交换器中单独引入回路。例如,在图5中,高压wmr流519、低压wmr流510或中压wmr流518中存在的任何液体可被泵送以与压缩wmr流514或第一wmrl流575混合。

在所有实施方案中,任何后冷却器或中冷却器可以包括多个独立双热交换器,例如过热降温器和冷凝器。

第二预冷却的天然气流(206、306、406、506)的温度可以被定义为“预冷却温度”。预冷却温度是天然气流退出预冷系统进入液化系统的温度。预冷却温度对预冷和液化天然气的电力需求有影响。整个系统的功率要求定义为预冷系统的功率需求与液化系统的功率需求之和。预冷系统的功率需求与整个系统的功率需求之比定义为“功率分流”。

对于图2-图5中描述的实施方案,功率分流在0.2和0.7之间,优选在0.3和0.6之间,更优选地约为0.5。

随着功率分流的增加,液化系统的功率需求下降,预冷却温度下降。换句话说,制冷负荷从液化系统转移到预冷系统中。这对于mche尺寸和/或液化功率可用性正在控制的系统是有益的。随着功率分流的降低,液化系统的功率需求增加,预冷却温度升高。换句话说,制冷负荷从预冷系统转移到液化系统中。这种安排对系统有益。其中预冷却器的大小、数量或预冷却功率的可用性是有限的。功率分流通常由选择用于特定天然气液化设备的驾驶员的类型、数量和容量决定。例如,如果偶数个驱动器可用,则可能优选以约0.5的功率分流运行,将功率负载转换到预冷热交换器中,并降低预冷却温度。如果有奇数个驱动器可用,功率分流可能在0.3到0.5之间,将制冷负荷转移到液化系统中,提高预冷却温度。

所有实施方案的主要优点是,可以根据各种因素优化功率分流、预冷热交换器的数量、压缩阶段、压力水平;预冷却温度基于各种因素,如数量、数量、类型、可用的驱动器容量、热交换器的数量、热交换器设计标准、压缩机限制和其他项目特定的要求。

对于所有实施方案,预冷和液化系统中可能存在任何压力级别。另外,制冷系统可以是开路或闭环。

实施例1

以下是示范性实施方案的操作示例。示例过程和数据基于在每年产生约550万吨lng的液化天然气工厂中使用双压预冷回路和单压液化回路的dmr法模拟,具体指的是图2的实施方案。为了简化本例的说明,将使用关于图2所示的实施方案描述的元件和附图标记。

天然气进料流202在76巴(1102psia)和20摄氏度(68华氏度)下在第一预冷热交换器260中冷却以产生-18摄氏度(0.5华氏度)的第一预冷却的天然气流204,-18摄氏度的第一预冷却的天然气流204在第二预冷热交换器262中被冷却以产生-53摄氏度(-64华氏度)的第二预冷却的天然气流206。压缩冷却的cmr流244在62巴(893psia)和25摄氏度(77华氏度)下在第一预冷热交换器260中冷却以产生-18摄氏度(0.5华氏度)的第一预冷却的cmr流246,-18摄氏度的第一预冷却的cmr流246在第二预冷热交换器262中产生-52摄氏度(-61华氏度)的第二预冷却的cmr流248。

低压wmr流210(也称为低压第一制冷剂流)在3巴(45psia)、-20摄氏度(-5华氏度)和11.732公斤摩尔/小时(25.865lbmole/小时)下从第二预冷热交换器262的壳侧的暖端排出,并在wmr压缩机212的第一压缩阶段212a中压缩。中压wmr流218(也称为中压第一制冷剂流)在5巴(74psia)、22摄氏度(71华氏度)、13.125公斤摩尔/小时(28936lbmole/小时)下从第一预冷热交换器260的壳侧的暖端排出,并将其作为侧流引入wmr压缩机212,在该wmr压缩机212中与第一压缩阶段212a的压缩流(未示出)混合。混合的流(未示出)在wmr压缩机212的第二wmr压缩阶段212b中被压缩,以产生18巴(264psia)、79摄氏度(175华氏度)的高压wmr流270(也称为高-高压第一制冷剂流)。

高-高压wmr流270从wmr压缩机212中排出,并在高-高压wmr中冷却器271中冷却并部分冷凝,产生17巴(250psia)、25摄氏度(77华氏度)、24.857公斤摩尔/小时(54.801磅/时)、蒸汽分数为0.47的冷却高-高压wmr流272。冷却的高-高压wmr流272在第一wmr蒸汽-液体分离装置273中相分离以产生第一wmrv流274和第一wmrl流275。第一wmrl流275含有31%的乙烷和轻烃,而第一wmrv流274含有59%的乙烷和轻烃。

第一wmrl流275被引入第一预冷热交换器260以在管回路中冷却,以产生-18摄氏度(0华氏度)的第一进一步冷却的wmr流236,wmr流236在第一wmr膨胀装置226中膨胀产生6巴(81psia)、-21摄氏度(-5华氏度)的第一膨胀的wmr流228,wmr流228为第一预冷热交换器260提供制冷责任。

第一wmrv流274被引入wmr压缩机212,以在第三wmr压缩阶段212c中被压缩,以产生29巴(423psia)、56摄氏度(134华氏度)的压缩wmr流214。压缩的wmr流214被冷却并且优选地在wmr后冷却器215中冷凝以产生25摄氏度(77华氏度)的第一冷却压缩的wmr流216,wmr流216被引入第一预冷热交换器260中以在管回路中进一步冷却,以产生-18摄氏度(0华氏度)的第一预冷却的wmr流217。第一预冷却的wmr流217被引入第二预冷热交换器262中以在管回路中进一步冷却,以产生-53摄氏度(-63华氏度)的第二进一步冷却的wmr流237。第二进一步冷却的wmr流237在第二wmr膨胀装置230中膨胀,以产生3巴(47psia)、-57摄氏度(-70华氏度)的第二膨胀的wmr流232,wmr流232被引入第二预冷热交换器262的壳侧以提供制冷责任。

在该实施例中,功率分流为0.44,共使用四台燃气轮机驱动,每台驾驶员的容量约为40mw。该实施方案的处理效率比图1高出约3.5%,预冷却温度约为9摄氏度。因此,这个例子表明,本文所述的实施方案提供了一种有效的方法和系统,以低资本成本提高效率。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1