一种液体量可调且同时产多规格氧气产品的空分设备的制作方法

文档序号:18136921发布日期:2019-07-10 10:41阅读:183来源:国知局
一种液体量可调且同时产多规格氧气产品的空分设备的制作方法

本实用新型涉及一种液体量可调且同时产多规格氧气产品的空分设备,特别涉及到在低温下对空气进行精馏分离得到不同产品的内压缩空气分离装置,属于低温技术领域。



背景技术:

低温精馏分离法是获得氧、氮、氩等工业气体和液体产品的主要方式之一。该技术以空气为原料,通过有效组织预冷、纯化、换热、精馏等工艺,实现空气组分的物理分离,其主要流程一般包括空气过滤系统、压缩系统、预冷系统、纯化系统、膨胀制冷系统、换热系统、低温精馏系统等。该工艺相比其他空气分离工艺,具有获得产品纯度高、装置规模大、连续运转时间长、运行稳定、可靠等优势,是应用最为广泛的空气分离工艺,其产品纯度一般可达到:氧≥99.6%,氮≥99.99%,氩≥99.999%等,装置规模可根据用户需求进行针对性的设计。

液体量可调型且同时产多种规格氧气产品的空分设备由于能耗低、多工况、液体量可调等优点,在冶金项目、气体投资用户、执行峰谷分时用电政策区域具有广泛的应用需求。



技术实现要素:

本实用新型的目的在于克服现有技术存在的不足,而提供一种在现有技术基础上进一步开发的、具备安全、稳定、可靠、能耗低等优点的、能够实现较大范围调整的液体量可调且同时产多规格氧气产品的空分设备及生产方法。

本实用新型的目的是通过如下技术方案来完成的,一种液体量可调且同时产多规格氧气产品的空分设备,它至少包括:

a)、使用一套原料空气压缩机组和带冷却器的空气增压压缩机组,原料空气压缩机组将空气加压成一定压力的空气送入预冷和净化系统,空气增压压缩机组将出净化系统的空气增压至增压透平膨胀机组能够使用的中压空气和能够汽化液氧的中压空气;

b)、至少使用一套由增压机、冷却器及膨胀机组成的增压透平膨胀机组;

c)、对不同的流体进行换热的主换热器、过冷器;

d)、将分离用原料空气进行分离获得产品的精馏塔系统,该精馏塔系统由中压塔、主冷凝蒸发器、低压塔及其连接管道和阀门组成;

e)、将精馏塔分离出的液氧液氮增压至所需换热压力的低温液体泵组,低温液体泵组至少包括一台低温流程液氧泵;

g)、采用高、低温增压透平膨胀机组增压端和膨胀端双串联模式,通过高、低温增压透平膨胀机组增压端的两级接力增压、冷却,膨胀端的两级接力膨胀制冷,以提高单位标方膨胀空气的膨胀制冷量。

作为优选:它还包括一粗氩塔,从低压塔中部抽取一定量的氩馏分送入粗氩塔,氩馏分经粗氩塔精馏后得到粗氩气;

所述的净化系统主要由可切换的双筒分子筛吸附器构成;所述的精馏塔系统中,中压塔顶部设置有液氮出口,另在中压塔顶部设置有压力氮抽口,在低压塔底部设置有液氧出口,在低压塔的顶部设置有低压氮气出口,在低压塔上部设置有污氮气出口。

作为优选:它还包括一精氩塔,将经粗氩塔精馏后得到粗氩气送入精氩塔中部,经精氩塔精馏后在塔底部得到纯液氩。

一种利用所述的液体量可调且同时产多规格氧气产品的空分设备进行生产方法,所述的生产方法包括如下步骤:

1)、环境空气经空气过滤器过滤除尘,送入带中间冷却器的空气压缩机组进行升压处理,由空气压缩机组处理生成的一定压力的低压原料空气,送入预冷及净化系统;

2)、低压原料空气经过预冷系统冷却并在净化系统除去水、二氧化碳和碳氢化合物等杂质后被分流为直接去主换热器的低压原料空气及去空气增压压缩机的低压原料空气;去主换热器的低压原料空气进入主换热器冷却后送入中压塔;去空气增压压缩机的低压原料空气,一部分从该空气增压压缩机中部抽出,其余从该压缩机的末级抽出;从中部抽出的增压空气经冷却器冷却、经串联的高、低温增压透平膨胀机组的增压端增压、冷却后,再进入主换热器冷却;

通过连通控制阀门将高温增压透平膨胀机组增压端和膨胀端短路,即从增压机中部抽出的中压空气依次经过低温增压透平膨胀机组增压端、低温增压透平膨胀机组增压端后冷却器冷却至常温后、经联通控制阀后进入主换热器参与换热过程,再从主换热器流道中上部抽出依次经过主换热器中部换热流道、连通控制阀、低温膨胀机组膨胀端,经低温增压透平膨胀机组膨胀端膨胀后的低温空气送入中压塔参与精馏过程;从增压机末级抽出的高压空气经末级冷却器冷却后进入主换热器参与换热过程,在出主换热器冷端经高压液空节流阀节流后进中压塔参与精馏过程。

3)、所有进入中压塔的空气经由中压塔、主冷凝蒸发器、低压塔构成的精馏塔精馏后,在中压塔顶部获得液氮和压力氮气、在低压塔底部获得液氧、在低压塔顶部获得低压氮气和污氮气;

4)、从低压塔底部获得的部分液氧进入单个低温液氧泵增压、增压后的液氧经阀门调节后分两股或这些液氧直接通过两个低温液氧泵增压至所需压力后,分别进入主换热器复热出冷箱,送入氧气管网。在主冷凝蒸发器底部抽取部分液氧经过冷器过冷后送入贮槽;

5)、从低压塔上部引出污氮气经过冷器、主换热器复热出冷箱后分成两部分:一部分进入分子筛系统的加热器,作为分子筛再生气体,其余污氮气去水冷塔;

6)、从低压塔中部抽取一定量的氩馏分送入粗氩塔,氩馏分经粗氩塔精馏后得到粗氩气,并送入精氩塔中部,经精氩塔精馏后在塔底部得到纯液氩,送入液氩贮槽。

一种利用所述的液体量可调且同时产多规格氧气产品的空分设备进行生产方法,所述的生产方法包括如下步骤:

1)、环境空气经空气过滤器过滤除尘,送入带中间冷却器的空气压缩机组进行升压处理,由空气压缩机组处理生成的一定压力的低压原料空气,送入预冷及净化系统;

2)、低压原料空气经过预冷系统冷却并在净化系统除去水、二氧化碳和碳氢化合物等杂质后被分流为直接去主换热器的低压原料空气及去空气增压压缩机的低压原料空气;去主换热器的低压原料空气进入主换热器冷却后送入中压塔;去空气增压压缩机的低压原料空气,一部分从该空气增压压缩机中部抽出,其余从该压缩机的末级抽出;从中部抽出的增压空气经冷却器冷却、经串联的高、低温增压透平膨胀机组的增压端增压、冷却后,再进入主换热器冷却,然后中抽去高温增压透平膨胀机组的膨胀端膨胀后送入中压塔;从空气增压压缩机末级出口的增压空气经冷却器冷却、从主换热器冷端抽出后节流送入中压塔参与精馏过程;

3)、所有进入中压塔的空气经由中压塔、主冷凝蒸发器、低压塔构成的精馏塔精馏后,在中压塔顶部获得液氮和压力氮气、在低压塔底部获得液氧、在低压塔顶部获得低压氮气和污氮气;

4)、从低压塔底部获得的部分液氧进入单个低温液氧泵增压、增压后的液氧经阀门调节后分两股或这些液氧直接通过两个低温液氧泵增压至所需压力后,分别进入主换热器复热出冷箱,送入氧气管网。在主冷凝蒸发器底部抽取部分液氧经过冷器过冷后送入贮槽;

5)、从低压塔上部引出污氮气经过冷器、主换热器复热出冷箱后分成两部分:一部分进入分子筛系统的加热器,作为分子筛再生气体,其余污氮气去水冷塔;

6)、从低压塔中部抽取一定量的氩馏分送入粗氩塔,氩馏分经粗氩塔精馏后得到粗氩气,并送入精氩塔中部,经精氩塔精馏后在塔底部得到纯液氩,送入液氩贮槽。

作为优选:本实用新型通过调整、组合高低温增压透平膨胀机组的运行状态实现低能耗、多工况、大幅度调整液体产量;膨胀机组的主要运行模式有:高低温增压透平膨胀机组超负荷运行、高低温增压透平膨胀机组降负荷运行、停开高温增压透平膨胀机组低温增压透平膨胀机组超负荷运行、停开高温增压透平膨胀机组低温增压透平膨胀机组降负荷运行多种模式调整液体的产量;其中:高低温增压透平膨胀机组双开模式下:

①空分系统超负荷运行时,高低温增压透平膨胀机组、原料空气压缩机和增压空气压缩机等关键动设备保持在超负荷状态下运行,但不超过其最大值,可获得最大的液体量;

②空分系统设计负荷点时,高低温增压透平膨胀机、原料空压机及空气增压压缩机等关键动设备均在设计工况下运行,获得设计设计工况的液体量;

③空分系统降负荷运行时,高低温增压透平膨胀机组在空气量允许的最低点运行时,原料空气压缩机和增压空气压缩机等关键动设备保持在降负荷状态下运行,但不超过其最小值,可获得最小的液体量;

高温增压透平膨胀机组停开模式,即单膨胀模式下:

当停开高温增压透平膨胀机组时,或没有高温增压透平膨胀机组时,低温增压透平膨胀机仍可在设计工况、升负荷工况、降负荷工况下运行,原料空气压缩机和增压空气压缩机等关键动设备可以保持在设计工况、较高状态和较低状态下运行,仅调整了液体产出量,空分装置生产气态产品的能力不受影响。

本实用新型从常规的内压缩空分流程的基础上,创新优化开发出一种高、低温增压透平膨胀机组增压端和膨胀端双串联的氧内压缩流程,该流程通过高、低温增压透平膨胀机组增压端的两级接力增压、冷却,膨胀端的两级接力膨胀制冷的流程组织形式,可大大降低膨胀处理气量,从而降低了增压空气压缩机的处理气量和功耗,降低空分装置系统整体的制氧单耗。

本实用新型从空分液体量调节范围及能耗角度考虑,具有液体量调节范围大、能耗低、多工况、系统耦合匹配科学合理、装置整体稳定可靠等优点。

附图说明

图1是本实用新型双膨胀流程示意简图。

图2是本实用新型单膨胀流程示意简图。

在图1中:01为进空气过滤器的原料空气,02为空气过滤器,03为原料空气压缩机组,04为冷却水水泵,05为空冷塔出水阀门,06为预冷系统的空冷塔,07为冷水机组,08为水冷塔阀门,09为冷冻水阀门,10为冷冻水水泵,11为预冷系统的水冷塔,12、13为污氮气出口阀,14、15为空气进纯化系统进口阀,16、17为纯化系统吸附器,18、19为污氮气进口阀,20、21为空气出纯化系统出口阀,22、23为纯化加热器,24为污氮气进纯化加热器阀门,25为去空气增压压缩机组的低压空气流,26为去主换热器的低压空气流,27为空气增压压缩机组,28为空气增压压缩机组末级冷却器,29为空气增压压缩机组中间冷却器,30为低温增压透平膨胀机组的增压机,31为增压后冷却器,32为高温增压透平膨胀机组的增压机,33为增压后冷却器,34为高温增压透平膨胀机组的增压机端旁路阀,35为高温增压透平膨胀机组的膨胀机,36为高温增压透平膨胀机组的膨胀机端旁路阀,37为低温增压透平膨胀机组的膨胀机,38为膨胀后的低压空气去下塔,39为高压空气节流阀,40为中压塔,41为主冷凝蒸发器,42为低压塔,43为出中压塔顶部的压力氮气,44为从低压塔底部抽出的液氧,45为液氧泵,46为液氧泵后分出一股去节流氧的节流阀,47为出液氧泵的另一股直接去主换热器的氧,48为主换热器,49为从中压塔底部抽出的富氧液空,50为出中压塔的污液氮,51为出主冷凝蒸发器的液氮流,52为回中压塔液氮流,53为液空出粗氩塔回流,54为液空去粗氩塔,55为出粗氩塔液体,56为出粗氩塔被蒸发气体,57为中压塔液空进低压塔节流阀,58为中压塔污液氮进低压塔节流阀,59为低压塔污氮气出口,60为中压塔液氮进低压塔节流阀,61为低压塔低压氮气出口,62为过冷器,63为部分液空进粗氩塔节流阀,64为粗氩塔蒸汽出口,65为粗氩塔冷凝器,66为粗氩塔,67为循环液氩泵,68为压力氮去精氩蒸发器,69为粗氩气,70为出精氩塔氮气,71为精氩冷凝器,72为精氩塔,73为精氩蒸发器,74为出精氩塔液氮,75为精氩产品,76为液氮产品,77为液氧产品,78为低压氧气,79为中压氧气,80为中压氮气,81为低压氮气,82为仪表气,83为放空气去消声塔,82为去分子筛系统(作为分子筛再生气体)加热器的污氮气,83为去水冷塔的污氮气。

在图2中:基本与图1一致,不同点在于图2仅为单膨胀机,其中30为增压透平膨胀机组的增压机,31为增压后冷却器,37为增压透平膨胀机组的膨胀机,取消32-36另一膨胀机相关部分。

具体实施方式

下面将结合附图和实施例,对本实用新型作进一步的说明:图1、2所示,本实用新型所述的一种液体量可调且同时产多规格氧气产品的空分设备,它至少包括:

a)、使用一套原料空气压缩机组03和带冷却器28、29的空气增压压缩机组27,原料空气压缩机组03将空气加压成一定压力的空气送入预冷06和净化系统,空气增压压缩机组27将出净化系统的空气增压至低温增压透平膨胀机组的增压机30能够使用的中压空气和能够汽化液氧的中压空气;

b)、至少使用一套由低温增压透平膨胀机组的增压机30、冷却器31及膨胀机37组成的增压透平膨胀机组;

c)、对不同的流体进行换热的主换热器48、过冷器62;

d)、将分离用原料空气进行分离获得产品的精馏塔系统,该精馏塔系统由中压塔40、主冷凝蒸发器41、低压塔42及其连接管道和阀门组成;

e)、将精馏塔分离出的液氧液氮增压至所需换热压力的低温液体泵组,低温液体泵组至少包括一台低温流程液氧泵45;

g)、采用高、低温增压透平膨胀机组增压端和膨胀端双串联模式,通过高、低温增压透平膨胀机组增压端的两级接力增压、冷却,膨胀端的两级接力膨胀制冷,以提高单位标方膨胀空气的膨胀制冷量。

作为优选的实施例,本实用新型还包括一粗氩塔66,从低压塔42中部抽取一定量的氩馏分送入粗氩塔66,氩馏分经粗氩塔66精馏后得到粗氩气;

所述的净化系统主要由可切换的双筒分子筛吸附器构成;所述的精馏塔系统中,中压塔40顶部设置有液氮52出口,另在中压塔40顶部设置有压力氮43抽口,在低压塔42底部设置有液氧44出口,在低压塔42的顶部设置有低压氮气61出口,在低压塔上部设置有污氮气59出口。

本实用新型另一实施例,还可以包括一精氩塔72,将经粗氩塔66精馏后得到粗氩气送入精氩塔72中部,经精氩塔72精馏后在塔底部得到纯液氩。

图1所示,一种利用所述的液体量可调且同时产多规格氧气产品的空分设备进行生产方法,所述的生产方法包括如下步骤:

1)、环境空气经空气过滤器02过滤除尘,送入带中间冷却器的空气压缩机组03进行升压处理,由空气压缩机组处理生成的一定压力的低压原料空气,送入预冷06及净化系统;

2)、低压原料空气经过预冷系统冷却并在净化系统除去水、二氧化碳和碳氢化合物等杂质后被分流为直接去主换热器的低压原料空气26及去空气增压压缩机的低压原料空气25;去主换热器的低压原料空气进入主换热器冷却后送入中压塔;去空气增压压缩机的低压原料空气,一部分从该空气增压压缩机中部抽出,其余从该压缩机的末级抽出;从中部抽出的增压空气经冷却器29冷却、经串联的高、低温增压透平膨胀机组的增压端增压、冷却后,再进入主换热器48冷却;

通过连通控制阀门34、36将高温增压透平膨胀机组增压端和膨胀端短路,即从增压机中部抽出的中压空气依次经过低温增压透平膨胀机组增压端30、低温增压透平膨胀机组增压端后冷却器31冷却至常温后、经联通控制阀34后进入主换热器48参与换热过程,再从主换热器流道中上部抽出依次经过主换热器中部换热流道、连通控制阀36、低温膨胀机组膨胀端37,经低温增压透平膨胀机组膨胀端膨胀后的低温空气送入中压塔40参与精馏过程;从增压机末级抽出的高压空气经末级冷却器28冷却后进入主换热器48参与换热过程,在出主换热器冷端经高压液空节流阀39节流后进中压塔40参与精馏过程。

3)、所有进入中压塔的空气经由中压塔、主冷凝蒸发器、低压塔构成的精馏塔精馏后,在中压塔40顶部获得液氮52和压力氮气43、在低压塔42底部获得液氧、在低压塔42顶部获得低压氮气61和污氮气59;

4)、从低压塔底部获得的部分液氧进入单个低温液氧泵45增压、增压后的液氧经阀门46调节后分两股或这些液氧直接通过两个低温液氧泵增压至所需压力后,分别进入主换热器复热出冷箱,送入氧气管网。在主冷凝蒸发器底部抽取部分液氧77经过冷器过冷后送入贮槽;

5)、从低压塔42上部引出污氮气(59)经过冷器62、主换热器48复热出冷箱后分成两部分:一部分82进入分子筛系统的加热器,作为分子筛再生气体,其余污氮气83去水冷塔;

6)、从低压塔42中部抽取一定量的氩馏分54送入粗氩塔66,氩馏分经粗氩塔精馏后得到粗氩气69,并送入精氩塔72中部,经精氩塔72精馏后在塔底部得到纯液氩75,送入液氩贮槽。

图2所示,一种利用所述的液体量可调且同时产多规格氧气产品的空分设备进行生产方法,所述的生产方法包括如下步骤:

1)、环境空气经空气过滤器02过滤除尘,送入带中间冷却器的空气压缩机组03进行升压处理,由空气压缩机组处理生成的一定压力的低压原料空气,送入预冷06及净化系统;

2)、低压原料空气经过预冷系统冷却并在净化系统除去水、二氧化碳和碳氢化合物等杂质后被分流为直接去主换热器的低压原料空气26及去空气增压压缩机的低压原料空气25;去主换热器的低压原料空气进入主换热器冷却后送入中压塔;去空气增压压缩机的低压原料空气,一部分从该空气增压压缩机中部抽出,其余从该压缩机的末级抽出;从中部抽出的增压空气经冷却器29冷却、经串联的高、低温增压透平膨胀机组的增压端增压、冷却后,再进入主换热器48冷却,然后中抽去高温增压透平膨胀机组的膨胀端37膨胀后送入中压塔40;从空气增压压缩机末级出口的增压空气经冷却器28冷却、从主换热器冷端抽出后节流39送入中压塔40参与精馏过程;

3)、所有进入中压塔的空气经由中压塔、主冷凝蒸发器、低压塔构成的精馏塔精馏后,在中压塔40顶部获得液氮52和压力氮气43、在低压塔42底部获得液氧、在低压塔42顶部获得低压氮气61和污氮气59;

4)、从低压塔底部获得的部分液氧进入单个低温液氧泵45增压、增压后的液氧经阀门46调节后分两股或这些液氧直接通过两个低温液氧泵增压至所需压力后,分别进入主换热器复热出冷箱,送入氧气管网。在主冷凝蒸发器底部抽取部分液氧77经过冷器过冷后送入贮槽;

5)、从低压塔42上部引出污氮气59经过冷器62、主换热器48复热出冷箱后分成两部分:一部分82进入分子筛系统的加热器,作为分子筛再生气体,其余污氮气83去水冷塔;

6)、从低压塔42中部抽取一定量的氩馏分54送入粗氩塔66,氩馏分经粗氩塔精馏后得到粗氩气69,并送入精氩塔72中部,经精氩塔72精馏后在塔底部得到纯液氩75,送入液氩贮槽。

作为优选的实施例,本实用新型是通过调整、组合高低温增压透平膨胀机组的运行状态实现低能耗、多工况、大幅度调整液体产量;膨胀机组的主要运行模式有:高低温增压透平膨胀机组超负荷运行、高低温增压透平膨胀机组降负荷运行、停开高温增压透平膨胀机组低温增压透平膨胀机组超负荷运行、停开高温增压透平膨胀机组低温增压透平膨胀机组降负荷运行多种模式调整液体的产量;其中:高低温增压透平膨胀机组双开模式下:

①空分系统超负荷运行时,高低温增压透平膨胀机组、原料空气压缩机和增压空气压缩机等关键动设备保持在超负荷状态下运行,但不超过其最大值,可获得最大的液体量;

②空分系统设计负荷点时,高低温增压透平膨胀机、原料空压机及空气增压压缩机等关键动设备均在设计工况下运行,获得设计设计工况的液体量;

③空分系统降负荷运行时,高低温增压透平膨胀机组在空气量允许的最低点运行时,原料空气压缩机和增压空气压缩机等关键动设备保持在降负荷状态下运行,但不超过其最小值,可获得最小的液体量;

高温增压透平膨胀机组停开模式,即单膨胀模式下:

当停开高温增压透平膨胀机组时,或没有高温增压透平膨胀机组时,低温增压透平膨胀机仍可在设计工况、升负荷工况、降负荷工况下运行,原料空气压缩机和增压空气压缩机等关键动设备可以保持在设计工况、较高状态和较低状态下运行,仅调整了液体产出量,空分装置生产气态产品的能力不受影响。

实施例:以内压缩氧气产量20000 Nm3/h(纯度≥99.6%、出冷箱压力2.5 & 0.8MPaG)、液氧产量1500Nm3/h、液氮产量500 Nm3/h、液氩最大量~750 Nm3/h的空分设备为例。本实用新型的工艺流程组织方法为:

来自空气过滤器02的除尘后空气进入原料空气压缩机组03进行压缩,出该压缩机的空气压力提升至0.55~0.75 MPaA,直接送入空冷塔06冷却后,再进入纯化器16、17除去水分、二氧化碳、碳氢化合物等杂质。

预冷、纯化后的空气流分为两股,一股为去主换热器的低压空气流26,另一股为去空气增压压缩机组的低压空气流25,低压空气流直接进入主换热器冷却至饱和温度后送入中压塔40参与精馏;去空气增压压缩机组的低压原料空气,一部分从该压缩机中部抽出,其余从该压缩机的末级抽出,从中部抽出的空气经增压机中间冷却器29冷却、串联的高低温增压透平膨胀机的增压机增压、增压后冷却器冷却后再进入主换热器48冷却至规定温度,然后抽出送入高温增压透平膨胀机的膨胀端膨胀,膨胀至规定压力后再进入主换热器,换热至一定温度后再中抽送入低温增压透平膨胀机组的膨胀端35,膨胀至一定压力后送入中压塔40参与精馏,从空气增压压缩机组末级出口的高压空气经增压机末级冷却器28冷却、主换热器48冷却至规定温度、节流阀39节流后,送入中压塔40内参与精馏。

从中压塔底部抽出的富氧液空49在过冷器62过冷后经富氧液空节流阀57节流后送入低压塔42的合适部位,成为低压塔的回流液。从中压塔40合适部位抽出的污液氮50在过冷器62过冷后经液氮节流阀58节流后送入低压塔42的合适部位,成为低压塔的第二股回流液。在中压塔40顶部获得的氮气61在主冷凝蒸发器中被冷凝成液氮,一部分液氮作为中压塔的回流液51,其余的液氮经过冷器62过冷后分为两部分,一部分去低压塔42,另一部分作为产品液氮76送入液体贮存系统。从中压塔40顶部抽出的压力氮气43经主换热器48换热后出冷箱进入氮气管网。在主冷凝蒸发器41中被氮气加热气化的氧气成为低压塔的上升气流,经与上述两股回流液进行传热传质交流,在低压塔的底部得到液氧,一部分液氧作为液体产品77送入液体贮存系统,另一部分液氧进入低温液氧泵45升压至规定压力后分两股,一股47直接去主换热器48,另一股经节流46至规定压力后去主换热器48,换热后的两股氧气送入相应的氧气管网。在低压塔42顶部得到的低压氮气61经过冷器62、主换热器48复热后送入低压氮气管网,在低压塔上部得到的污氮气59经过冷器62、主换热器48复热后,分别按照工艺要求送入预冷、纯化系统。

在产品指标相同的情况下,采用液体量可调且同时生产多规格氧气型内压缩空分装置及其空气分离的方法,空分装置系统的增压机处理气量、膨胀机处理气量、制氧单耗等均有较大的优势。

该液体量可调且同时生产多规格氧气型内压缩空分装置单位标方膨胀制冷量是常规内压缩空分流程的1.488倍,在20000 Nm3/h空分系统冷量需求一定的情况下,膨胀机处理气量为常规内压缩空分膨胀气量的76%左右,增压机入口处理气量为常规内压缩流程的87%左右,有利于优化机组的订货选型、土建基础、设备安装等一次性投资成本。

上述实施例仅是本实用新型的实施案例之一,对于一种液体量可调且同时产多规格氧气产品型内压缩空分设备流程来说,可以做出各种变型和优化,但不管流程作何种变化,只要是采用高低温增压透平膨胀机组增压端和膨胀端双串联模式或者采用单膨胀模式,并利用该流程进行空气分离,得到至少两种规格氧气产品(不管是全部采用液氧泵内压缩还是液氧内压缩后部分节流等型式都是液氧内压缩)的方法都属于本专利的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1