利用低温液化储能的天然气和电力互联调峰系统的制作方法

文档序号:17320503发布日期:2019-04-05 21:31阅读:201来源:国知局
利用低温液化储能的天然气和电力互联调峰系统的制作方法
本发明属于综合能源系统节能
技术领域
,具体涉及利用低温液化储能的天然气和电力互联调峰系统。
背景技术
:综合能源系统是多种类能源供应、传输与消费终端构成的复杂系统,其涉及到各种能源的物流供应、输送调配、能源相互转化问题。随着国家能源战略的转型,提高我国天然气的一次能源消费占比是大势所趋,同时基于可再生能源的电力供应也得到蓬勃发展。然而受下游终端消费波动、电网和气网的输送能力限制,电力输送和天然气的压送参数需要及时调整,以保证能量安全高效地输送和利用。由于电力难以直接存储,对于大宗的冗余电量必须转化为其它能量加以储存,否则就需直接放散,造成极大的浪费。目前,将电力转化为势能存储备受关注,抽水储能、压缩空气储能已有规模工程应用;另外,将电力转化为化学能(如电解制氢、电制天然气)有望成为大规模综合能源系统储能技术。大型水坝、大型压缩空气储存空间受制于地理自然条件,建设成本高,当电力回收效率低于50%时经济性差。电力制氢和制天然气的电力回收率还有待提高,基于现有技术和其经济性,尚不具备工程化条件。技术实现要素:为了克服上述现有技术的缺点,本发明的目的在于提供了利用低温液化储能的天然气和电力互联调峰系统,利用天然气的低温液化实现电力的大规模储存与恢复,达到较高的电力循环回收效率,有效实现电力和天然气互联调峰。为了实现上述目的,本发明采取如下技术方案:利用低温液化储能的天然气和电力互联调峰系统,包括第一级天然气压缩机c1,第一级天然气压缩机c1入口与低压天然气管道连接,第一级天然气压缩机c1出口与第一级中间冷却器hx1热流体入口连接,第一级中间冷却器hx1热流体出口与第二级天然气压缩机c2入口连接,第二级天然气压缩机c2出口与第二级中间冷却器hx2热流体入口连接,第二级中间冷却器hx2热流体出口与第一混合器m1第一入口连接,第一混合器m1出口与第三级天然气压缩机c3入口连接,第三级天然气压缩机c3出口与第三级中间冷却器hx3热流体入口连接,第三级中间冷却器hx3热流体出口与第四级天然气压缩机c4入口连接,第四级天然气压缩机c4出口与第四级中间冷却器hx4热流体入口连接,第四级中间冷却器hx4热流体出口与高温区换热器hx5入口a连接,和入口a对应的高温区换热器hx5出口f与中温区换热器hx6入口h连接,和入口h对应的中温区换热器hx6出口k与低温区换热器hx7入口m连接,和入口m对应的低温区换热器hx7出口r与第一节流阀v1入口连接,第一节流阀v1出口与lng储罐s1入口连接,lng储罐s1气相出口与低温区换热器hx7入口q连接,和入口q对应的低温区换热器hx7出口n与中温区换热器hx6入口j连接,和入口j对应的中温区换热器hx6出口i与高温区换热器hx5入口e连接,和入口e对应的高温区换热器hx5出口b与第一混合器m1第二入口连接,构成天然气增压、预冷和液化子系统。所述的lng储罐s1液相出口与低温泵p1入口连接,低温泵p1出口与第一级复温换热器hx8冷流体入口连接,第一级复温换热器hx8冷流体出口与第二级复温换热器hx9冷流体入口连接,第二级复温换热器hx9冷流体出口与第一级过热器hx10冷流体入口连接,第一级过热器hx10冷流体出口与第一级透平膨胀机t1入口连接,第一级透平膨胀机t1出口与第二级过热器hx11冷流体入口连接,第二级过热器hx11冷流体出口与第二级透平膨胀机t2入口连接,第二级透平膨胀机t2出口与第三级过热器hx12冷流体入口连接,第三级过热器hx12冷流体出口与第三级透平膨胀机t3入口连接,第三级透平膨胀机t3出口与第四级过热器hx13冷流体入口连接,第四级过热器hx13冷流体出口与第四级透平膨胀机t4入口连接,第四级透平膨胀机t4出口与低压天然气管道连接,构成lng增压汽化膨胀发电子系统。所述的中温区换热器hx6出口g与混合制冷剂压缩机c5入口连接,混合制冷剂压缩机c5出口与冷凝器e1入口连接,冷凝器e1出口与第二节流阀v2入口连接,第二节流阀v2出口与中温区换热器hx6入口l连接,中温区换热器hx6入口l与出口g连通,构成混合制冷剂预冷循环子系统。所述的高温区换热器hx5出口c与第一蓄冷剂高温储罐s2入口连接,第一蓄冷剂高温储罐s2出口与第一阀门v3入口连接,第一阀门v3出口与第一蓄冷剂循环泵p3入口连接,第一蓄冷剂循环泵p3出口与第四阀门v6入口连接,第四阀门v6出口与第二级复温换热器hx9热流体入口连接,第二级复温换热器hx9热流体出口与第一蓄冷剂低温储罐s3入口连接,第一蓄冷剂低温储罐s3出口与第二阀门v4入口连接,第二阀门v4出口与第一蓄冷剂循环泵p3入口连接,第一蓄冷剂循环泵p3出口与第三阀门v5入口连接,第三阀门v5出口与高温区换热器hx5入口d连接,高温区换热器hx5入口d与出口c连通,构成第一级低温冷量循环子系统。所述的低温区换热器hx7出口o与第二蓄冷剂高温储罐s4入口连接,第二蓄冷剂高温储罐s4出口与第五阀门v7入口连接,第五阀门v7出口与第二蓄冷剂循环泵p4入口连接,第二蓄冷剂循环泵p4出口与第八阀门v10入口连接,第八阀门v10出口与第一级复温换热器hx8热流体入口连接,第一级复温换热器hx8热流体出口与第二蓄冷剂低温储罐s5入口连接,第二蓄冷剂低温储罐s5出口与第六阀门v8入口连接,第六阀门v8出口与第二蓄冷剂循环泵p4入口连接,第二蓄冷剂循环泵p4出口与第七阀门v9入口连接,第七阀门v9出口与低温区换热器hx7入口p连接,低温区换热器hx7入口p与出口o连通,构成第二级低温冷量循环子系统。所述的第一级中间冷却器hx1、第二级中间冷却器hx2、第三级中间冷却器hx3、第四级中间冷却器hx4热流体入口分别与第一分配器m5出口连接,第一级中间冷却器hx1、第二级中间冷却器hx2、第三级中间冷却器hx3、第四级中间冷却器hx4热流体出口分别与第二混合器m2入口连接,第二混合器m2出口与蓄热介质高温储罐s6入口连接,蓄热介质高温储罐s6出口与第九阀门v11入口连接,第九阀门v11出口与蓄热介质循环泵p2入口连接,蓄热介质循环泵p2出口与第十二阀门v14入口连接,第十二阀门v14出口与第二分配器m3入口连接,第二分配器m3出口分别与第一级过热器hx10、第二级过热器hx11、第三级过热器hx12、第四级过热器hx13热流体入口连接,第一级过热器hx10、第二级过热器hx11、第三级过热器hx12、第四级过热器hx13热流体出口分别与第三混合器m4入口连接,第三混合器m4出口与蓄热介质冷却器e2入口连接,蓄热介质冷却器e2出口与蓄热介质低温储罐s7入口连接,蓄热介质低温储罐s7出口与第十阀门v12入口连接,第十阀门v12出口与蓄热介质循环泵p2入口连接,蓄热介质循环泵p2出口与第十一阀门v13入口连接,第十一阀门v13出口与第一分配器m5入口连接,构成高温热量循环子系统。所述的高温区蓄冷剂为甲醇,中温区混合制冷剂包含甲烷、乙烷和丙烷,低温区蓄冷剂为丙烷,高温热量循环介质为导热油。所述的天然气增压、预冷和液化子系统中,天然气在进入第一节流阀v1前实现全部液化。本发明的有益效果为:本发明提出了以液化天然气(liquefiednaturalgas,lng)温区(111k)的低温冷能为媒介,利用电力驱动低温制冷系统,将天然气降温液化后以液化存储,可同时实现:1)消纳过剩电力,将电能转化为蕴藏于lng内的低温冷能储存;2)将天然气的比容缩小为原来的1/625,提高了天然气内化学能的存储密度,充分发挥lng对天然气网络的调峰功能。当电网终端用户消费旺盛、电力供应不足时,可将低温冷能再次转化为电力输出,实现电力的恢复;同时lng因为释放冷量(吸收热量)后被气化,复原为气态,可再注入天然气压力管网中,实现气网的调峰。本发明为以电力网络与天然气网络协同输送为主要特征的综合能源系统提供了能量储存、调配的新方式,其以lng温区的低温冷能为媒介,实现电力-低温冷能-电力的储能和释能过程,为电力和天然气的存储调峰提供更高效的途径。本发明可有效地实现电力大规模储存,同时充分发挥lng对天然气网络的调峰功能,电力回收效率高,节能效果显著。附图说明图1为本发明实施例的结构示意图。具体实施方式下面结合附图和实施例对本发明做进一步详细描述:参照图1,利用低温液化储能的天然气和电力互联调峰系统,包括第一级天然气压缩机c1,第一级天然气压缩机c1入口与低压天然气管道连接,第一级天然气压缩机c1出口与第一级中间冷却器hx1热流体入口连接,第一级中间冷却器hx1热流体出口与第二级天然气压缩机c2入口连接,第二级天然气压缩机c2出口与第二级中间冷却器hx2热流体入口连接,第二级中间冷却器hx2热流体出口与第一混合器m1第一入口连接,第一混合器m1出口与第三级天然气压缩机c3入口连接,第三级天然气压缩机c3出口与第三级中间冷却器hx3热流体入口连接,第三级中间冷却器hx3热流体出口与第四级天然气压缩机c4入口连接,第四级天然气压缩机c4出口与第四级中间冷却器hx4热流体入口连接,第四级中间冷却器hx4热流体出口与高温区换热器hx5入口a连接,和入口a对应的高温区换热器hx5出口f与中温区换热器hx6入口h连接,和入口h对应的中温区换热器hx6出口k与低温区换热器hx7入口m连接,和入口m对应的低温区换热器hx7出口r与第一节流阀v1入口连接,第一节流阀v1出口与lng储罐s1入口连接,lng储罐s1气相出口与低温区换热器hx7入口q连接,和入口q对应的低温区换热器hx7出口n与中温区换热器hx6入口j连接,和入口j对应的中温区换热器hx6出口i与高温区换热器hx5入口e连接,和入口e对应的高温区换热器hx5出口b与第一混合器m1第二入口连接,构成天然气增压、预冷和液化子系统。第一级天然气压缩机c1吸入低压管道天然气,压缩后进入第一级中间冷却器hx1中冷却,经第二级天然气压缩机c2压缩后,被第二级中间冷却器hx2冷却,之后与中压返流天然气17混合后进入第三级天然气压缩机c3,经压缩后进入第三级中间冷却器hx3冷却,随后经第四级天然气压缩机c4压缩至最高压力后,进入第四级中间冷却器hx4冷却;高压天然气9流经高温区换热器hx5、中温区换热器hx6、低温区换热器hx7,经三级预冷后进入天然气第一节流阀v1节流,随后进入lng储罐s1,分离出的低温气相天然气返流并依次通过低温区换热hx7、中温区换热器hx6、高温区换热器hx5后与天然气4混合后进入第三级天然气压缩机c3。所述的lng储罐s1液相出口与低温泵p1入口连接,低温泵p1出口与第一级复温换热器hx8冷流体入口连接,第一级复温换热器hx8冷流体出口与第二级复温换热器hx9冷流体入口连接,第二级复温换热器hx9冷流体出口与第一级过热器hx10冷流体入口连接,第一级过热器hx10冷流体出口与第一级透平膨胀机t1入口连接,第一级透平膨胀机t1出口与第二级过热器hx11冷流体入口连接,第二级过热器hx11冷流体出口与第二级透平膨胀机t2入口连接,第二级透平膨胀机t2出口与第三级过热器hx12冷流体入口连接,第三级过热器hx12冷流体出口与第三级透平膨胀机t3入口连接,第三级透平膨胀机t3出口与第四级过热器hx13冷流体入口连接,第四级过热器hx13冷流体出口与第四级透平膨胀机t4入口连接,第四级透平膨胀机t4出口与低压天然气管道连接,构成lng增压汽化膨胀发电子系统。lng储罐s1中的液态天然气(lng)经低温泵p1加压后,流经第一级复温换热器hx8与第二级复温换热器hx9并汽化升温,高压天然气4r经第一级过热器hx10加热后,进入第一级透平膨胀机t1中膨胀使其产生输出功,之后经第二级过热器hx11加热后进入第二级透平膨胀机t2中膨胀做功,之后经第三级过热器hx12加热后进入第三级透平膨胀机t3中膨胀做功,之后经第四级过热器hx13加热后进入第四级透平膨胀机t4中膨胀做功,后通入低压天然气管道。所述的中温区换热器hx6出口g与混合制冷剂压缩机c5入口连接,混合制冷剂压缩机c5出口与冷凝器e1入口连接,冷凝器e1出口与第二节流阀v2入口连接,第二节流阀v2出口与中温区换热器hx6入口l连接,中温区换热器hx6入口l与出口g连通,构成混合制冷剂预冷循环子系统。混合制冷剂压缩机c5吸入由中温区换热器hx6排出的低压制冷剂5c,压缩至高压后进入冷凝器e1中冷却,随后进入第二节流阀v2中节流,节流后的低压低温制冷剂在中温区换热器hx6中完全气化并为其提供冷量后排出,进入下一次循环。所述的高温区换热器hx5出口c与第一蓄冷剂高温储罐s2入口连接,第一蓄冷剂高温储罐s2出口与第一阀门v3入口连接,第一阀门v3出口与第一蓄冷剂循环泵p3入口连接,第一蓄冷剂循环泵p3出口与第四阀门v6入口连接,第四阀门v6出口与第二级复温换热器hx9热流体入口连接,第二级复温换热器hx9热流体出口与第一蓄冷剂低温储罐s3入口连接,第一蓄冷剂低温储罐s3出口与第二阀门v4入口连接,第二阀门v4出口与蓄冷剂循环泵p3入口连接,蓄冷剂循环泵p3出口与第三阀门v5入口连接,第三阀门v5出口与高温区换热器hx5入口d连接,高温区换热器hx5入口d与出口c连通,构成第一级低温冷量循环子系统。当第一级低温冷量循环子系统处于电力回收状态时,第二阀门v4和第三阀门v5开启,第一阀门v3和第四阀门v6关闭,第一蓄冷剂低温储罐s3中低温蓄冷剂流出,经第一蓄冷剂循环泵p3加压后,进入高温区换热器hx5释放冷量用于冷却天然气,随后流入第一蓄冷剂高温储罐s2;当第一级低温冷量循环子系统处于电力恢复状态时,第一阀门v3和第四阀门v6开启,第二阀门v4和第三阀门v5关闭,第一蓄冷剂高温储罐s2中高温蓄冷剂流出,经第一蓄冷剂循环泵p3加压后,进入第二级复温换热器hx9释放热量使lng气化,之后流入第一蓄冷剂低温储罐s3,进入下一次循环。所述的低温区换热器hx7出口o与第二蓄冷剂高温储罐s4入口连接,第二蓄冷剂高温储罐s4出口与第五阀门v7入口连接,第五阀门v7出口与第二蓄冷剂循环泵p4入口连接,第二蓄冷剂循环泵p4出口与第八阀门v10入口连接,第八阀门v10出口与第一级复温换热器hx8热流体入口连接,第一级复温换热器hx8热流体出口与第二蓄冷剂低温储罐s5入口连接,第二蓄冷剂低温储罐s5出口与第六阀门v8入口连接,第六阀门v8出口与第二蓄冷剂循环泵p4入口连接,第二蓄冷剂循环泵p4出口与第七阀门v9入口连接,第七阀门v9出口与低温区换热器hx7入口p连接,低温区换热器hx7入口p与出口o连通,构成第二级低温冷量循环子系统。当第二级低温冷量循环子系统处于电力回收状态时,第六阀门v8和第七阀门v9开启,第五阀门v7和第八阀门v10关闭,第二蓄冷剂低温储罐s5中低温蓄冷剂流出,经蓄冷剂循环泵p4加压后,进入低温区换热器hx7释放冷量用于冷却天然气,随后流入第二蓄冷剂高温储罐s4;当第二级低温冷量循环子系统处于电力恢复状态时,第五阀门v7和第八阀门v10开启,第六阀门v8和第七阀门v9关闭,第二蓄冷剂高温储罐s4中高温蓄冷剂流出,经蓄冷剂循环泵p4加压后,进入第一级复温换热器hx8中释放热量加热lng,之后流入第二蓄冷剂低温储罐s5,等待进入下一次循环。所述的第一级中间冷却器hx1、第二级中间冷却器hx2、第三级中间冷却器hx3、第四级中间冷却器hx4热流体入口分别与第一分配器m5出口连接,第一级中间冷却器hx1、第二级中间冷却器hx2、第三级中间冷却器hx3、第四级中间冷却器hx4热流体出口分别与第二混合器m2入口连接,第二混合器m2出口与蓄热介质高温储罐s6入口连接,蓄热介质高温储罐s6出口与第九阀门v11入口连接,第九阀门v11出口与蓄热介质循环泵p2入口连接,蓄热介质循环泵p2出口与第十二阀门v14入口连接,第十二阀门v14出口与第二分配器m3入口连接,第二分配器m3出口分别与第一级过热器hx10、第二级过热器hx11、第三级过热器hx12、第四级过热器hx13热流体入口连接,第一级过热器hx10、第二级过热器hx11、第三级过热器hx12、第四级过热器hx13热流体出口分别与第三混合器m4入口连接,第三混合器m4出口与蓄热介质冷却器e2入口连接,蓄热介质冷却器e2出口与蓄热介质低温储罐s7入口连接,蓄热介质低温储罐s7出口与第十阀门v12入口连接,第十阀门v12出口与蓄热介质循环泵p2入口连接,蓄热介质循环泵p2出口与第十一阀门v13入口连接,第十一阀门v13出口与第一分配器m5入口连接,构成高温热量循环子系统。高温热量循环子系统处于电力回收状态时,第十阀门v12和第十一阀门v13开启,第九阀门v11和第十二阀门v14关闭,蓄热介质低温储罐s7中低温蓄热介质流出,经蓄热介质循环泵p2加压后,流入第一分配器m5被分为四股分别进入第一级中间冷却器hx1、第二级中间冷却器hx2、第三级中间冷却器hx3、第四级中间冷却器hx4中冷却压缩后的高温天然气,随后流出至第二混合器m2,经混合后流入蓄热介质高温储罐s6;高温热量循环子系统处于电力恢复状态时,第九阀门v11和第十二阀门v14开启,第十阀门v12和第十一阀门v13关闭,蓄热介质高温储罐s6中高温蓄热介质流出,经蓄热介质循环泵p2加压后流入第二分配器m3,被分为四股分别进入第一级过热器hx10、第二级过热器hx11、第三级过热器hx12、第四级过热器hx13中加热膨胀前的天然气使其过热,随后流出至第三混合器m4,混合后进入蓄热介质冷却器e2中释放对于的热量,之后流入蓄热介质低温储罐s7,进入下一次循环。所述的第一级预冷换热器hx5、第二级预冷换热器hx6与主换热器hx7为多股流换热器,在高温区换热器hx5中,高压天然气、返流天然气和高温区蓄冷剂同时进行换热;在中温区换热器hx6中,高压天然气、返流天然气和混合制冷剂同时进行换热;在低温区换热器hx7中,高压天然气、返流天然气和低温区制冷剂同时进行换热。所述的高温区蓄冷剂为甲醇,中温区混合制冷剂包含甲烷、乙烷和丙烷,低温区蓄冷剂为丙烷,高温热量循环介质为导热油,所述的冷凝器e1与冷却器e2均采用水冷冷却器,各物流流出的温度均为288.15k。天然气增压、预冷和液化子系统采用带预冷的一次节流液化循环(开式),低压管道天然气经过四级等温压缩至10mpa,并在压缩机级间经过中间冷却器冷却至293.15k,第二级中间冷却器hx2排出的天然气4与返流天然气17混合并通入第三级压缩机c3;高压天然气经过三级预冷后温度降至182k,随后进入第一节流阀v1节流至1.2mpa,获得153.3k的两相天然气流体,经lng储罐s1分离后,气相天然气产物14返流并流经低温区换热器hx7、中温区换热器hx6、高温区换热器hx5吸热升温至290k,随后与中压天然气混合进入第三级压缩机c3。lng增压汽化膨胀发电子系统采用开式朗肯循环,lng储罐s1中的低温液态天然气经低温泵p1加压至10mpa,在第一级复温换热器hx8、第二级复温换热器hx9中释放冷量并汽化升温至273.15k,随后由第一级过热器hx10加热至382k,经四级透平膨胀机等比膨胀至0.1mpa后排出,在各级透平膨胀机级间经过热器加热至382k。混合制冷剂预冷循环子系统采用单级蒸汽压缩式制冷循环,混合制冷剂由甲烷、乙烷、丙烷组成,其摩尔分数比为1:8:1,混合制冷剂经混合制冷剂压缩机c5压缩至5mpa,经冷凝器e1完全冷凝并过冷至288.15k,随后在第二节流阀v2节流至0.4mpa,进入换热器hx6吸收高压天然气放出的热量并升温至220k。采用流程模拟计算的方法说明图1的实施方案,结果列于表1中。假定入口天然气由甲烷、乙烷、丙烷、正丁烷、异丁烷、氮气组成,摩尔分数比为0.9489:0.0365:0.0013:0.0011:0.0057,压力为0.1mpa,温度为298.15k。本实施例的储能效率定义为总输出功与总输入功的比值,图1所示的实施方案中各压缩机、泵和透平膨胀机的功率列于表2中(蓄热介质循环泵p2与制冷剂输送泵p3、p4的功率太小忽略不计),储能效率计算结果为56.0%。表1实施例主要参数表2实施例各流体机械设备功率设备功率(kw)压缩机c123.91压缩机c225.02压缩机c333.45压缩机c432.45压缩机c56.59泵p13.75透平膨胀机t117.54透平膨胀机t217.25透平膨胀机t317.61透平膨胀机t417.72本实施例是对本发明所作的进一步详细说明,不能认定本发明的具体实施方式仅限于此,对于本发明所属
技术领域
的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单的推演或替换,例如天然气增压、预冷和液化子系统采用克劳德液化循环、海兰德液化循环、卡皮查液化循环等,都应当视为属于本发明由所提交的权利要求书确定专利保护范围。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1